Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 | /* calibrate.c: default delay calibration * * Excised from init/main.c * Copyright (C) 1991, 1992 Linus Torvalds */ #include <linux/jiffies.h> #include <linux/delay.h> #include <linux/init.h> #include <asm/timex.h> static unsigned long preset_lpj; static int __init lpj_setup(char *str) { preset_lpj = simple_strtoul(str,NULL,0); return 1; } __setup("lpj=", lpj_setup); #ifdef ARCH_HAS_READ_CURRENT_TIMER /* This routine uses the read_current_timer() routine and gets the * loops per jiffy directly, instead of guessing it using delay(). * Also, this code tries to handle non-maskable asynchronous events * (like SMIs) */ #define DELAY_CALIBRATION_TICKS ((HZ < 100) ? 1 : (HZ/100)) #define MAX_DIRECT_CALIBRATION_RETRIES 5 static unsigned long __devinit calibrate_delay_direct(void) { unsigned long pre_start, start, post_start; unsigned long pre_end, end, post_end; unsigned long start_jiffies; unsigned long tsc_rate_min, tsc_rate_max; unsigned long good_tsc_sum = 0; unsigned long good_tsc_count = 0; int i; if (read_current_timer(&pre_start) < 0 ) return 0; /* * A simple loop like * while ( jiffies < start_jiffies+1) * start = read_current_timer(); * will not do. As we don't really know whether jiffy switch * happened first or timer_value was read first. And some asynchronous * event can happen between these two events introducing errors in lpj. * * So, we do * 1. pre_start <- When we are sure that jiffy switch hasn't happened * 2. check jiffy switch * 3. start <- timer value before or after jiffy switch * 4. post_start <- When we are sure that jiffy switch has happened * * Note, we don't know anything about order of 2 and 3. * Now, by looking at post_start and pre_start difference, we can * check whether any asynchronous event happened or not */ for (i = 0; i < MAX_DIRECT_CALIBRATION_RETRIES; i++) { pre_start = 0; read_current_timer(&start); start_jiffies = jiffies; while (jiffies <= (start_jiffies + 1)) { pre_start = start; read_current_timer(&start); } read_current_timer(&post_start); pre_end = 0; end = post_start; while (jiffies <= (start_jiffies + 1 + DELAY_CALIBRATION_TICKS)) { pre_end = end; read_current_timer(&end); } read_current_timer(&post_end); tsc_rate_max = (post_end - pre_start) / DELAY_CALIBRATION_TICKS; tsc_rate_min = (pre_end - post_start) / DELAY_CALIBRATION_TICKS; /* * If the upper limit and lower limit of the tsc_rate is * >= 12.5% apart, redo calibration. */ if (pre_start != 0 && pre_end != 0 && (tsc_rate_max - tsc_rate_min) < (tsc_rate_max >> 3)) { good_tsc_count++; good_tsc_sum += tsc_rate_max; } } if (good_tsc_count) return (good_tsc_sum/good_tsc_count); printk(KERN_WARNING "calibrate_delay_direct() failed to get a good " "estimate for loops_per_jiffy.\nProbably due to long platform interrupts. Consider using \"lpj=\" boot option.\n"); return 0; } #else static unsigned long __devinit calibrate_delay_direct(void) {return 0;} #endif /* * This is the number of bits of precision for the loops_per_jiffy. Each * bit takes on average 1.5/HZ seconds. This (like the original) is a little * better than 1% */ #define LPS_PREC 8 void __devinit calibrate_delay(void) { unsigned long ticks, loopbit; int lps_precision = LPS_PREC; if (preset_lpj) { loops_per_jiffy = preset_lpj; printk("Calibrating delay loop (skipped)... " "%lu.%02lu BogoMIPS preset\n", loops_per_jiffy/(500000/HZ), (loops_per_jiffy/(5000/HZ)) % 100); } else if ((loops_per_jiffy = calibrate_delay_direct()) != 0) { printk("Calibrating delay using timer specific routine.. "); printk("%lu.%02lu BogoMIPS (lpj=%lu)\n", loops_per_jiffy/(500000/HZ), (loops_per_jiffy/(5000/HZ)) % 100, loops_per_jiffy); } else { loops_per_jiffy = (1<<12); printk(KERN_DEBUG "Calibrating delay loop... "); while ((loops_per_jiffy <<= 1) != 0) { /* wait for "start of" clock tick */ ticks = jiffies; while (ticks == jiffies) /* nothing */; /* Go .. */ ticks = jiffies; __delay(loops_per_jiffy); ticks = jiffies - ticks; if (ticks) break; } /* * Do a binary approximation to get loops_per_jiffy set to * equal one clock (up to lps_precision bits) */ loops_per_jiffy >>= 1; loopbit = loops_per_jiffy; while (lps_precision-- && (loopbit >>= 1)) { loops_per_jiffy |= loopbit; ticks = jiffies; while (ticks == jiffies) /* nothing */; ticks = jiffies; __delay(loops_per_jiffy); if (jiffies != ticks) /* longer than 1 tick */ loops_per_jiffy &= ~loopbit; } /* Round the value and print it */ printk("%lu.%02lu BogoMIPS (lpj=%lu)\n", loops_per_jiffy/(500000/HZ), (loops_per_jiffy/(5000/HZ)) % 100, loops_per_jiffy); } } |