Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 | /* * arch/arm/common/dmabounce.c * * Special dma_{map/unmap/dma_sync}_* routines for systems that have * limited DMA windows. These functions utilize bounce buffers to * copy data to/from buffers located outside the DMA region. This * only works for systems in which DMA memory is at the bottom of * RAM, the remainder of memory is at the top and the DMA memory * can be marked as ZONE_DMA. Anything beyond that such as discontiguous * DMA windows will require custom implementations that reserve memory * areas at early bootup. * * Original version by Brad Parker (brad@heeltoe.com) * Re-written by Christopher Hoover <ch@murgatroid.com> * Made generic by Deepak Saxena <dsaxena@plexity.net> * * Copyright (C) 2002 Hewlett Packard Company. * Copyright (C) 2004 MontaVista Software, Inc. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * version 2 as published by the Free Software Foundation. */ #include <linux/module.h> #include <linux/init.h> #include <linux/slab.h> #include <linux/device.h> #include <linux/dma-mapping.h> #include <linux/dmapool.h> #include <linux/list.h> #include <asm/cacheflush.h> #undef STATS #ifdef STATS #define DO_STATS(X) do { X ; } while (0) #else #define DO_STATS(X) do { } while (0) #endif /* ************************************************** */ struct safe_buffer { struct list_head node; /* original request */ void *ptr; size_t size; int direction; /* safe buffer info */ struct dmabounce_pool *pool; void *safe; dma_addr_t safe_dma_addr; }; struct dmabounce_pool { unsigned long size; struct dma_pool *pool; #ifdef STATS unsigned long allocs; #endif }; struct dmabounce_device_info { struct device *dev; struct list_head safe_buffers; #ifdef STATS unsigned long total_allocs; unsigned long map_op_count; unsigned long bounce_count; int attr_res; #endif struct dmabounce_pool small; struct dmabounce_pool large; rwlock_t lock; }; #ifdef STATS static ssize_t dmabounce_show(struct device *dev, struct device_attribute *attr, char *buf) { struct dmabounce_device_info *device_info = dev->archdata.dmabounce; return sprintf(buf, "%lu %lu %lu %lu %lu %lu\n", device_info->small.allocs, device_info->large.allocs, device_info->total_allocs - device_info->small.allocs - device_info->large.allocs, device_info->total_allocs, device_info->map_op_count, device_info->bounce_count); } static DEVICE_ATTR(dmabounce_stats, 0400, dmabounce_show, NULL); #endif /* allocate a 'safe' buffer and keep track of it */ static inline struct safe_buffer * alloc_safe_buffer(struct dmabounce_device_info *device_info, void *ptr, size_t size, enum dma_data_direction dir) { struct safe_buffer *buf; struct dmabounce_pool *pool; struct device *dev = device_info->dev; unsigned long flags; dev_dbg(dev, "%s(ptr=%p, size=%d, dir=%d)\n", __func__, ptr, size, dir); if (size <= device_info->small.size) { pool = &device_info->small; } else if (size <= device_info->large.size) { pool = &device_info->large; } else { pool = NULL; } buf = kmalloc(sizeof(struct safe_buffer), GFP_ATOMIC); if (buf == NULL) { dev_warn(dev, "%s: kmalloc failed\n", __func__); return NULL; } buf->ptr = ptr; buf->size = size; buf->direction = dir; buf->pool = pool; if (pool) { buf->safe = dma_pool_alloc(pool->pool, GFP_ATOMIC, &buf->safe_dma_addr); } else { buf->safe = dma_alloc_coherent(dev, size, &buf->safe_dma_addr, GFP_ATOMIC); } if (buf->safe == NULL) { dev_warn(dev, "%s: could not alloc dma memory (size=%d)\n", __func__, size); kfree(buf); return NULL; } #ifdef STATS if (pool) pool->allocs++; device_info->total_allocs++; #endif write_lock_irqsave(&device_info->lock, flags); list_add(&buf->node, &device_info->safe_buffers); write_unlock_irqrestore(&device_info->lock, flags); return buf; } /* determine if a buffer is from our "safe" pool */ static inline struct safe_buffer * find_safe_buffer(struct dmabounce_device_info *device_info, dma_addr_t safe_dma_addr) { struct safe_buffer *b, *rb = NULL; unsigned long flags; read_lock_irqsave(&device_info->lock, flags); list_for_each_entry(b, &device_info->safe_buffers, node) if (b->safe_dma_addr == safe_dma_addr) { rb = b; break; } read_unlock_irqrestore(&device_info->lock, flags); return rb; } static inline void free_safe_buffer(struct dmabounce_device_info *device_info, struct safe_buffer *buf) { unsigned long flags; dev_dbg(device_info->dev, "%s(buf=%p)\n", __func__, buf); write_lock_irqsave(&device_info->lock, flags); list_del(&buf->node); write_unlock_irqrestore(&device_info->lock, flags); if (buf->pool) dma_pool_free(buf->pool->pool, buf->safe, buf->safe_dma_addr); else dma_free_coherent(device_info->dev, buf->size, buf->safe, buf->safe_dma_addr); kfree(buf); } /* ************************************************** */ static inline dma_addr_t map_single(struct device *dev, void *ptr, size_t size, enum dma_data_direction dir) { struct dmabounce_device_info *device_info = dev->archdata.dmabounce; dma_addr_t dma_addr; int needs_bounce = 0; if (device_info) DO_STATS ( device_info->map_op_count++ ); dma_addr = virt_to_dma(dev, ptr); if (dev->dma_mask) { unsigned long mask = *dev->dma_mask; unsigned long limit; limit = (mask + 1) & ~mask; if (limit && size > limit) { dev_err(dev, "DMA mapping too big (requested %#x " "mask %#Lx)\n", size, *dev->dma_mask); return ~0; } /* * Figure out if we need to bounce from the DMA mask. */ needs_bounce = (dma_addr | (dma_addr + size - 1)) & ~mask; } if (device_info && (needs_bounce || dma_needs_bounce(dev, dma_addr, size))) { struct safe_buffer *buf; buf = alloc_safe_buffer(device_info, ptr, size, dir); if (buf == 0) { dev_err(dev, "%s: unable to map unsafe buffer %p!\n", __func__, ptr); return 0; } dev_dbg(dev, "%s: unsafe buffer %p (phy=%p) mapped to %p (phy=%p)\n", __func__, buf->ptr, (void *) virt_to_dma(dev, buf->ptr), buf->safe, (void *) buf->safe_dma_addr); if ((dir == DMA_TO_DEVICE) || (dir == DMA_BIDIRECTIONAL)) { dev_dbg(dev, "%s: copy unsafe %p to safe %p, size %d\n", __func__, ptr, buf->safe, size); memcpy(buf->safe, ptr, size); } ptr = buf->safe; dma_addr = buf->safe_dma_addr; } else { /* * We don't need to sync the DMA buffer since * it was allocated via the coherent allocators. */ consistent_sync(ptr, size, dir); } return dma_addr; } static inline void unmap_single(struct device *dev, dma_addr_t dma_addr, size_t size, enum dma_data_direction dir) { struct dmabounce_device_info *device_info = dev->archdata.dmabounce; struct safe_buffer *buf = NULL; /* * Trying to unmap an invalid mapping */ if (dma_mapping_error(dma_addr)) { dev_err(dev, "Trying to unmap invalid mapping\n"); return; } if (device_info) buf = find_safe_buffer(device_info, dma_addr); if (buf) { BUG_ON(buf->size != size); dev_dbg(dev, "%s: unsafe buffer %p (phy=%p) mapped to %p (phy=%p)\n", __func__, buf->ptr, (void *) virt_to_dma(dev, buf->ptr), buf->safe, (void *) buf->safe_dma_addr); DO_STATS ( device_info->bounce_count++ ); if (dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL) { void *ptr = buf->ptr; dev_dbg(dev, "%s: copy back safe %p to unsafe %p size %d\n", __func__, buf->safe, ptr, size); memcpy(ptr, buf->safe, size); /* * DMA buffers must have the same cache properties * as if they were really used for DMA - which means * data must be written back to RAM. Note that * we don't use dmac_flush_range() here for the * bidirectional case because we know the cache * lines will be coherent with the data written. */ dmac_clean_range(ptr, ptr + size); outer_clean_range(__pa(ptr), __pa(ptr) + size); } free_safe_buffer(device_info, buf); } } static inline void sync_single(struct device *dev, dma_addr_t dma_addr, size_t size, enum dma_data_direction dir) { struct dmabounce_device_info *device_info = dev->archdata.dmabounce; struct safe_buffer *buf = NULL; if (device_info) buf = find_safe_buffer(device_info, dma_addr); if (buf) { /* * Both of these checks from original code need to be * commented out b/c some drivers rely on the following: * * 1) Drivers may map a large chunk of memory into DMA space * but only sync a small portion of it. Good example is * allocating a large buffer, mapping it, and then * breaking it up into small descriptors. No point * in syncing the whole buffer if you only have to * touch one descriptor. * * 2) Buffers that are mapped as DMA_BIDIRECTIONAL are * usually only synced in one dir at a time. * * See drivers/net/eepro100.c for examples of both cases. * * -ds * * BUG_ON(buf->size != size); * BUG_ON(buf->direction != dir); */ dev_dbg(dev, "%s: unsafe buffer %p (phy=%p) mapped to %p (phy=%p)\n", __func__, buf->ptr, (void *) virt_to_dma(dev, buf->ptr), buf->safe, (void *) buf->safe_dma_addr); DO_STATS ( device_info->bounce_count++ ); switch (dir) { case DMA_FROM_DEVICE: dev_dbg(dev, "%s: copy back safe %p to unsafe %p size %d\n", __func__, buf->safe, buf->ptr, size); memcpy(buf->ptr, buf->safe, size); break; case DMA_TO_DEVICE: dev_dbg(dev, "%s: copy out unsafe %p to safe %p, size %d\n", __func__,buf->ptr, buf->safe, size); memcpy(buf->safe, buf->ptr, size); break; case DMA_BIDIRECTIONAL: BUG(); /* is this allowed? what does it mean? */ default: BUG(); } /* * No need to sync the safe buffer - it was allocated * via the coherent allocators. */ } else { consistent_sync(dma_to_virt(dev, dma_addr), size, dir); } } /* ************************************************** */ /* * see if a buffer address is in an 'unsafe' range. if it is * allocate a 'safe' buffer and copy the unsafe buffer into it. * substitute the safe buffer for the unsafe one. * (basically move the buffer from an unsafe area to a safe one) */ dma_addr_t dma_map_single(struct device *dev, void *ptr, size_t size, enum dma_data_direction dir) { dma_addr_t dma_addr; dev_dbg(dev, "%s(ptr=%p,size=%d,dir=%x)\n", __func__, ptr, size, dir); BUG_ON(dir == DMA_NONE); dma_addr = map_single(dev, ptr, size, dir); return dma_addr; } /* * see if a mapped address was really a "safe" buffer and if so, copy * the data from the safe buffer back to the unsafe buffer and free up * the safe buffer. (basically return things back to the way they * should be) */ void dma_unmap_single(struct device *dev, dma_addr_t dma_addr, size_t size, enum dma_data_direction dir) { dev_dbg(dev, "%s(ptr=%p,size=%d,dir=%x)\n", __func__, (void *) dma_addr, size, dir); BUG_ON(dir == DMA_NONE); unmap_single(dev, dma_addr, size, dir); } int dma_map_sg(struct device *dev, struct scatterlist *sg, int nents, enum dma_data_direction dir) { int i; dev_dbg(dev, "%s(sg=%p,nents=%d,dir=%x)\n", __func__, sg, nents, dir); BUG_ON(dir == DMA_NONE); for (i = 0; i < nents; i++, sg++) { struct page *page = sg->page; unsigned int offset = sg->offset; unsigned int length = sg->length; void *ptr = page_address(page) + offset; sg->dma_address = map_single(dev, ptr, length, dir); } return nents; } void dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nents, enum dma_data_direction dir) { int i; dev_dbg(dev, "%s(sg=%p,nents=%d,dir=%x)\n", __func__, sg, nents, dir); BUG_ON(dir == DMA_NONE); for (i = 0; i < nents; i++, sg++) { dma_addr_t dma_addr = sg->dma_address; unsigned int length = sg->length; unmap_single(dev, dma_addr, length, dir); } } void dma_sync_single_for_cpu(struct device *dev, dma_addr_t dma_addr, size_t size, enum dma_data_direction dir) { dev_dbg(dev, "%s(ptr=%p,size=%d,dir=%x)\n", __func__, (void *) dma_addr, size, dir); sync_single(dev, dma_addr, size, dir); } void dma_sync_single_for_device(struct device *dev, dma_addr_t dma_addr, size_t size, enum dma_data_direction dir) { dev_dbg(dev, "%s(ptr=%p,size=%d,dir=%x)\n", __func__, (void *) dma_addr, size, dir); sync_single(dev, dma_addr, size, dir); } void dma_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg, int nents, enum dma_data_direction dir) { int i; dev_dbg(dev, "%s(sg=%p,nents=%d,dir=%x)\n", __func__, sg, nents, dir); BUG_ON(dir == DMA_NONE); for (i = 0; i < nents; i++, sg++) { dma_addr_t dma_addr = sg->dma_address; unsigned int length = sg->length; sync_single(dev, dma_addr, length, dir); } } void dma_sync_sg_for_device(struct device *dev, struct scatterlist *sg, int nents, enum dma_data_direction dir) { int i; dev_dbg(dev, "%s(sg=%p,nents=%d,dir=%x)\n", __func__, sg, nents, dir); BUG_ON(dir == DMA_NONE); for (i = 0; i < nents; i++, sg++) { dma_addr_t dma_addr = sg->dma_address; unsigned int length = sg->length; sync_single(dev, dma_addr, length, dir); } } static int dmabounce_init_pool(struct dmabounce_pool *pool, struct device *dev, const char *name, unsigned long size) { pool->size = size; DO_STATS(pool->allocs = 0); pool->pool = dma_pool_create(name, dev, size, 0 /* byte alignment */, 0 /* no page-crossing issues */); return pool->pool ? 0 : -ENOMEM; } int dmabounce_register_dev(struct device *dev, unsigned long small_buffer_size, unsigned long large_buffer_size) { struct dmabounce_device_info *device_info; int ret; device_info = kmalloc(sizeof(struct dmabounce_device_info), GFP_ATOMIC); if (!device_info) { printk(KERN_ERR "Could not allocated dmabounce_device_info for %s", dev->bus_id); return -ENOMEM; } ret = dmabounce_init_pool(&device_info->small, dev, "small_dmabounce_pool", small_buffer_size); if (ret) { dev_err(dev, "dmabounce: could not allocate DMA pool for %ld byte objects\n", small_buffer_size); goto err_free; } if (large_buffer_size) { ret = dmabounce_init_pool(&device_info->large, dev, "large_dmabounce_pool", large_buffer_size); if (ret) { dev_err(dev, "dmabounce: could not allocate DMA pool for %ld byte objects\n", large_buffer_size); goto err_destroy; } } device_info->dev = dev; INIT_LIST_HEAD(&device_info->safe_buffers); rwlock_init(&device_info->lock); #ifdef STATS device_info->total_allocs = 0; device_info->map_op_count = 0; device_info->bounce_count = 0; device_info->attr_res = device_create_file(dev, &dev_attr_dmabounce_stats); #endif dev->archdata.dmabounce = device_info; printk(KERN_INFO "dmabounce: registered device %s on %s bus\n", dev->bus_id, dev->bus->name); return 0; err_destroy: dma_pool_destroy(device_info->small.pool); err_free: kfree(device_info); return ret; } void dmabounce_unregister_dev(struct device *dev) { struct dmabounce_device_info *device_info = dev->archdata.dmabounce; dev->archdata.dmabounce = NULL; if (!device_info) { printk(KERN_WARNING "%s: Never registered with dmabounce but attempting" \ "to unregister!\n", dev->bus_id); return; } if (!list_empty(&device_info->safe_buffers)) { printk(KERN_ERR "%s: Removing from dmabounce with pending buffers!\n", dev->bus_id); BUG(); } if (device_info->small.pool) dma_pool_destroy(device_info->small.pool); if (device_info->large.pool) dma_pool_destroy(device_info->large.pool); #ifdef STATS if (device_info->attr_res == 0) device_remove_file(dev, &dev_attr_dmabounce_stats); #endif kfree(device_info); printk(KERN_INFO "dmabounce: device %s on %s bus unregistered\n", dev->bus_id, dev->bus->name); } EXPORT_SYMBOL(dma_map_single); EXPORT_SYMBOL(dma_unmap_single); EXPORT_SYMBOL(dma_map_sg); EXPORT_SYMBOL(dma_unmap_sg); EXPORT_SYMBOL(dma_sync_single_for_cpu); EXPORT_SYMBOL(dma_sync_single_for_device); EXPORT_SYMBOL(dma_sync_sg); EXPORT_SYMBOL(dmabounce_register_dev); EXPORT_SYMBOL(dmabounce_unregister_dev); MODULE_AUTHOR("Christopher Hoover <ch@hpl.hp.com>, Deepak Saxena <dsaxena@plexity.net>"); MODULE_DESCRIPTION("Special dma_{map/unmap/dma_sync}_* routines for systems with limited DMA windows"); MODULE_LICENSE("GPL"); |