Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 | /* gf128mul.c - GF(2^128) multiplication functions * * Copyright (c) 2003, Dr Brian Gladman, Worcester, UK. * Copyright (c) 2006, Rik Snel <rsnel@cube.dyndns.org> * * Based on Dr Brian Gladman's (GPL'd) work published at * http://fp.gladman.plus.com/cryptography_technology/index.htm * See the original copyright notice below. * * This program is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License as published by the Free * Software Foundation; either version 2 of the License, or (at your option) * any later version. */ /* --------------------------------------------------------------------------- Copyright (c) 2003, Dr Brian Gladman, Worcester, UK. All rights reserved. LICENSE TERMS The free distribution and use of this software in both source and binary form is allowed (with or without changes) provided that: 1. distributions of this source code include the above copyright notice, this list of conditions and the following disclaimer; 2. distributions in binary form include the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other associated materials; 3. the copyright holder's name is not used to endorse products built using this software without specific written permission. ALTERNATIVELY, provided that this notice is retained in full, this product may be distributed under the terms of the GNU General Public License (GPL), in which case the provisions of the GPL apply INSTEAD OF those given above. DISCLAIMER This software is provided 'as is' with no explicit or implied warranties in respect of its properties, including, but not limited to, correctness and/or fitness for purpose. --------------------------------------------------------------------------- Issue 31/01/2006 This file provides fast multiplication in GF(128) as required by several cryptographic authentication modes */ #include <crypto/gf128mul.h> #include <linux/kernel.h> #include <linux/module.h> #include <linux/slab.h> #define gf128mul_dat(q) { \ q(0x00), q(0x01), q(0x02), q(0x03), q(0x04), q(0x05), q(0x06), q(0x07),\ q(0x08), q(0x09), q(0x0a), q(0x0b), q(0x0c), q(0x0d), q(0x0e), q(0x0f),\ q(0x10), q(0x11), q(0x12), q(0x13), q(0x14), q(0x15), q(0x16), q(0x17),\ q(0x18), q(0x19), q(0x1a), q(0x1b), q(0x1c), q(0x1d), q(0x1e), q(0x1f),\ q(0x20), q(0x21), q(0x22), q(0x23), q(0x24), q(0x25), q(0x26), q(0x27),\ q(0x28), q(0x29), q(0x2a), q(0x2b), q(0x2c), q(0x2d), q(0x2e), q(0x2f),\ q(0x30), q(0x31), q(0x32), q(0x33), q(0x34), q(0x35), q(0x36), q(0x37),\ q(0x38), q(0x39), q(0x3a), q(0x3b), q(0x3c), q(0x3d), q(0x3e), q(0x3f),\ q(0x40), q(0x41), q(0x42), q(0x43), q(0x44), q(0x45), q(0x46), q(0x47),\ q(0x48), q(0x49), q(0x4a), q(0x4b), q(0x4c), q(0x4d), q(0x4e), q(0x4f),\ q(0x50), q(0x51), q(0x52), q(0x53), q(0x54), q(0x55), q(0x56), q(0x57),\ q(0x58), q(0x59), q(0x5a), q(0x5b), q(0x5c), q(0x5d), q(0x5e), q(0x5f),\ q(0x60), q(0x61), q(0x62), q(0x63), q(0x64), q(0x65), q(0x66), q(0x67),\ q(0x68), q(0x69), q(0x6a), q(0x6b), q(0x6c), q(0x6d), q(0x6e), q(0x6f),\ q(0x70), q(0x71), q(0x72), q(0x73), q(0x74), q(0x75), q(0x76), q(0x77),\ q(0x78), q(0x79), q(0x7a), q(0x7b), q(0x7c), q(0x7d), q(0x7e), q(0x7f),\ q(0x80), q(0x81), q(0x82), q(0x83), q(0x84), q(0x85), q(0x86), q(0x87),\ q(0x88), q(0x89), q(0x8a), q(0x8b), q(0x8c), q(0x8d), q(0x8e), q(0x8f),\ q(0x90), q(0x91), q(0x92), q(0x93), q(0x94), q(0x95), q(0x96), q(0x97),\ q(0x98), q(0x99), q(0x9a), q(0x9b), q(0x9c), q(0x9d), q(0x9e), q(0x9f),\ q(0xa0), q(0xa1), q(0xa2), q(0xa3), q(0xa4), q(0xa5), q(0xa6), q(0xa7),\ q(0xa8), q(0xa9), q(0xaa), q(0xab), q(0xac), q(0xad), q(0xae), q(0xaf),\ q(0xb0), q(0xb1), q(0xb2), q(0xb3), q(0xb4), q(0xb5), q(0xb6), q(0xb7),\ q(0xb8), q(0xb9), q(0xba), q(0xbb), q(0xbc), q(0xbd), q(0xbe), q(0xbf),\ q(0xc0), q(0xc1), q(0xc2), q(0xc3), q(0xc4), q(0xc5), q(0xc6), q(0xc7),\ q(0xc8), q(0xc9), q(0xca), q(0xcb), q(0xcc), q(0xcd), q(0xce), q(0xcf),\ q(0xd0), q(0xd1), q(0xd2), q(0xd3), q(0xd4), q(0xd5), q(0xd6), q(0xd7),\ q(0xd8), q(0xd9), q(0xda), q(0xdb), q(0xdc), q(0xdd), q(0xde), q(0xdf),\ q(0xe0), q(0xe1), q(0xe2), q(0xe3), q(0xe4), q(0xe5), q(0xe6), q(0xe7),\ q(0xe8), q(0xe9), q(0xea), q(0xeb), q(0xec), q(0xed), q(0xee), q(0xef),\ q(0xf0), q(0xf1), q(0xf2), q(0xf3), q(0xf4), q(0xf5), q(0xf6), q(0xf7),\ q(0xf8), q(0xf9), q(0xfa), q(0xfb), q(0xfc), q(0xfd), q(0xfe), q(0xff) \ } /* Given the value i in 0..255 as the byte overflow when a field element in GHASH is multipled by x^8, this function will return the values that are generated in the lo 16-bit word of the field value by applying the modular polynomial. The values lo_byte and hi_byte are returned via the macro xp_fun(lo_byte, hi_byte) so that the values can be assembled into memory as required by a suitable definition of this macro operating on the table above */ #define xx(p, q) 0x##p##q #define xda_bbe(i) ( \ (i & 0x80 ? xx(43, 80) : 0) ^ (i & 0x40 ? xx(21, c0) : 0) ^ \ (i & 0x20 ? xx(10, e0) : 0) ^ (i & 0x10 ? xx(08, 70) : 0) ^ \ (i & 0x08 ? xx(04, 38) : 0) ^ (i & 0x04 ? xx(02, 1c) : 0) ^ \ (i & 0x02 ? xx(01, 0e) : 0) ^ (i & 0x01 ? xx(00, 87) : 0) \ ) #define xda_lle(i) ( \ (i & 0x80 ? xx(e1, 00) : 0) ^ (i & 0x40 ? xx(70, 80) : 0) ^ \ (i & 0x20 ? xx(38, 40) : 0) ^ (i & 0x10 ? xx(1c, 20) : 0) ^ \ (i & 0x08 ? xx(0e, 10) : 0) ^ (i & 0x04 ? xx(07, 08) : 0) ^ \ (i & 0x02 ? xx(03, 84) : 0) ^ (i & 0x01 ? xx(01, c2) : 0) \ ) static const u16 gf128mul_table_lle[256] = gf128mul_dat(xda_lle); static const u16 gf128mul_table_bbe[256] = gf128mul_dat(xda_bbe); /* These functions multiply a field element by x, by x^4 and by x^8 * in the polynomial field representation. It uses 32-bit word operations * to gain speed but compensates for machine endianess and hence works * correctly on both styles of machine. */ static void gf128mul_x_lle(be128 *r, const be128 *x) { u64 a = be64_to_cpu(x->a); u64 b = be64_to_cpu(x->b); u64 _tt = gf128mul_table_lle[(b << 7) & 0xff]; r->b = cpu_to_be64((b >> 1) | (a << 63)); r->a = cpu_to_be64((a >> 1) ^ (_tt << 48)); } static void gf128mul_x_bbe(be128 *r, const be128 *x) { u64 a = be64_to_cpu(x->a); u64 b = be64_to_cpu(x->b); u64 _tt = gf128mul_table_bbe[a >> 63]; r->a = cpu_to_be64((a << 1) | (b >> 63)); r->b = cpu_to_be64((b << 1) ^ _tt); } static void gf128mul_x8_lle(be128 *x) { u64 a = be64_to_cpu(x->a); u64 b = be64_to_cpu(x->b); u64 _tt = gf128mul_table_lle[b & 0xff]; x->b = cpu_to_be64((b >> 8) | (a << 56)); x->a = cpu_to_be64((a >> 8) ^ (_tt << 48)); } static void gf128mul_x8_bbe(be128 *x) { u64 a = be64_to_cpu(x->a); u64 b = be64_to_cpu(x->b); u64 _tt = gf128mul_table_bbe[a >> 56]; x->a = cpu_to_be64((a << 8) | (b >> 56)); x->b = cpu_to_be64((b << 8) ^ _tt); } void gf128mul_lle(be128 *r, const be128 *b) { be128 p[8]; int i; p[0] = *r; for (i = 0; i < 7; ++i) gf128mul_x_lle(&p[i + 1], &p[i]); memset(r, 0, sizeof(r)); for (i = 0;;) { u8 ch = ((u8 *)b)[15 - i]; if (ch & 0x80) be128_xor(r, r, &p[0]); if (ch & 0x40) be128_xor(r, r, &p[1]); if (ch & 0x20) be128_xor(r, r, &p[2]); if (ch & 0x10) be128_xor(r, r, &p[3]); if (ch & 0x08) be128_xor(r, r, &p[4]); if (ch & 0x04) be128_xor(r, r, &p[5]); if (ch & 0x02) be128_xor(r, r, &p[6]); if (ch & 0x01) be128_xor(r, r, &p[7]); if (++i >= 16) break; gf128mul_x8_lle(r); } } EXPORT_SYMBOL(gf128mul_lle); void gf128mul_bbe(be128 *r, const be128 *b) { be128 p[8]; int i; p[0] = *r; for (i = 0; i < 7; ++i) gf128mul_x_bbe(&p[i + 1], &p[i]); memset(r, 0, sizeof(r)); for (i = 0;;) { u8 ch = ((u8 *)b)[i]; if (ch & 0x80) be128_xor(r, r, &p[7]); if (ch & 0x40) be128_xor(r, r, &p[6]); if (ch & 0x20) be128_xor(r, r, &p[5]); if (ch & 0x10) be128_xor(r, r, &p[4]); if (ch & 0x08) be128_xor(r, r, &p[3]); if (ch & 0x04) be128_xor(r, r, &p[2]); if (ch & 0x02) be128_xor(r, r, &p[1]); if (ch & 0x01) be128_xor(r, r, &p[0]); if (++i >= 16) break; gf128mul_x8_bbe(r); } } EXPORT_SYMBOL(gf128mul_bbe); /* This version uses 64k bytes of table space. A 16 byte buffer has to be multiplied by a 16 byte key value in GF(128). If we consider a GF(128) value in the buffer's lowest byte, we can construct a table of the 256 16 byte values that result from the 256 values of this byte. This requires 4096 bytes. But we also need tables for each of the 16 higher bytes in the buffer as well, which makes 64 kbytes in total. */ /* additional explanation * t[0][BYTE] contains g*BYTE * t[1][BYTE] contains g*x^8*BYTE * .. * t[15][BYTE] contains g*x^120*BYTE */ struct gf128mul_64k *gf128mul_init_64k_lle(const be128 *g) { struct gf128mul_64k *t; int i, j, k; t = kzalloc(sizeof(*t), GFP_KERNEL); if (!t) goto out; for (i = 0; i < 16; i++) { t->t[i] = kzalloc(sizeof(*t->t[i]), GFP_KERNEL); if (!t->t[i]) { gf128mul_free_64k(t); t = NULL; goto out; } } t->t[0]->t[128] = *g; for (j = 64; j > 0; j >>= 1) gf128mul_x_lle(&t->t[0]->t[j], &t->t[0]->t[j + j]); for (i = 0;;) { for (j = 2; j < 256; j += j) for (k = 1; k < j; ++k) be128_xor(&t->t[i]->t[j + k], &t->t[i]->t[j], &t->t[i]->t[k]); if (++i >= 16) break; for (j = 128; j > 0; j >>= 1) { t->t[i]->t[j] = t->t[i - 1]->t[j]; gf128mul_x8_lle(&t->t[i]->t[j]); } } out: return t; } EXPORT_SYMBOL(gf128mul_init_64k_lle); struct gf128mul_64k *gf128mul_init_64k_bbe(const be128 *g) { struct gf128mul_64k *t; int i, j, k; t = kzalloc(sizeof(*t), GFP_KERNEL); if (!t) goto out; for (i = 0; i < 16; i++) { t->t[i] = kzalloc(sizeof(*t->t[i]), GFP_KERNEL); if (!t->t[i]) { gf128mul_free_64k(t); t = NULL; goto out; } } t->t[0]->t[1] = *g; for (j = 1; j <= 64; j <<= 1) gf128mul_x_bbe(&t->t[0]->t[j + j], &t->t[0]->t[j]); for (i = 0;;) { for (j = 2; j < 256; j += j) for (k = 1; k < j; ++k) be128_xor(&t->t[i]->t[j + k], &t->t[i]->t[j], &t->t[i]->t[k]); if (++i >= 16) break; for (j = 128; j > 0; j >>= 1) { t->t[i]->t[j] = t->t[i - 1]->t[j]; gf128mul_x8_bbe(&t->t[i]->t[j]); } } out: return t; } EXPORT_SYMBOL(gf128mul_init_64k_bbe); void gf128mul_free_64k(struct gf128mul_64k *t) { int i; for (i = 0; i < 16; i++) kfree(t->t[i]); kfree(t); } EXPORT_SYMBOL(gf128mul_free_64k); void gf128mul_64k_lle(be128 *a, struct gf128mul_64k *t) { u8 *ap = (u8 *)a; be128 r[1]; int i; *r = t->t[0]->t[ap[0]]; for (i = 1; i < 16; ++i) be128_xor(r, r, &t->t[i]->t[ap[i]]); *a = *r; } EXPORT_SYMBOL(gf128mul_64k_lle); void gf128mul_64k_bbe(be128 *a, struct gf128mul_64k *t) { u8 *ap = (u8 *)a; be128 r[1]; int i; *r = t->t[0]->t[ap[15]]; for (i = 1; i < 16; ++i) be128_xor(r, r, &t->t[i]->t[ap[15 - i]]); *a = *r; } EXPORT_SYMBOL(gf128mul_64k_bbe); /* This version uses 4k bytes of table space. A 16 byte buffer has to be multiplied by a 16 byte key value in GF(128). If we consider a GF(128) value in a single byte, we can construct a table of the 256 16 byte values that result from the 256 values of this byte. This requires 4096 bytes. If we take the highest byte in the buffer and use this table to get the result, we then have to multiply by x^120 to get the final value. For the next highest byte the result has to be multiplied by x^112 and so on. But we can do this by accumulating the result in an accumulator starting with the result for the top byte. We repeatedly multiply the accumulator value by x^8 and then add in (i.e. xor) the 16 bytes of the next lower byte in the buffer, stopping when we reach the lowest byte. This requires a 4096 byte table. */ struct gf128mul_4k *gf128mul_init_4k_lle(const be128 *g) { struct gf128mul_4k *t; int j, k; t = kzalloc(sizeof(*t), GFP_KERNEL); if (!t) goto out; t->t[128] = *g; for (j = 64; j > 0; j >>= 1) gf128mul_x_lle(&t->t[j], &t->t[j+j]); for (j = 2; j < 256; j += j) for (k = 1; k < j; ++k) be128_xor(&t->t[j + k], &t->t[j], &t->t[k]); out: return t; } EXPORT_SYMBOL(gf128mul_init_4k_lle); struct gf128mul_4k *gf128mul_init_4k_bbe(const be128 *g) { struct gf128mul_4k *t; int j, k; t = kzalloc(sizeof(*t), GFP_KERNEL); if (!t) goto out; t->t[1] = *g; for (j = 1; j <= 64; j <<= 1) gf128mul_x_bbe(&t->t[j + j], &t->t[j]); for (j = 2; j < 256; j += j) for (k = 1; k < j; ++k) be128_xor(&t->t[j + k], &t->t[j], &t->t[k]); out: return t; } EXPORT_SYMBOL(gf128mul_init_4k_bbe); void gf128mul_4k_lle(be128 *a, struct gf128mul_4k *t) { u8 *ap = (u8 *)a; be128 r[1]; int i = 15; *r = t->t[ap[15]]; while (i--) { gf128mul_x8_lle(r); be128_xor(r, r, &t->t[ap[i]]); } *a = *r; } EXPORT_SYMBOL(gf128mul_4k_lle); void gf128mul_4k_bbe(be128 *a, struct gf128mul_4k *t) { u8 *ap = (u8 *)a; be128 r[1]; int i = 0; *r = t->t[ap[0]]; while (++i < 16) { gf128mul_x8_bbe(r); be128_xor(r, r, &t->t[ap[i]]); } *a = *r; } EXPORT_SYMBOL(gf128mul_4k_bbe); MODULE_LICENSE("GPL"); MODULE_DESCRIPTION("Functions for multiplying elements of GF(2^128)"); |