Linux Audio

Check our new training course

Embedded Linux Audio

Check our new training course
with Creative Commons CC-BY-SA
lecture materials

Bootlin logo

Elixir Cross Referencer

Loading...
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
/*
 * An i2c driver for the Xicor/Intersil X1205 RTC
 * Copyright 2004 Karen Spearel
 * Copyright 2005 Alessandro Zummo
 *
 * please send all reports to:
 * 	Karen Spearel <kas111 at gmail dot com>
 *	Alessandro Zummo <a.zummo@towertech.it>
 *
 * based on a lot of other RTC drivers.
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 */

#include <linux/i2c.h>
#include <linux/bcd.h>
#include <linux/rtc.h>
#include <linux/delay.h>

#define DRV_VERSION "1.0.7"

/* Addresses to scan: none. This chip is located at
 * 0x6f and uses a two bytes register addressing.
 * Two bytes need to be written to read a single register,
 * while most other chips just require one and take the second
 * one as the data to be written. To prevent corrupting
 * unknown chips, the user must explicitely set the probe parameter.
 */

static unsigned short normal_i2c[] = { I2C_CLIENT_END };

/* Insmod parameters */
I2C_CLIENT_INSMOD;

/* offsets into CCR area */

#define CCR_SEC			0
#define CCR_MIN			1
#define CCR_HOUR		2
#define CCR_MDAY		3
#define CCR_MONTH		4
#define CCR_YEAR		5
#define CCR_WDAY		6
#define CCR_Y2K			7

#define X1205_REG_SR		0x3F	/* status register */
#define X1205_REG_Y2K		0x37
#define X1205_REG_DW		0x36
#define X1205_REG_YR		0x35
#define X1205_REG_MO		0x34
#define X1205_REG_DT		0x33
#define X1205_REG_HR		0x32
#define X1205_REG_MN		0x31
#define X1205_REG_SC		0x30
#define X1205_REG_DTR		0x13
#define X1205_REG_ATR		0x12
#define X1205_REG_INT		0x11
#define X1205_REG_0		0x10
#define X1205_REG_Y2K1		0x0F
#define X1205_REG_DWA1		0x0E
#define X1205_REG_YRA1		0x0D
#define X1205_REG_MOA1		0x0C
#define X1205_REG_DTA1		0x0B
#define X1205_REG_HRA1		0x0A
#define X1205_REG_MNA1		0x09
#define X1205_REG_SCA1		0x08
#define X1205_REG_Y2K0		0x07
#define X1205_REG_DWA0		0x06
#define X1205_REG_YRA0		0x05
#define X1205_REG_MOA0		0x04
#define X1205_REG_DTA0		0x03
#define X1205_REG_HRA0		0x02
#define X1205_REG_MNA0		0x01
#define X1205_REG_SCA0		0x00

#define X1205_CCR_BASE		0x30	/* Base address of CCR */
#define X1205_ALM0_BASE		0x00	/* Base address of ALARM0 */

#define X1205_SR_RTCF		0x01	/* Clock failure */
#define X1205_SR_WEL		0x02	/* Write Enable Latch */
#define X1205_SR_RWEL		0x04	/* Register Write Enable */

#define X1205_DTR_DTR0		0x01
#define X1205_DTR_DTR1		0x02
#define X1205_DTR_DTR2		0x04

#define X1205_HR_MIL		0x80	/* Set in ccr.hour for 24 hr mode */

/* Prototypes */
static int x1205_attach(struct i2c_adapter *adapter);
static int x1205_detach(struct i2c_client *client);
static int x1205_probe(struct i2c_adapter *adapter, int address, int kind);

static struct i2c_driver x1205_driver = {
	.driver		= {
		.name	= "x1205",
	},
	.id		= I2C_DRIVERID_X1205,
	.attach_adapter = &x1205_attach,
	.detach_client	= &x1205_detach,
};

/*
 * In the routines that deal directly with the x1205 hardware, we use
 * rtc_time -- month 0-11, hour 0-23, yr = calendar year-epoch
 * Epoch is initialized as 2000. Time is set to UTC.
 */
static int x1205_get_datetime(struct i2c_client *client, struct rtc_time *tm,
				unsigned char reg_base)
{
	unsigned char dt_addr[2] = { 0, reg_base };

	unsigned char buf[8];

	struct i2c_msg msgs[] = {
		{ client->addr, 0, 2, dt_addr },	/* setup read ptr */
		{ client->addr, I2C_M_RD, 8, buf },	/* read date */
	};

	/* read date registers */
	if ((i2c_transfer(client->adapter, &msgs[0], 2)) != 2) {
		dev_err(&client->dev, "%s: read error\n", __FUNCTION__);
		return -EIO;
	}

	dev_dbg(&client->dev,
		"%s: raw read data - sec=%02x, min=%02x, hr=%02x, "
		"mday=%02x, mon=%02x, year=%02x, wday=%02x, y2k=%02x\n",
		__FUNCTION__,
		buf[0], buf[1], buf[2], buf[3],
		buf[4], buf[5], buf[6], buf[7]);

	tm->tm_sec = BCD2BIN(buf[CCR_SEC]);
	tm->tm_min = BCD2BIN(buf[CCR_MIN]);
	tm->tm_hour = BCD2BIN(buf[CCR_HOUR] & 0x3F); /* hr is 0-23 */
	tm->tm_mday = BCD2BIN(buf[CCR_MDAY]);
	tm->tm_mon = BCD2BIN(buf[CCR_MONTH]) - 1; /* mon is 0-11 */
	tm->tm_year = BCD2BIN(buf[CCR_YEAR])
			+ (BCD2BIN(buf[CCR_Y2K]) * 100) - 1900;
	tm->tm_wday = buf[CCR_WDAY];

	dev_dbg(&client->dev, "%s: tm is secs=%d, mins=%d, hours=%d, "
		"mday=%d, mon=%d, year=%d, wday=%d\n",
		__FUNCTION__,
		tm->tm_sec, tm->tm_min, tm->tm_hour,
		tm->tm_mday, tm->tm_mon, tm->tm_year, tm->tm_wday);

	return 0;
}

static int x1205_get_status(struct i2c_client *client, unsigned char *sr)
{
	static unsigned char sr_addr[2] = { 0, X1205_REG_SR };

	struct i2c_msg msgs[] = {
		{ client->addr, 0, 2, sr_addr },	/* setup read ptr */
		{ client->addr, I2C_M_RD, 1, sr },	/* read status */
	};

	/* read status register */
	if ((i2c_transfer(client->adapter, &msgs[0], 2)) != 2) {
		dev_err(&client->dev, "%s: read error\n", __FUNCTION__);
		return -EIO;
	}

	return 0;
}

static int x1205_set_datetime(struct i2c_client *client, struct rtc_time *tm,
				int datetoo, u8 reg_base)
{
	int i, xfer;
	unsigned char buf[8];

	static const unsigned char wel[3] = { 0, X1205_REG_SR,
						X1205_SR_WEL };

	static const unsigned char rwel[3] = { 0, X1205_REG_SR,
						X1205_SR_WEL | X1205_SR_RWEL };

	static const unsigned char diswe[3] = { 0, X1205_REG_SR, 0 };

	dev_dbg(&client->dev,
		"%s: secs=%d, mins=%d, hours=%d\n",
		__FUNCTION__,
		tm->tm_sec, tm->tm_min, tm->tm_hour);

	buf[CCR_SEC] = BIN2BCD(tm->tm_sec);
	buf[CCR_MIN] = BIN2BCD(tm->tm_min);

	/* set hour and 24hr bit */
	buf[CCR_HOUR] = BIN2BCD(tm->tm_hour) | X1205_HR_MIL;

	/* should we also set the date? */
	if (datetoo) {
		dev_dbg(&client->dev,
			"%s: mday=%d, mon=%d, year=%d, wday=%d\n",
			__FUNCTION__,
			tm->tm_mday, tm->tm_mon, tm->tm_year, tm->tm_wday);

		buf[CCR_MDAY] = BIN2BCD(tm->tm_mday);

		/* month, 1 - 12 */
		buf[CCR_MONTH] = BIN2BCD(tm->tm_mon + 1);

		/* year, since the rtc epoch*/
		buf[CCR_YEAR] = BIN2BCD(tm->tm_year % 100);
		buf[CCR_WDAY] = tm->tm_wday & 0x07;
		buf[CCR_Y2K] = BIN2BCD(tm->tm_year / 100);
	}

	/* this sequence is required to unlock the chip */
	if ((xfer = i2c_master_send(client, wel, 3)) != 3) {
		dev_err(&client->dev, "%s: wel - %d\n", __FUNCTION__, xfer);
		return -EIO;
	}

	if ((xfer = i2c_master_send(client, rwel, 3)) != 3) {
		dev_err(&client->dev, "%s: rwel - %d\n", __FUNCTION__, xfer);
		return -EIO;
	}

	/* write register's data */
	for (i = 0; i < (datetoo ? 8 : 3); i++) {
		unsigned char rdata[3] = { 0, reg_base + i, buf[i] };

		xfer = i2c_master_send(client, rdata, 3);
		if (xfer != 3) {
			dev_err(&client->dev,
				"%s: xfer=%d addr=%02x, data=%02x\n",
				__FUNCTION__,
				 xfer, rdata[1], rdata[2]);
			return -EIO;
		}
	};

	/* disable further writes */
	if ((xfer = i2c_master_send(client, diswe, 3)) != 3) {
		dev_err(&client->dev, "%s: diswe - %d\n", __FUNCTION__, xfer);
		return -EIO;
	}

	return 0;
}

static int x1205_fix_osc(struct i2c_client *client)
{
	int err;
	struct rtc_time tm;

	tm.tm_hour = tm.tm_min = tm.tm_sec = 0;

	if ((err = x1205_set_datetime(client, &tm, 0, X1205_CCR_BASE)) < 0)
		dev_err(&client->dev,
			"unable to restart the oscillator\n");

	return err;
}

static int x1205_get_dtrim(struct i2c_client *client, int *trim)
{
	unsigned char dtr;
	static unsigned char dtr_addr[2] = { 0, X1205_REG_DTR };

	struct i2c_msg msgs[] = {
		{ client->addr, 0, 2, dtr_addr },	/* setup read ptr */
		{ client->addr, I2C_M_RD, 1, &dtr }, 	/* read dtr */
	};

	/* read dtr register */
	if ((i2c_transfer(client->adapter, &msgs[0], 2)) != 2) {
		dev_err(&client->dev, "%s: read error\n", __FUNCTION__);
		return -EIO;
	}

	dev_dbg(&client->dev, "%s: raw dtr=%x\n", __FUNCTION__, dtr);

	*trim = 0;

	if (dtr & X1205_DTR_DTR0)
		*trim += 20;

	if (dtr & X1205_DTR_DTR1)
		*trim += 10;

	if (dtr & X1205_DTR_DTR2)
		*trim = -*trim;

	return 0;
}

static int x1205_get_atrim(struct i2c_client *client, int *trim)
{
	s8 atr;
	static unsigned char atr_addr[2] = { 0, X1205_REG_ATR };

	struct i2c_msg msgs[] = {
		{ client->addr, 0, 2, atr_addr },	/* setup read ptr */
		{ client->addr, I2C_M_RD, 1, &atr }, 	/* read atr */
	};

	/* read atr register */
	if ((i2c_transfer(client->adapter, &msgs[0], 2)) != 2) {
		dev_err(&client->dev, "%s: read error\n", __FUNCTION__);
		return -EIO;
	}

	dev_dbg(&client->dev, "%s: raw atr=%x\n", __FUNCTION__, atr);

	/* atr is a two's complement value on 6 bits,
	 * perform sign extension. The formula is
	 * Catr = (atr * 0.25pF) + 11.00pF.
	 */
	if (atr & 0x20)
		atr |= 0xC0;

	dev_dbg(&client->dev, "%s: raw atr=%x (%d)\n", __FUNCTION__, atr, atr);

	*trim = (atr * 250) + 11000;

	dev_dbg(&client->dev, "%s: real=%d\n", __FUNCTION__, *trim);

	return 0;
}

struct x1205_limit
{
	unsigned char reg, mask, min, max;
};

static int x1205_validate_client(struct i2c_client *client)
{
	int i, xfer;

	/* Probe array. We will read the register at the specified
	 * address and check if the given bits are zero.
	 */
	static const unsigned char probe_zero_pattern[] = {
		/* register, mask */
		X1205_REG_SR,	0x18,
		X1205_REG_DTR,	0xF8,
		X1205_REG_ATR,	0xC0,
		X1205_REG_INT,	0x18,
		X1205_REG_0,	0xFF,
	};

	static const struct x1205_limit probe_limits_pattern[] = {
		/* register, mask, min, max */
		{ X1205_REG_Y2K,	0xFF,	19,	20	},
		{ X1205_REG_DW,		0xFF,	0,	6	},
		{ X1205_REG_YR,		0xFF,	0,	99	},
		{ X1205_REG_MO,		0xFF,	0,	12	},
		{ X1205_REG_DT,		0xFF,	0,	31	},
		{ X1205_REG_HR,		0x7F,	0,	23	},
		{ X1205_REG_MN,		0xFF,	0,	59	},
		{ X1205_REG_SC,		0xFF,	0,	59	},
		{ X1205_REG_Y2K1,	0xFF,	19,	20	},
		{ X1205_REG_Y2K0,	0xFF,	19,	20	},
	};

	/* check that registers have bits a 0 where expected */
	for (i = 0; i < ARRAY_SIZE(probe_zero_pattern); i += 2) {
		unsigned char buf;

		unsigned char addr[2] = { 0, probe_zero_pattern[i] };

		struct i2c_msg msgs[2] = {
			{ client->addr, 0, 2, addr },
			{ client->addr, I2C_M_RD, 1, &buf },
		};

		if ((xfer = i2c_transfer(client->adapter, msgs, 2)) != 2) {
			dev_err(&client->dev,
				"%s: could not read register %x\n",
				__FUNCTION__, probe_zero_pattern[i]);

			return -EIO;
		}

		if ((buf & probe_zero_pattern[i+1]) != 0) {
			dev_err(&client->dev,
				"%s: register=%02x, zero pattern=%d, value=%x\n",
				__FUNCTION__, probe_zero_pattern[i], i, buf);

			return -ENODEV;
		}
	}

	/* check limits (only registers with bcd values) */
	for (i = 0; i < ARRAY_SIZE(probe_limits_pattern); i++) {
		unsigned char reg, value;

		unsigned char addr[2] = { 0, probe_limits_pattern[i].reg };

		struct i2c_msg msgs[2] = {
			{ client->addr, 0, 2, addr },
			{ client->addr, I2C_M_RD, 1, &reg },
		};

		if ((xfer = i2c_transfer(client->adapter, msgs, 2)) != 2) {
			dev_err(&client->dev,
				"%s: could not read register %x\n",
				__FUNCTION__, probe_limits_pattern[i].reg);

			return -EIO;
		}

		value = BCD2BIN(reg & probe_limits_pattern[i].mask);

		if (value > probe_limits_pattern[i].max ||
			value < probe_limits_pattern[i].min) {
			dev_dbg(&client->dev,
				"%s: register=%x, lim pattern=%d, value=%d\n",
				__FUNCTION__, probe_limits_pattern[i].reg,
				i, value);

			return -ENODEV;
		}
	}

	return 0;
}

static int x1205_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *alrm)
{
	return x1205_get_datetime(to_i2c_client(dev),
		&alrm->time, X1205_ALM0_BASE);
}

static int x1205_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alrm)
{
	return x1205_set_datetime(to_i2c_client(dev),
		&alrm->time, 1, X1205_ALM0_BASE);
}

static int x1205_rtc_read_time(struct device *dev, struct rtc_time *tm)
{
	return x1205_get_datetime(to_i2c_client(dev),
		tm, X1205_CCR_BASE);
}

static int x1205_rtc_set_time(struct device *dev, struct rtc_time *tm)
{
	return x1205_set_datetime(to_i2c_client(dev),
		tm, 1, X1205_CCR_BASE);
}

static int x1205_rtc_proc(struct device *dev, struct seq_file *seq)
{
	int err, dtrim, atrim;

	if ((err = x1205_get_dtrim(to_i2c_client(dev), &dtrim)) == 0)
		seq_printf(seq, "digital_trim\t: %d ppm\n", dtrim);

	if ((err = x1205_get_atrim(to_i2c_client(dev), &atrim)) == 0)
		seq_printf(seq, "analog_trim\t: %d.%02d pF\n",
			atrim / 1000, atrim % 1000);
	return 0;
}

static const struct rtc_class_ops x1205_rtc_ops = {
	.proc		= x1205_rtc_proc,
	.read_time	= x1205_rtc_read_time,
	.set_time	= x1205_rtc_set_time,
	.read_alarm	= x1205_rtc_read_alarm,
	.set_alarm	= x1205_rtc_set_alarm,
};

static ssize_t x1205_sysfs_show_atrim(struct device *dev,
				struct device_attribute *attr, char *buf)
{
	int err, atrim;

	err = x1205_get_atrim(to_i2c_client(dev), &atrim);
	if (err)
		return err;

	return sprintf(buf, "%d.%02d pF\n", atrim / 1000, atrim % 1000);
}
static DEVICE_ATTR(atrim, S_IRUGO, x1205_sysfs_show_atrim, NULL);

static ssize_t x1205_sysfs_show_dtrim(struct device *dev,
				struct device_attribute *attr, char *buf)
{
	int err, dtrim;

	err = x1205_get_dtrim(to_i2c_client(dev), &dtrim);
	if (err)
		return err;

	return sprintf(buf, "%d ppm\n", dtrim);
}
static DEVICE_ATTR(dtrim, S_IRUGO, x1205_sysfs_show_dtrim, NULL);

static int x1205_attach(struct i2c_adapter *adapter)
{
	return i2c_probe(adapter, &addr_data, x1205_probe);
}

static int x1205_probe(struct i2c_adapter *adapter, int address, int kind)
{
	int err = 0;
	unsigned char sr;
	struct i2c_client *client;
	struct rtc_device *rtc;

	dev_dbg(adapter->class_dev.dev, "%s\n", __FUNCTION__);

	if (!i2c_check_functionality(adapter, I2C_FUNC_I2C)) {
		err = -ENODEV;
		goto exit;
	}

	if (!(client = kzalloc(sizeof(struct i2c_client), GFP_KERNEL))) {
		err = -ENOMEM;
		goto exit;
	}

	/* I2C client */
	client->addr = address;
	client->driver = &x1205_driver;
	client->adapter	= adapter;

	strlcpy(client->name, x1205_driver.driver.name, I2C_NAME_SIZE);

	/* Verify the chip is really an X1205 */
	if (kind < 0) {
		if (x1205_validate_client(client) < 0) {
			err = -ENODEV;
			goto exit_kfree;
		}
	}

	/* Inform the i2c layer */
	if ((err = i2c_attach_client(client)))
		goto exit_kfree;

	dev_info(&client->dev, "chip found, driver version " DRV_VERSION "\n");

	rtc = rtc_device_register(x1205_driver.driver.name, &client->dev,
				&x1205_rtc_ops, THIS_MODULE);

	if (IS_ERR(rtc)) {
		err = PTR_ERR(rtc);
		goto exit_detach;
	}

	i2c_set_clientdata(client, rtc);

	/* Check for power failures and eventualy enable the osc */
	if ((err = x1205_get_status(client, &sr)) == 0) {
		if (sr & X1205_SR_RTCF) {
			dev_err(&client->dev,
				"power failure detected, "
				"please set the clock\n");
			udelay(50);
			x1205_fix_osc(client);
		}
	}
	else
		dev_err(&client->dev, "couldn't read status\n");

	err = device_create_file(&client->dev, &dev_attr_atrim);
	if (err) goto exit_devreg;
	err = device_create_file(&client->dev, &dev_attr_dtrim);
	if (err) goto exit_atrim;

	return 0;

exit_atrim:
	device_remove_file(&client->dev, &dev_attr_atrim);

exit_devreg:
	rtc_device_unregister(rtc);

exit_detach:
	i2c_detach_client(client);

exit_kfree:
	kfree(client);

exit:
	return err;
}

static int x1205_detach(struct i2c_client *client)
{
	int err;
	struct rtc_device *rtc = i2c_get_clientdata(client);

 	if (rtc)
		rtc_device_unregister(rtc);

	if ((err = i2c_detach_client(client)))
		return err;

	kfree(client);

	return 0;
}

static int __init x1205_init(void)
{
	return i2c_add_driver(&x1205_driver);
}

static void __exit x1205_exit(void)
{
	i2c_del_driver(&x1205_driver);
}

MODULE_AUTHOR(
	"Karen Spearel <kas111 at gmail dot com>, "
	"Alessandro Zummo <a.zummo@towertech.it>");
MODULE_DESCRIPTION("Xicor/Intersil X1205 RTC driver");
MODULE_LICENSE("GPL");
MODULE_VERSION(DRV_VERSION);

module_init(x1205_init);
module_exit(x1205_exit);