Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 | /* * Generic hugetlb support. * (C) William Irwin, April 2004 */ #include <linux/gfp.h> #include <linux/list.h> #include <linux/init.h> #include <linux/module.h> #include <linux/mm.h> #include <linux/sysctl.h> #include <linux/highmem.h> #include <linux/nodemask.h> #include <linux/pagemap.h> #include <linux/mempolicy.h> #include <linux/cpuset.h> #include <linux/mutex.h> #include <asm/page.h> #include <asm/pgtable.h> #include <linux/hugetlb.h> #include "internal.h" const unsigned long hugetlb_zero = 0, hugetlb_infinity = ~0UL; static unsigned long nr_huge_pages, free_huge_pages, resv_huge_pages; unsigned long max_huge_pages; static struct list_head hugepage_freelists[MAX_NUMNODES]; static unsigned int nr_huge_pages_node[MAX_NUMNODES]; static unsigned int free_huge_pages_node[MAX_NUMNODES]; static gfp_t htlb_alloc_mask = GFP_HIGHUSER; unsigned long hugepages_treat_as_movable; /* * Protects updates to hugepage_freelists, nr_huge_pages, and free_huge_pages */ static DEFINE_SPINLOCK(hugetlb_lock); static void clear_huge_page(struct page *page, unsigned long addr) { int i; might_sleep(); for (i = 0; i < (HPAGE_SIZE/PAGE_SIZE); i++) { cond_resched(); clear_user_highpage(page + i, addr + i * PAGE_SIZE); } } static void copy_huge_page(struct page *dst, struct page *src, unsigned long addr, struct vm_area_struct *vma) { int i; might_sleep(); for (i = 0; i < HPAGE_SIZE/PAGE_SIZE; i++) { cond_resched(); copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma); } } static void enqueue_huge_page(struct page *page) { int nid = page_to_nid(page); list_add(&page->lru, &hugepage_freelists[nid]); free_huge_pages++; free_huge_pages_node[nid]++; } static struct page *dequeue_huge_page(struct vm_area_struct *vma, unsigned long address) { int nid; struct page *page = NULL; struct mempolicy *mpol; struct zonelist *zonelist = huge_zonelist(vma, address, htlb_alloc_mask, &mpol); struct zone **z; for (z = zonelist->zones; *z; z++) { nid = zone_to_nid(*z); if (cpuset_zone_allowed_softwall(*z, htlb_alloc_mask) && !list_empty(&hugepage_freelists[nid])) { page = list_entry(hugepage_freelists[nid].next, struct page, lru); list_del(&page->lru); free_huge_pages--; free_huge_pages_node[nid]--; break; } } mpol_free(mpol); /* unref if mpol !NULL */ return page; } static void free_huge_page(struct page *page) { BUG_ON(page_count(page)); INIT_LIST_HEAD(&page->lru); spin_lock(&hugetlb_lock); enqueue_huge_page(page); spin_unlock(&hugetlb_lock); } static int alloc_fresh_huge_page(void) { static int prev_nid; struct page *page; int nid; /* * Copy static prev_nid to local nid, work on that, then copy it * back to prev_nid afterwards: otherwise there's a window in which * a racer might pass invalid nid MAX_NUMNODES to alloc_pages_node. * But we don't need to use a spin_lock here: it really doesn't * matter if occasionally a racer chooses the same nid as we do. */ nid = next_node(prev_nid, node_online_map); if (nid == MAX_NUMNODES) nid = first_node(node_online_map); prev_nid = nid; page = alloc_pages_node(nid, htlb_alloc_mask|__GFP_COMP|__GFP_NOWARN, HUGETLB_PAGE_ORDER); if (page) { set_compound_page_dtor(page, free_huge_page); spin_lock(&hugetlb_lock); nr_huge_pages++; nr_huge_pages_node[page_to_nid(page)]++; spin_unlock(&hugetlb_lock); put_page(page); /* free it into the hugepage allocator */ return 1; } return 0; } static struct page *alloc_huge_page(struct vm_area_struct *vma, unsigned long addr) { struct page *page; spin_lock(&hugetlb_lock); if (vma->vm_flags & VM_MAYSHARE) resv_huge_pages--; else if (free_huge_pages <= resv_huge_pages) goto fail; page = dequeue_huge_page(vma, addr); if (!page) goto fail; spin_unlock(&hugetlb_lock); set_page_refcounted(page); return page; fail: if (vma->vm_flags & VM_MAYSHARE) resv_huge_pages++; spin_unlock(&hugetlb_lock); return NULL; } static int __init hugetlb_init(void) { unsigned long i; if (HPAGE_SHIFT == 0) return 0; for (i = 0; i < MAX_NUMNODES; ++i) INIT_LIST_HEAD(&hugepage_freelists[i]); for (i = 0; i < max_huge_pages; ++i) { if (!alloc_fresh_huge_page()) break; } max_huge_pages = free_huge_pages = nr_huge_pages = i; printk("Total HugeTLB memory allocated, %ld\n", free_huge_pages); return 0; } module_init(hugetlb_init); static int __init hugetlb_setup(char *s) { if (sscanf(s, "%lu", &max_huge_pages) <= 0) max_huge_pages = 0; return 1; } __setup("hugepages=", hugetlb_setup); static unsigned int cpuset_mems_nr(unsigned int *array) { int node; unsigned int nr = 0; for_each_node_mask(node, cpuset_current_mems_allowed) nr += array[node]; return nr; } #ifdef CONFIG_SYSCTL static void update_and_free_page(struct page *page) { int i; nr_huge_pages--; nr_huge_pages_node[page_to_nid(page)]--; for (i = 0; i < (HPAGE_SIZE / PAGE_SIZE); i++) { page[i].flags &= ~(1 << PG_locked | 1 << PG_error | 1 << PG_referenced | 1 << PG_dirty | 1 << PG_active | 1 << PG_reserved | 1 << PG_private | 1<< PG_writeback); } set_compound_page_dtor(page, NULL); set_page_refcounted(page); __free_pages(page, HUGETLB_PAGE_ORDER); } #ifdef CONFIG_HIGHMEM static void try_to_free_low(unsigned long count) { int i; for (i = 0; i < MAX_NUMNODES; ++i) { struct page *page, *next; list_for_each_entry_safe(page, next, &hugepage_freelists[i], lru) { if (PageHighMem(page)) continue; list_del(&page->lru); update_and_free_page(page); free_huge_pages--; free_huge_pages_node[page_to_nid(page)]--; if (count >= nr_huge_pages) return; } } } #else static inline void try_to_free_low(unsigned long count) { } #endif static unsigned long set_max_huge_pages(unsigned long count) { while (count > nr_huge_pages) { if (!alloc_fresh_huge_page()) return nr_huge_pages; } if (count >= nr_huge_pages) return nr_huge_pages; spin_lock(&hugetlb_lock); count = max(count, resv_huge_pages); try_to_free_low(count); while (count < nr_huge_pages) { struct page *page = dequeue_huge_page(NULL, 0); if (!page) break; update_and_free_page(page); } spin_unlock(&hugetlb_lock); return nr_huge_pages; } int hugetlb_sysctl_handler(struct ctl_table *table, int write, struct file *file, void __user *buffer, size_t *length, loff_t *ppos) { proc_doulongvec_minmax(table, write, file, buffer, length, ppos); max_huge_pages = set_max_huge_pages(max_huge_pages); return 0; } int hugetlb_treat_movable_handler(struct ctl_table *table, int write, struct file *file, void __user *buffer, size_t *length, loff_t *ppos) { proc_dointvec(table, write, file, buffer, length, ppos); if (hugepages_treat_as_movable) htlb_alloc_mask = GFP_HIGHUSER_MOVABLE; else htlb_alloc_mask = GFP_HIGHUSER; return 0; } #endif /* CONFIG_SYSCTL */ int hugetlb_report_meminfo(char *buf) { return sprintf(buf, "HugePages_Total: %5lu\n" "HugePages_Free: %5lu\n" "HugePages_Rsvd: %5lu\n" "Hugepagesize: %5lu kB\n", nr_huge_pages, free_huge_pages, resv_huge_pages, HPAGE_SIZE/1024); } int hugetlb_report_node_meminfo(int nid, char *buf) { return sprintf(buf, "Node %d HugePages_Total: %5u\n" "Node %d HugePages_Free: %5u\n", nid, nr_huge_pages_node[nid], nid, free_huge_pages_node[nid]); } /* Return the number pages of memory we physically have, in PAGE_SIZE units. */ unsigned long hugetlb_total_pages(void) { return nr_huge_pages * (HPAGE_SIZE / PAGE_SIZE); } /* * We cannot handle pagefaults against hugetlb pages at all. They cause * handle_mm_fault() to try to instantiate regular-sized pages in the * hugegpage VMA. do_page_fault() is supposed to trap this, so BUG is we get * this far. */ static int hugetlb_vm_op_fault(struct vm_area_struct *vma, struct vm_fault *vmf) { BUG(); return 0; } struct vm_operations_struct hugetlb_vm_ops = { .fault = hugetlb_vm_op_fault, }; static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page, int writable) { pte_t entry; if (writable) { entry = pte_mkwrite(pte_mkdirty(mk_pte(page, vma->vm_page_prot))); } else { entry = pte_wrprotect(mk_pte(page, vma->vm_page_prot)); } entry = pte_mkyoung(entry); entry = pte_mkhuge(entry); return entry; } static void set_huge_ptep_writable(struct vm_area_struct *vma, unsigned long address, pte_t *ptep) { pte_t entry; entry = pte_mkwrite(pte_mkdirty(*ptep)); if (ptep_set_access_flags(vma, address, ptep, entry, 1)) { update_mmu_cache(vma, address, entry); lazy_mmu_prot_update(entry); } } int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src, struct vm_area_struct *vma) { pte_t *src_pte, *dst_pte, entry; struct page *ptepage; unsigned long addr; int cow; cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE; for (addr = vma->vm_start; addr < vma->vm_end; addr += HPAGE_SIZE) { src_pte = huge_pte_offset(src, addr); if (!src_pte) continue; dst_pte = huge_pte_alloc(dst, addr); if (!dst_pte) goto nomem; spin_lock(&dst->page_table_lock); spin_lock(&src->page_table_lock); if (!pte_none(*src_pte)) { if (cow) ptep_set_wrprotect(src, addr, src_pte); entry = *src_pte; ptepage = pte_page(entry); get_page(ptepage); set_huge_pte_at(dst, addr, dst_pte, entry); } spin_unlock(&src->page_table_lock); spin_unlock(&dst->page_table_lock); } return 0; nomem: return -ENOMEM; } void __unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start, unsigned long end) { struct mm_struct *mm = vma->vm_mm; unsigned long address; pte_t *ptep; pte_t pte; struct page *page; struct page *tmp; /* * A page gathering list, protected by per file i_mmap_lock. The * lock is used to avoid list corruption from multiple unmapping * of the same page since we are using page->lru. */ LIST_HEAD(page_list); WARN_ON(!is_vm_hugetlb_page(vma)); BUG_ON(start & ~HPAGE_MASK); BUG_ON(end & ~HPAGE_MASK); spin_lock(&mm->page_table_lock); for (address = start; address < end; address += HPAGE_SIZE) { ptep = huge_pte_offset(mm, address); if (!ptep) continue; if (huge_pmd_unshare(mm, &address, ptep)) continue; pte = huge_ptep_get_and_clear(mm, address, ptep); if (pte_none(pte)) continue; page = pte_page(pte); if (pte_dirty(pte)) set_page_dirty(page); list_add(&page->lru, &page_list); } spin_unlock(&mm->page_table_lock); flush_tlb_range(vma, start, end); list_for_each_entry_safe(page, tmp, &page_list, lru) { list_del(&page->lru); put_page(page); } } void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start, unsigned long end) { /* * It is undesirable to test vma->vm_file as it should be non-null * for valid hugetlb area. However, vm_file will be NULL in the error * cleanup path of do_mmap_pgoff. When hugetlbfs ->mmap method fails, * do_mmap_pgoff() nullifies vma->vm_file before calling this function * to clean up. Since no pte has actually been setup, it is safe to * do nothing in this case. */ if (vma->vm_file) { spin_lock(&vma->vm_file->f_mapping->i_mmap_lock); __unmap_hugepage_range(vma, start, end); spin_unlock(&vma->vm_file->f_mapping->i_mmap_lock); } } static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma, unsigned long address, pte_t *ptep, pte_t pte) { struct page *old_page, *new_page; int avoidcopy; old_page = pte_page(pte); /* If no-one else is actually using this page, avoid the copy * and just make the page writable */ avoidcopy = (page_count(old_page) == 1); if (avoidcopy) { set_huge_ptep_writable(vma, address, ptep); return 0; } page_cache_get(old_page); new_page = alloc_huge_page(vma, address); if (!new_page) { page_cache_release(old_page); return VM_FAULT_OOM; } spin_unlock(&mm->page_table_lock); copy_huge_page(new_page, old_page, address, vma); spin_lock(&mm->page_table_lock); ptep = huge_pte_offset(mm, address & HPAGE_MASK); if (likely(pte_same(*ptep, pte))) { /* Break COW */ set_huge_pte_at(mm, address, ptep, make_huge_pte(vma, new_page, 1)); /* Make the old page be freed below */ new_page = old_page; } page_cache_release(new_page); page_cache_release(old_page); return 0; } static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma, unsigned long address, pte_t *ptep, int write_access) { int ret = VM_FAULT_SIGBUS; unsigned long idx; unsigned long size; struct page *page; struct address_space *mapping; pte_t new_pte; mapping = vma->vm_file->f_mapping; idx = ((address - vma->vm_start) >> HPAGE_SHIFT) + (vma->vm_pgoff >> (HPAGE_SHIFT - PAGE_SHIFT)); /* * Use page lock to guard against racing truncation * before we get page_table_lock. */ retry: page = find_lock_page(mapping, idx); if (!page) { size = i_size_read(mapping->host) >> HPAGE_SHIFT; if (idx >= size) goto out; if (hugetlb_get_quota(mapping)) goto out; page = alloc_huge_page(vma, address); if (!page) { hugetlb_put_quota(mapping); ret = VM_FAULT_OOM; goto out; } clear_huge_page(page, address); if (vma->vm_flags & VM_SHARED) { int err; err = add_to_page_cache(page, mapping, idx, GFP_KERNEL); if (err) { put_page(page); hugetlb_put_quota(mapping); if (err == -EEXIST) goto retry; goto out; } } else lock_page(page); } spin_lock(&mm->page_table_lock); size = i_size_read(mapping->host) >> HPAGE_SHIFT; if (idx >= size) goto backout; ret = 0; if (!pte_none(*ptep)) goto backout; new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE) && (vma->vm_flags & VM_SHARED))); set_huge_pte_at(mm, address, ptep, new_pte); if (write_access && !(vma->vm_flags & VM_SHARED)) { /* Optimization, do the COW without a second fault */ ret = hugetlb_cow(mm, vma, address, ptep, new_pte); } spin_unlock(&mm->page_table_lock); unlock_page(page); out: return ret; backout: spin_unlock(&mm->page_table_lock); hugetlb_put_quota(mapping); unlock_page(page); put_page(page); goto out; } int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma, unsigned long address, int write_access) { pte_t *ptep; pte_t entry; int ret; static DEFINE_MUTEX(hugetlb_instantiation_mutex); ptep = huge_pte_alloc(mm, address); if (!ptep) return VM_FAULT_OOM; /* * Serialize hugepage allocation and instantiation, so that we don't * get spurious allocation failures if two CPUs race to instantiate * the same page in the page cache. */ mutex_lock(&hugetlb_instantiation_mutex); entry = *ptep; if (pte_none(entry)) { ret = hugetlb_no_page(mm, vma, address, ptep, write_access); mutex_unlock(&hugetlb_instantiation_mutex); return ret; } ret = 0; spin_lock(&mm->page_table_lock); /* Check for a racing update before calling hugetlb_cow */ if (likely(pte_same(entry, *ptep))) if (write_access && !pte_write(entry)) ret = hugetlb_cow(mm, vma, address, ptep, entry); spin_unlock(&mm->page_table_lock); mutex_unlock(&hugetlb_instantiation_mutex); return ret; } int follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma, struct page **pages, struct vm_area_struct **vmas, unsigned long *position, int *length, int i) { unsigned long pfn_offset; unsigned long vaddr = *position; int remainder = *length; spin_lock(&mm->page_table_lock); while (vaddr < vma->vm_end && remainder) { pte_t *pte; struct page *page; /* * Some archs (sparc64, sh*) have multiple pte_ts to * each hugepage. We have to make * sure we get the * first, for the page indexing below to work. */ pte = huge_pte_offset(mm, vaddr & HPAGE_MASK); if (!pte || pte_none(*pte)) { int ret; spin_unlock(&mm->page_table_lock); ret = hugetlb_fault(mm, vma, vaddr, 0); spin_lock(&mm->page_table_lock); if (!(ret & VM_FAULT_ERROR)) continue; remainder = 0; if (!i) i = -EFAULT; break; } pfn_offset = (vaddr & ~HPAGE_MASK) >> PAGE_SHIFT; page = pte_page(*pte); same_page: if (pages) { get_page(page); pages[i] = page + pfn_offset; } if (vmas) vmas[i] = vma; vaddr += PAGE_SIZE; ++pfn_offset; --remainder; ++i; if (vaddr < vma->vm_end && remainder && pfn_offset < HPAGE_SIZE/PAGE_SIZE) { /* * We use pfn_offset to avoid touching the pageframes * of this compound page. */ goto same_page; } } spin_unlock(&mm->page_table_lock); *length = remainder; *position = vaddr; return i; } void hugetlb_change_protection(struct vm_area_struct *vma, unsigned long address, unsigned long end, pgprot_t newprot) { struct mm_struct *mm = vma->vm_mm; unsigned long start = address; pte_t *ptep; pte_t pte; BUG_ON(address >= end); flush_cache_range(vma, address, end); spin_lock(&vma->vm_file->f_mapping->i_mmap_lock); spin_lock(&mm->page_table_lock); for (; address < end; address += HPAGE_SIZE) { ptep = huge_pte_offset(mm, address); if (!ptep) continue; if (huge_pmd_unshare(mm, &address, ptep)) continue; if (!pte_none(*ptep)) { pte = huge_ptep_get_and_clear(mm, address, ptep); pte = pte_mkhuge(pte_modify(pte, newprot)); set_huge_pte_at(mm, address, ptep, pte); lazy_mmu_prot_update(pte); } } spin_unlock(&mm->page_table_lock); spin_unlock(&vma->vm_file->f_mapping->i_mmap_lock); flush_tlb_range(vma, start, end); } struct file_region { struct list_head link; long from; long to; }; static long region_add(struct list_head *head, long f, long t) { struct file_region *rg, *nrg, *trg; /* Locate the region we are either in or before. */ list_for_each_entry(rg, head, link) if (f <= rg->to) break; /* Round our left edge to the current segment if it encloses us. */ if (f > rg->from) f = rg->from; /* Check for and consume any regions we now overlap with. */ nrg = rg; list_for_each_entry_safe(rg, trg, rg->link.prev, link) { if (&rg->link == head) break; if (rg->from > t) break; /* If this area reaches higher then extend our area to * include it completely. If this is not the first area * which we intend to reuse, free it. */ if (rg->to > t) t = rg->to; if (rg != nrg) { list_del(&rg->link); kfree(rg); } } nrg->from = f; nrg->to = t; return 0; } static long region_chg(struct list_head *head, long f, long t) { struct file_region *rg, *nrg; long chg = 0; /* Locate the region we are before or in. */ list_for_each_entry(rg, head, link) if (f <= rg->to) break; /* If we are below the current region then a new region is required. * Subtle, allocate a new region at the position but make it zero * size such that we can guarentee to record the reservation. */ if (&rg->link == head || t < rg->from) { nrg = kmalloc(sizeof(*nrg), GFP_KERNEL); if (nrg == 0) return -ENOMEM; nrg->from = f; nrg->to = f; INIT_LIST_HEAD(&nrg->link); list_add(&nrg->link, rg->link.prev); return t - f; } /* Round our left edge to the current segment if it encloses us. */ if (f > rg->from) f = rg->from; chg = t - f; /* Check for and consume any regions we now overlap with. */ list_for_each_entry(rg, rg->link.prev, link) { if (&rg->link == head) break; if (rg->from > t) return chg; /* We overlap with this area, if it extends futher than * us then we must extend ourselves. Account for its * existing reservation. */ if (rg->to > t) { chg += rg->to - t; t = rg->to; } chg -= rg->to - rg->from; } return chg; } static long region_truncate(struct list_head *head, long end) { struct file_region *rg, *trg; long chg = 0; /* Locate the region we are either in or before. */ list_for_each_entry(rg, head, link) if (end <= rg->to) break; if (&rg->link == head) return 0; /* If we are in the middle of a region then adjust it. */ if (end > rg->from) { chg = rg->to - end; rg->to = end; rg = list_entry(rg->link.next, typeof(*rg), link); } /* Drop any remaining regions. */ list_for_each_entry_safe(rg, trg, rg->link.prev, link) { if (&rg->link == head) break; chg += rg->to - rg->from; list_del(&rg->link); kfree(rg); } return chg; } static int hugetlb_acct_memory(long delta) { int ret = -ENOMEM; spin_lock(&hugetlb_lock); if ((delta + resv_huge_pages) <= free_huge_pages) { resv_huge_pages += delta; ret = 0; } spin_unlock(&hugetlb_lock); return ret; } int hugetlb_reserve_pages(struct inode *inode, long from, long to) { long ret, chg; chg = region_chg(&inode->i_mapping->private_list, from, to); if (chg < 0) return chg; /* * When cpuset is configured, it breaks the strict hugetlb page * reservation as the accounting is done on a global variable. Such * reservation is completely rubbish in the presence of cpuset because * the reservation is not checked against page availability for the * current cpuset. Application can still potentially OOM'ed by kernel * with lack of free htlb page in cpuset that the task is in. * Attempt to enforce strict accounting with cpuset is almost * impossible (or too ugly) because cpuset is too fluid that * task or memory node can be dynamically moved between cpusets. * * The change of semantics for shared hugetlb mapping with cpuset is * undesirable. However, in order to preserve some of the semantics, * we fall back to check against current free page availability as * a best attempt and hopefully to minimize the impact of changing * semantics that cpuset has. */ if (chg > cpuset_mems_nr(free_huge_pages_node)) return -ENOMEM; ret = hugetlb_acct_memory(chg); if (ret < 0) return ret; region_add(&inode->i_mapping->private_list, from, to); return 0; } void hugetlb_unreserve_pages(struct inode *inode, long offset, long freed) { long chg = region_truncate(&inode->i_mapping->private_list, offset); hugetlb_acct_memory(freed - chg); } |