Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 | /* * latency.c: Explicit system-wide latency-expectation infrastructure * * The purpose of this infrastructure is to allow device drivers to set * latency constraint they have and to collect and summarize these * expectations globally. The cummulated result can then be used by * power management and similar users to make decisions that have * tradoffs with a latency component. * * An example user of this are the x86 C-states; each higher C state saves * more power, but has a higher exit latency. For the idle loop power * code to make a good decision which C-state to use, information about * acceptable latencies is required. * * An example announcer of latency is an audio driver that knowns it * will get an interrupt when the hardware has 200 usec of samples * left in the DMA buffer; in that case the driver can set a latency * constraint of, say, 150 usec. * * Multiple drivers can each announce their maximum accepted latency, * to keep these appart, a string based identifier is used. * * * (C) Copyright 2006 Intel Corporation * Author: Arjan van de Ven <arjan@linux.intel.com> * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; version 2 * of the License. */ #include <linux/latency.h> #include <linux/list.h> #include <linux/spinlock.h> #include <linux/slab.h> #include <linux/module.h> #include <linux/notifier.h> #include <linux/jiffies.h> #include <asm/atomic.h> struct latency_info { struct list_head list; int usecs; char *identifier; }; /* * locking rule: all modifications to current_max_latency and * latency_list need to be done while holding the latency_lock. * latency_lock needs to be taken _irqsave. */ static atomic_t current_max_latency; static DEFINE_SPINLOCK(latency_lock); static LIST_HEAD(latency_list); static BLOCKING_NOTIFIER_HEAD(latency_notifier); /* * This function returns the maximum latency allowed, which * happens to be the minimum of all maximum latencies on the * list. */ static int __find_max_latency(void) { int min = INFINITE_LATENCY; struct latency_info *info; list_for_each_entry(info, &latency_list, list) { if (info->usecs < min) min = info->usecs; } return min; } /** * set_acceptable_latency - sets the maximum latency acceptable * @identifier: string that identifies this driver * @usecs: maximum acceptable latency for this driver * * This function informs the kernel that this device(driver) * can accept at most usecs latency. This setting is used for * power management and similar tradeoffs. * * This function sleeps and can only be called from process * context. * Calling this function with an existing identifier is valid * and will cause the existing latency setting to be changed. */ void set_acceptable_latency(char *identifier, int usecs) { struct latency_info *info, *iter; unsigned long flags; int found_old = 0; info = kzalloc(sizeof(struct latency_info), GFP_KERNEL); if (!info) return; info->usecs = usecs; info->identifier = kstrdup(identifier, GFP_KERNEL); if (!info->identifier) goto free_info; spin_lock_irqsave(&latency_lock, flags); list_for_each_entry(iter, &latency_list, list) { if (strcmp(iter->identifier, identifier)==0) { found_old = 1; iter->usecs = usecs; break; } } if (!found_old) list_add(&info->list, &latency_list); if (usecs < atomic_read(¤t_max_latency)) atomic_set(¤t_max_latency, usecs); spin_unlock_irqrestore(&latency_lock, flags); blocking_notifier_call_chain(&latency_notifier, atomic_read(¤t_max_latency), NULL); /* * if we inserted the new one, we're done; otherwise there was * an existing one so we need to free the redundant data */ if (!found_old) return; kfree(info->identifier); free_info: kfree(info); } EXPORT_SYMBOL_GPL(set_acceptable_latency); /** * modify_acceptable_latency - changes the maximum latency acceptable * @identifier: string that identifies this driver * @usecs: maximum acceptable latency for this driver * * This function informs the kernel that this device(driver) * can accept at most usecs latency. This setting is used for * power management and similar tradeoffs. * * This function does not sleep and can be called in any context. * Trying to use a non-existing identifier silently gets ignored. * * Due to the atomic nature of this function, the modified latency * value will only be used for future decisions; past decisions * can still lead to longer latencies in the near future. */ void modify_acceptable_latency(char *identifier, int usecs) { struct latency_info *iter; unsigned long flags; spin_lock_irqsave(&latency_lock, flags); list_for_each_entry(iter, &latency_list, list) { if (strcmp(iter->identifier, identifier) == 0) { iter->usecs = usecs; break; } } if (usecs < atomic_read(¤t_max_latency)) atomic_set(¤t_max_latency, usecs); spin_unlock_irqrestore(&latency_lock, flags); } EXPORT_SYMBOL_GPL(modify_acceptable_latency); /** * remove_acceptable_latency - removes the maximum latency acceptable * @identifier: string that identifies this driver * * This function removes a previously set maximum latency setting * for the driver and frees up any resources associated with the * bookkeeping needed for this. * * This function does not sleep and can be called in any context. * Trying to use a non-existing identifier silently gets ignored. */ void remove_acceptable_latency(char *identifier) { unsigned long flags; int newmax = 0; struct latency_info *iter, *temp; spin_lock_irqsave(&latency_lock, flags); list_for_each_entry_safe(iter, temp, &latency_list, list) { if (strcmp(iter->identifier, identifier) == 0) { list_del(&iter->list); newmax = iter->usecs; kfree(iter->identifier); kfree(iter); break; } } /* If we just deleted the system wide value, we need to * recalculate with a full search */ if (newmax == atomic_read(¤t_max_latency)) { newmax = __find_max_latency(); atomic_set(¤t_max_latency, newmax); } spin_unlock_irqrestore(&latency_lock, flags); } EXPORT_SYMBOL_GPL(remove_acceptable_latency); /** * system_latency_constraint - queries the system wide latency maximum * * This function returns the system wide maximum latency in * microseconds. * * This function does not sleep and can be called in any context. */ int system_latency_constraint(void) { return atomic_read(¤t_max_latency); } EXPORT_SYMBOL_GPL(system_latency_constraint); /** * synchronize_acceptable_latency - recalculates all latency decisions * * This function will cause a callback to various kernel pieces that * will make those pieces rethink their latency decisions. This implies * that if there are overlong latencies in hardware state already, those * latencies get taken right now. When this call completes no overlong * latency decisions should be active anymore. * * Typical usecase of this is after a modify_acceptable_latency() call, * which in itself is non-blocking and non-synchronizing. * * This function blocks and should not be called with locks held. */ void synchronize_acceptable_latency(void) { blocking_notifier_call_chain(&latency_notifier, atomic_read(¤t_max_latency), NULL); } EXPORT_SYMBOL_GPL(synchronize_acceptable_latency); /* * Latency notifier: this notifier gets called when a non-atomic new * latency value gets set. The expectation nof the caller of the * non-atomic set is that when the call returns, future latencies * are within bounds, so the functions on the notifier list are * expected to take the overlong latencies immediately, inside the * callback, and not make a overlong latency decision anymore. * * The callback gets called when the new latency value is made * active so system_latency_constraint() returns the new latency. */ int register_latency_notifier(struct notifier_block * nb) { return blocking_notifier_chain_register(&latency_notifier, nb); } EXPORT_SYMBOL_GPL(register_latency_notifier); int unregister_latency_notifier(struct notifier_block * nb) { return blocking_notifier_chain_unregister(&latency_notifier, nb); } EXPORT_SYMBOL_GPL(unregister_latency_notifier); static __init int latency_init(void) { atomic_set(¤t_max_latency, INFINITE_LATENCY); /* * we don't want by default to have longer latencies than 2 ticks, * since that would cause lost ticks */ set_acceptable_latency("kernel", 2*1000000/HZ); return 0; } module_init(latency_init); |