Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 | /* * kernel/time/sched_debug.c * * Print the CFS rbtree * * Copyright(C) 2007, Red Hat, Inc., Ingo Molnar * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. */ #include <linux/proc_fs.h> #include <linux/sched.h> #include <linux/seq_file.h> #include <linux/kallsyms.h> #include <linux/utsname.h> /* * This allows printing both to /proc/sched_debug and * to the console */ #define SEQ_printf(m, x...) \ do { \ if (m) \ seq_printf(m, x); \ else \ printk(x); \ } while (0) static void print_task(struct seq_file *m, struct rq *rq, struct task_struct *p) { if (rq->curr == p) SEQ_printf(m, "R"); else SEQ_printf(m, " "); SEQ_printf(m, "%15s %5d %15Ld %13Ld %13Ld %9Ld %5d ", p->comm, p->pid, (long long)p->se.fair_key, (long long)(p->se.fair_key - rq->cfs.fair_clock), (long long)p->se.wait_runtime, (long long)(p->nvcsw + p->nivcsw), p->prio); #ifdef CONFIG_SCHEDSTATS SEQ_printf(m, "%15Ld %15Ld %15Ld %15Ld %15Ld\n", (long long)p->se.sum_exec_runtime, (long long)p->se.sum_wait_runtime, (long long)p->se.sum_sleep_runtime, (long long)p->se.wait_runtime_overruns, (long long)p->se.wait_runtime_underruns); #else SEQ_printf(m, "%15Ld %15Ld %15Ld %15Ld %15Ld\n", 0LL, 0LL, 0LL, 0LL, 0LL); #endif } static void print_rq(struct seq_file *m, struct rq *rq, int rq_cpu) { struct task_struct *g, *p; SEQ_printf(m, "\nrunnable tasks:\n" " task PID tree-key delta waiting" " switches prio" " sum-exec sum-wait sum-sleep" " wait-overrun wait-underrun\n" "------------------------------------------------------------------" "----------------" "------------------------------------------------" "--------------------------------\n"); read_lock_irq(&tasklist_lock); do_each_thread(g, p) { if (!p->se.on_rq || task_cpu(p) != rq_cpu) continue; print_task(m, rq, p); } while_each_thread(g, p); read_unlock_irq(&tasklist_lock); } static void print_cfs_rq_runtime_sum(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq) { s64 wait_runtime_rq_sum = 0; struct task_struct *p; struct rb_node *curr; unsigned long flags; struct rq *rq = &per_cpu(runqueues, cpu); spin_lock_irqsave(&rq->lock, flags); curr = first_fair(cfs_rq); while (curr) { p = rb_entry(curr, struct task_struct, se.run_node); wait_runtime_rq_sum += p->se.wait_runtime; curr = rb_next(curr); } spin_unlock_irqrestore(&rq->lock, flags); SEQ_printf(m, " .%-30s: %Ld\n", "wait_runtime_rq_sum", (long long)wait_runtime_rq_sum); } void print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq) { SEQ_printf(m, "\ncfs_rq\n"); #define P(x) \ SEQ_printf(m, " .%-30s: %Ld\n", #x, (long long)(cfs_rq->x)) P(fair_clock); P(exec_clock); P(wait_runtime); P(wait_runtime_overruns); P(wait_runtime_underruns); P(sleeper_bonus); #undef P print_cfs_rq_runtime_sum(m, cpu, cfs_rq); } static void print_cpu(struct seq_file *m, int cpu) { struct rq *rq = &per_cpu(runqueues, cpu); #ifdef CONFIG_X86 { unsigned int freq = cpu_khz ? : 1; SEQ_printf(m, "\ncpu#%d, %u.%03u MHz\n", cpu, freq / 1000, (freq % 1000)); } #else SEQ_printf(m, "\ncpu#%d\n", cpu); #endif #define P(x) \ SEQ_printf(m, " .%-30s: %Ld\n", #x, (long long)(rq->x)) P(nr_running); SEQ_printf(m, " .%-30s: %lu\n", "load", rq->ls.load.weight); P(ls.delta_fair); P(ls.delta_exec); P(nr_switches); P(nr_load_updates); P(nr_uninterruptible); SEQ_printf(m, " .%-30s: %lu\n", "jiffies", jiffies); P(next_balance); P(curr->pid); P(clock); P(idle_clock); P(prev_clock_raw); P(clock_warps); P(clock_overflows); P(clock_deep_idle_events); P(clock_max_delta); P(cpu_load[0]); P(cpu_load[1]); P(cpu_load[2]); P(cpu_load[3]); P(cpu_load[4]); #undef P print_cfs_stats(m, cpu); print_rq(m, rq, cpu); } static int sched_debug_show(struct seq_file *m, void *v) { u64 now = ktime_to_ns(ktime_get()); int cpu; SEQ_printf(m, "Sched Debug Version: v0.05-v20, %s %.*s\n", init_utsname()->release, (int)strcspn(init_utsname()->version, " "), init_utsname()->version); SEQ_printf(m, "now at %Lu nsecs\n", (unsigned long long)now); for_each_online_cpu(cpu) print_cpu(m, cpu); SEQ_printf(m, "\n"); return 0; } static void sysrq_sched_debug_show(void) { sched_debug_show(NULL, NULL); } static int sched_debug_open(struct inode *inode, struct file *filp) { return single_open(filp, sched_debug_show, NULL); } static struct file_operations sched_debug_fops = { .open = sched_debug_open, .read = seq_read, .llseek = seq_lseek, .release = single_release, }; static int __init init_sched_debug_procfs(void) { struct proc_dir_entry *pe; pe = create_proc_entry("sched_debug", 0644, NULL); if (!pe) return -ENOMEM; pe->proc_fops = &sched_debug_fops; return 0; } __initcall(init_sched_debug_procfs); void proc_sched_show_task(struct task_struct *p, struct seq_file *m) { unsigned long flags; int num_threads = 1; rcu_read_lock(); if (lock_task_sighand(p, &flags)) { num_threads = atomic_read(&p->signal->count); unlock_task_sighand(p, &flags); } rcu_read_unlock(); SEQ_printf(m, "%s (%d, #threads: %d)\n", p->comm, p->pid, num_threads); SEQ_printf(m, "----------------------------------------------\n"); #define P(F) \ SEQ_printf(m, "%-25s:%20Ld\n", #F, (long long)p->F) P(se.wait_runtime); P(se.wait_start_fair); P(se.exec_start); P(se.sleep_start_fair); P(se.sum_exec_runtime); #ifdef CONFIG_SCHEDSTATS P(se.wait_start); P(se.sleep_start); P(se.block_start); P(se.sleep_max); P(se.block_max); P(se.exec_max); P(se.wait_max); P(se.wait_runtime_overruns); P(se.wait_runtime_underruns); P(se.sum_wait_runtime); #endif SEQ_printf(m, "%-25s:%20Ld\n", "nr_switches", (long long)(p->nvcsw + p->nivcsw)); P(se.load.weight); P(policy); P(prio); #undef P { u64 t0, t1; t0 = sched_clock(); t1 = sched_clock(); SEQ_printf(m, "%-25s:%20Ld\n", "clock-delta", (long long)(t1-t0)); } } void proc_sched_set_task(struct task_struct *p) { #ifdef CONFIG_SCHEDSTATS p->se.sleep_max = p->se.block_max = p->se.exec_max = p->se.wait_max = 0; p->se.wait_runtime_overruns = p->se.wait_runtime_underruns = 0; #endif p->se.sum_exec_runtime = 0; p->se.prev_sum_exec_runtime = 0; } |