Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 | #ifndef __ASM_SH_IO_H #define __ASM_SH_IO_H /* * Convention: * read{b,w,l}/write{b,w,l} are for PCI, * while in{b,w,l}/out{b,w,l} are for ISA * These may (will) be platform specific function. * In addition we have 'pausing' versions: in{b,w,l}_p/out{b,w,l}_p * and 'string' versions: ins{b,w,l}/outs{b,w,l} * For read{b,w,l} and write{b,w,l} there are also __raw versions, which * do not have a memory barrier after them. * * In addition, we have * ctrl_in{b,w,l}/ctrl_out{b,w,l} for SuperH specific I/O. * which are processor specific. */ /* * We follow the Alpha convention here: * __inb expands to an inline function call (which calls via the mv) * _inb is a real function call (note ___raw fns are _ version of __raw) * inb by default expands to _inb, but the machine specific code may * define it to __inb if it chooses. */ #include <asm/cache.h> #include <asm/system.h> #include <asm/addrspace.h> #include <asm/machvec.h> #include <asm/pgtable.h> #include <asm-generic/iomap.h> #ifdef __KERNEL__ /* * Depending on which platform we are running on, we need different * I/O functions. */ #define __IO_PREFIX generic #include <asm/io_generic.h> #define maybebadio(port) \ printk(KERN_ERR "bad PC-like io %s:%u for port 0x%lx at 0x%08x\n", \ __FUNCTION__, __LINE__, (port), (u32)__builtin_return_address(0)) /* * Since boards are able to define their own set of I/O routines through * their respective machine vector, we always wrap through the mv. * * Also, in the event that a board hasn't provided its own definition for * a given routine, it will be wrapped to generic code at run-time. */ #define __inb(p) sh_mv.mv_inb((p)) #define __inw(p) sh_mv.mv_inw((p)) #define __inl(p) sh_mv.mv_inl((p)) #define __outb(x,p) sh_mv.mv_outb((x),(p)) #define __outw(x,p) sh_mv.mv_outw((x),(p)) #define __outl(x,p) sh_mv.mv_outl((x),(p)) #define __inb_p(p) sh_mv.mv_inb_p((p)) #define __inw_p(p) sh_mv.mv_inw_p((p)) #define __inl_p(p) sh_mv.mv_inl_p((p)) #define __outb_p(x,p) sh_mv.mv_outb_p((x),(p)) #define __outw_p(x,p) sh_mv.mv_outw_p((x),(p)) #define __outl_p(x,p) sh_mv.mv_outl_p((x),(p)) #define __insb(p,b,c) sh_mv.mv_insb((p), (b), (c)) #define __insw(p,b,c) sh_mv.mv_insw((p), (b), (c)) #define __insl(p,b,c) sh_mv.mv_insl((p), (b), (c)) #define __outsb(p,b,c) sh_mv.mv_outsb((p), (b), (c)) #define __outsw(p,b,c) sh_mv.mv_outsw((p), (b), (c)) #define __outsl(p,b,c) sh_mv.mv_outsl((p), (b), (c)) #define __readb(a) sh_mv.mv_readb((a)) #define __readw(a) sh_mv.mv_readw((a)) #define __readl(a) sh_mv.mv_readl((a)) #define __writeb(v,a) sh_mv.mv_writeb((v),(a)) #define __writew(v,a) sh_mv.mv_writew((v),(a)) #define __writel(v,a) sh_mv.mv_writel((v),(a)) #define inb __inb #define inw __inw #define inl __inl #define outb __outb #define outw __outw #define outl __outl #define inb_p __inb_p #define inw_p __inw_p #define inl_p __inl_p #define outb_p __outb_p #define outw_p __outw_p #define outl_p __outl_p #define insb __insb #define insw __insw #define insl __insl #define outsb __outsb #define outsw __outsw #define outsl __outsl #define __raw_readb(a) __readb((void __iomem *)(a)) #define __raw_readw(a) __readw((void __iomem *)(a)) #define __raw_readl(a) __readl((void __iomem *)(a)) #define __raw_writeb(v, a) __writeb(v, (void __iomem *)(a)) #define __raw_writew(v, a) __writew(v, (void __iomem *)(a)) #define __raw_writel(v, a) __writel(v, (void __iomem *)(a)) void __raw_writesl(unsigned long addr, const void *data, int longlen); void __raw_readsl(unsigned long addr, void *data, int longlen); /* * The platform header files may define some of these macros to use * the inlined versions where appropriate. These macros may also be * redefined by userlevel programs. */ #ifdef __readb # define readb(a) ({ unsigned long r_ = __raw_readb(a); mb(); r_; }) #endif #ifdef __raw_readw # define readw(a) ({ unsigned long r_ = __raw_readw(a); mb(); r_; }) #endif #ifdef __raw_readl # define readl(a) ({ unsigned long r_ = __raw_readl(a); mb(); r_; }) #endif #ifdef __raw_writeb # define writeb(v,a) ({ __raw_writeb((v),(a)); mb(); }) #endif #ifdef __raw_writew # define writew(v,a) ({ __raw_writew((v),(a)); mb(); }) #endif #ifdef __raw_writel # define writel(v,a) ({ __raw_writel((v),(a)); mb(); }) #endif #define writesl __raw_writesl #define readsl __raw_readsl #define readb_relaxed(a) readb(a) #define readw_relaxed(a) readw(a) #define readl_relaxed(a) readl(a) /* Simple MMIO */ #define ioread8(a) readb(a) #define ioread16(a) readw(a) #define ioread16be(a) be16_to_cpu(__raw_readw((a))) #define ioread32(a) readl(a) #define ioread32be(a) be32_to_cpu(__raw_readl((a))) #define iowrite8(v,a) writeb((v),(a)) #define iowrite16(v,a) writew((v),(a)) #define iowrite16be(v,a) __raw_writew(cpu_to_be16((v)),(a)) #define iowrite32(v,a) writel((v),(a)) #define iowrite32be(v,a) __raw_writel(cpu_to_be32((v)),(a)) #define ioread8_rep(a,d,c) insb((a),(d),(c)) #define ioread16_rep(a,d,c) insw((a),(d),(c)) #define ioread32_rep(a,d,c) insl((a),(d),(c)) #define iowrite8_rep(a,s,c) outsb((a),(s),(c)) #define iowrite16_rep(a,s,c) outsw((a),(s),(c)) #define iowrite32_rep(a,s,c) outsl((a),(s),(c)) #define mmiowb() wmb() /* synco on SH-4A, otherwise a nop */ /* * This function provides a method for the generic case where a board-specific * ioport_map simply needs to return the port + some arbitrary port base. * * We use this at board setup time to implicitly set the port base, and * as a result, we can use the generic ioport_map. */ static inline void __set_io_port_base(unsigned long pbase) { extern unsigned long generic_io_base; generic_io_base = pbase; } /* We really want to try and get these to memcpy etc */ extern void memcpy_fromio(void *, volatile void __iomem *, unsigned long); extern void memcpy_toio(volatile void __iomem *, const void *, unsigned long); extern void memset_io(volatile void __iomem *, int, unsigned long); /* SuperH on-chip I/O functions */ static inline unsigned char ctrl_inb(unsigned long addr) { return *(volatile unsigned char*)addr; } static inline unsigned short ctrl_inw(unsigned long addr) { return *(volatile unsigned short*)addr; } static inline unsigned int ctrl_inl(unsigned long addr) { return *(volatile unsigned long*)addr; } static inline void ctrl_outb(unsigned char b, unsigned long addr) { *(volatile unsigned char*)addr = b; } static inline void ctrl_outw(unsigned short b, unsigned long addr) { *(volatile unsigned short*)addr = b; } static inline void ctrl_outl(unsigned int b, unsigned long addr) { *(volatile unsigned long*)addr = b; } static inline void ctrl_delay(void) { ctrl_inw(P2SEG); } #define IO_SPACE_LIMIT 0xffffffff #ifdef CONFIG_MMU /* * Change virtual addresses to physical addresses and vv. * These are trivial on the 1:1 Linux/SuperH mapping */ static inline unsigned long virt_to_phys(volatile void *address) { return PHYSADDR(address); } static inline void *phys_to_virt(unsigned long address) { return (void *)P1SEGADDR(address); } #else #define phys_to_virt(address) ((void *)(address)) #define virt_to_phys(address) ((unsigned long)(address)) #endif #define virt_to_bus virt_to_phys #define bus_to_virt phys_to_virt #define page_to_bus page_to_phys /* * readX/writeX() are used to access memory mapped devices. On some * architectures the memory mapped IO stuff needs to be accessed * differently. On the x86 architecture, we just read/write the * memory location directly. * * On SH, we traditionally have the whole physical address space mapped * at all times (as MIPS does), so "ioremap()" and "iounmap()" do not * need to do anything but place the address in the proper segment. This * is true for P1 and P2 addresses, as well as some P3 ones. However, * most of the P3 addresses and newer cores using extended addressing * need to map through page tables, so the ioremap() implementation * becomes a bit more complicated. See arch/sh/mm/ioremap.c for * additional notes on this. * * We cheat a bit and always return uncachable areas until we've fixed * the drivers to handle caching properly. */ #ifdef CONFIG_MMU void __iomem *__ioremap(unsigned long offset, unsigned long size, unsigned long flags); void __iounmap(void __iomem *addr); #else #define __ioremap(offset, size, flags) ((void __iomem *)(offset)) #define __iounmap(addr) do { } while (0) #endif /* CONFIG_MMU */ static inline void __iomem * __ioremap_mode(unsigned long offset, unsigned long size, unsigned long flags) { unsigned long last_addr = offset + size - 1; /* * For P1 and P2 space this is trivial, as everything is already * mapped. Uncached access for P1 addresses are done through P2. * In the P3 case or for addresses outside of the 29-bit space, * mapping must be done by the PMB or by using page tables. */ if (likely(PXSEG(offset) < P3SEG && PXSEG(last_addr) < P3SEG)) { if (unlikely(flags & _PAGE_CACHABLE)) return (void __iomem *)P1SEGADDR(offset); return (void __iomem *)P2SEGADDR(offset); } return __ioremap(offset, size, flags); } #define ioremap(offset, size) \ __ioremap_mode((offset), (size), 0) #define ioremap_nocache(offset, size) \ __ioremap_mode((offset), (size), 0) #define ioremap_cache(offset, size) \ __ioremap_mode((offset), (size), _PAGE_CACHABLE) #define p3_ioremap(offset, size, flags) \ __ioremap((offset), (size), (flags)) #define iounmap(addr) \ __iounmap((addr)) /* * The caches on some architectures aren't dma-coherent and have need to * handle this in software. There are three types of operations that * can be applied to dma buffers. * * - dma_cache_wback_inv(start, size) makes caches and RAM coherent by * writing the content of the caches back to memory, if necessary. * The function also invalidates the affected part of the caches as * necessary before DMA transfers from outside to memory. * - dma_cache_inv(start, size) invalidates the affected parts of the * caches. Dirty lines of the caches may be written back or simply * be discarded. This operation is necessary before dma operations * to the memory. * - dma_cache_wback(start, size) writes back any dirty lines but does * not invalidate the cache. This can be used before DMA reads from * memory, */ #define dma_cache_wback_inv(_start,_size) \ __flush_purge_region(_start,_size) #define dma_cache_inv(_start,_size) \ __flush_invalidate_region(_start,_size) #define dma_cache_wback(_start,_size) \ __flush_wback_region(_start,_size) /* * Convert a physical pointer to a virtual kernel pointer for /dev/mem * access */ #define xlate_dev_mem_ptr(p) __va(p) /* * Convert a virtual cached pointer to an uncached pointer */ #define xlate_dev_kmem_ptr(p) p #endif /* __KERNEL__ */ #endif /* __ASM_SH_IO_H */ |