Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 | /* * Real-Time Scheduling Class (mapped to the SCHED_FIFO and SCHED_RR * policies) */ /* * Update the current task's runtime statistics. Skip current tasks that * are not in our scheduling class. */ static inline void update_curr_rt(struct rq *rq) { struct task_struct *curr = rq->curr; u64 delta_exec; if (!task_has_rt_policy(curr)) return; delta_exec = rq->clock - curr->se.exec_start; if (unlikely((s64)delta_exec < 0)) delta_exec = 0; schedstat_set(curr->se.exec_max, max(curr->se.exec_max, delta_exec)); curr->se.sum_exec_runtime += delta_exec; curr->se.exec_start = rq->clock; } static void enqueue_task_rt(struct rq *rq, struct task_struct *p, int wakeup) { struct rt_prio_array *array = &rq->rt.active; list_add_tail(&p->run_list, array->queue + p->prio); __set_bit(p->prio, array->bitmap); } /* * Adding/removing a task to/from a priority array: */ static void dequeue_task_rt(struct rq *rq, struct task_struct *p, int sleep) { struct rt_prio_array *array = &rq->rt.active; update_curr_rt(rq); list_del(&p->run_list); if (list_empty(array->queue + p->prio)) __clear_bit(p->prio, array->bitmap); } /* * Put task to the end of the run list without the overhead of dequeue * followed by enqueue. */ static void requeue_task_rt(struct rq *rq, struct task_struct *p) { struct rt_prio_array *array = &rq->rt.active; list_move_tail(&p->run_list, array->queue + p->prio); } static void yield_task_rt(struct rq *rq, struct task_struct *p) { requeue_task_rt(rq, p); } /* * Preempt the current task with a newly woken task if needed: */ static void check_preempt_curr_rt(struct rq *rq, struct task_struct *p) { if (p->prio < rq->curr->prio) resched_task(rq->curr); } static struct task_struct *pick_next_task_rt(struct rq *rq) { struct rt_prio_array *array = &rq->rt.active; struct task_struct *next; struct list_head *queue; int idx; idx = sched_find_first_bit(array->bitmap); if (idx >= MAX_RT_PRIO) return NULL; queue = array->queue + idx; next = list_entry(queue->next, struct task_struct, run_list); next->se.exec_start = rq->clock; return next; } static void put_prev_task_rt(struct rq *rq, struct task_struct *p) { update_curr_rt(rq); p->se.exec_start = 0; } /* * Load-balancing iterator. Note: while the runqueue stays locked * during the whole iteration, the current task might be * dequeued so the iterator has to be dequeue-safe. Here we * achieve that by always pre-iterating before returning * the current task: */ static struct task_struct *load_balance_start_rt(void *arg) { struct rq *rq = arg; struct rt_prio_array *array = &rq->rt.active; struct list_head *head, *curr; struct task_struct *p; int idx; idx = sched_find_first_bit(array->bitmap); if (idx >= MAX_RT_PRIO) return NULL; head = array->queue + idx; curr = head->prev; p = list_entry(curr, struct task_struct, run_list); curr = curr->prev; rq->rt.rt_load_balance_idx = idx; rq->rt.rt_load_balance_head = head; rq->rt.rt_load_balance_curr = curr; return p; } static struct task_struct *load_balance_next_rt(void *arg) { struct rq *rq = arg; struct rt_prio_array *array = &rq->rt.active; struct list_head *head, *curr; struct task_struct *p; int idx; idx = rq->rt.rt_load_balance_idx; head = rq->rt.rt_load_balance_head; curr = rq->rt.rt_load_balance_curr; /* * If we arrived back to the head again then * iterate to the next queue (if any): */ if (unlikely(head == curr)) { int next_idx = find_next_bit(array->bitmap, MAX_RT_PRIO, idx+1); if (next_idx >= MAX_RT_PRIO) return NULL; idx = next_idx; head = array->queue + idx; curr = head->prev; rq->rt.rt_load_balance_idx = idx; rq->rt.rt_load_balance_head = head; } p = list_entry(curr, struct task_struct, run_list); curr = curr->prev; rq->rt.rt_load_balance_curr = curr; return p; } static unsigned long load_balance_rt(struct rq *this_rq, int this_cpu, struct rq *busiest, unsigned long max_nr_move, unsigned long max_load_move, struct sched_domain *sd, enum cpu_idle_type idle, int *all_pinned, int *this_best_prio) { int nr_moved; struct rq_iterator rt_rq_iterator; unsigned long load_moved; rt_rq_iterator.start = load_balance_start_rt; rt_rq_iterator.next = load_balance_next_rt; /* pass 'busiest' rq argument into * load_balance_[start|next]_rt iterators */ rt_rq_iterator.arg = busiest; nr_moved = balance_tasks(this_rq, this_cpu, busiest, max_nr_move, max_load_move, sd, idle, all_pinned, &load_moved, this_best_prio, &rt_rq_iterator); return load_moved; } static void task_tick_rt(struct rq *rq, struct task_struct *p) { /* * RR tasks need a special form of timeslice management. * FIFO tasks have no timeslices. */ if (p->policy != SCHED_RR) return; if (--p->time_slice) return; p->time_slice = static_prio_timeslice(p->static_prio); /* * Requeue to the end of queue if we are not the only element * on the queue: */ if (p->run_list.prev != p->run_list.next) { requeue_task_rt(rq, p); set_tsk_need_resched(p); } } static struct sched_class rt_sched_class __read_mostly = { .enqueue_task = enqueue_task_rt, .dequeue_task = dequeue_task_rt, .yield_task = yield_task_rt, .check_preempt_curr = check_preempt_curr_rt, .pick_next_task = pick_next_task_rt, .put_prev_task = put_prev_task_rt, .load_balance = load_balance_rt, .task_tick = task_tick_rt, }; |