Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 | /* * Copyright (C) 2006 Freescale Semicondutor, Inc. All rights reserved. * * Authors: Shlomi Gridish <gridish@freescale.com> * Li Yang <leoli@freescale.com> * Based on cpm2_common.c from Dan Malek (dmalek@jlc.net) * * Description: * General Purpose functions for the global management of the * QUICC Engine (QE). * * This program is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License as published by the * Free Software Foundation; either version 2 of the License, or (at your * option) any later version. */ #include <linux/errno.h> #include <linux/sched.h> #include <linux/kernel.h> #include <linux/param.h> #include <linux/string.h> #include <linux/mm.h> #include <linux/interrupt.h> #include <linux/bootmem.h> #include <linux/module.h> #include <linux/delay.h> #include <linux/ioport.h> #include <asm/irq.h> #include <asm/page.h> #include <asm/pgtable.h> #include <asm/immap_qe.h> #include <asm/qe.h> #include <asm/prom.h> #include <asm/rheap.h> static void qe_snums_init(void); static void qe_muram_init(void); static int qe_sdma_init(void); static DEFINE_SPINLOCK(qe_lock); /* QE snum state */ enum qe_snum_state { QE_SNUM_STATE_USED, QE_SNUM_STATE_FREE }; /* QE snum */ struct qe_snum { u8 num; enum qe_snum_state state; }; /* We allocate this here because it is used almost exclusively for * the communication processor devices. */ struct qe_immap *qe_immr = NULL; EXPORT_SYMBOL(qe_immr); static struct qe_snum snums[QE_NUM_OF_SNUM]; /* Dynamically allocated SNUMs */ static phys_addr_t qebase = -1; phys_addr_t get_qe_base(void) { struct device_node *qe; if (qebase != -1) return qebase; qe = of_find_node_by_type(NULL, "qe"); if (qe) { unsigned int size; const void *prop = get_property(qe, "reg", &size); qebase = of_translate_address(qe, prop); of_node_put(qe); }; return qebase; } EXPORT_SYMBOL(get_qe_base); void qe_reset(void) { if (qe_immr == NULL) qe_immr = ioremap(get_qe_base(), QE_IMMAP_SIZE); qe_snums_init(); qe_issue_cmd(QE_RESET, QE_CR_SUBBLOCK_INVALID, QE_CR_PROTOCOL_UNSPECIFIED, 0); /* Reclaim the MURAM memory for our use. */ qe_muram_init(); if (qe_sdma_init()) panic("sdma init failed!"); } int qe_issue_cmd(u32 cmd, u32 device, u8 mcn_protocol, u32 cmd_input) { unsigned long flags; u8 mcn_shift = 0, dev_shift = 0; spin_lock_irqsave(&qe_lock, flags); if (cmd == QE_RESET) { out_be32(&qe_immr->cp.cecr, (u32) (cmd | QE_CR_FLG)); } else { if (cmd == QE_ASSIGN_PAGE) { /* Here device is the SNUM, not sub-block */ dev_shift = QE_CR_SNUM_SHIFT; } else if (cmd == QE_ASSIGN_RISC) { /* Here device is the SNUM, and mcnProtocol is * e_QeCmdRiscAssignment value */ dev_shift = QE_CR_SNUM_SHIFT; mcn_shift = QE_CR_MCN_RISC_ASSIGN_SHIFT; } else { if (device == QE_CR_SUBBLOCK_USB) mcn_shift = QE_CR_MCN_USB_SHIFT; else mcn_shift = QE_CR_MCN_NORMAL_SHIFT; } out_be32(&qe_immr->cp.cecdr, cmd_input); out_be32(&qe_immr->cp.cecr, (cmd | QE_CR_FLG | ((u32) device << dev_shift) | (u32) mcn_protocol << mcn_shift)); } /* wait for the QE_CR_FLG to clear */ while(in_be32(&qe_immr->cp.cecr) & QE_CR_FLG) cpu_relax(); spin_unlock_irqrestore(&qe_lock, flags); return 0; } EXPORT_SYMBOL(qe_issue_cmd); /* Set a baud rate generator. This needs lots of work. There are * 16 BRGs, which can be connected to the QE channels or output * as clocks. The BRGs are in two different block of internal * memory mapped space. * The baud rate clock is the system clock divided by something. * It was set up long ago during the initial boot phase and is * is given to us. * Baud rate clocks are zero-based in the driver code (as that maps * to port numbers). Documentation uses 1-based numbering. */ static unsigned int brg_clk = 0; unsigned int get_brg_clk(void) { struct device_node *qe; if (brg_clk) return brg_clk; qe = of_find_node_by_type(NULL, "qe"); if (qe) { unsigned int size; const u32 *prop = get_property(qe, "brg-frequency", &size); brg_clk = *prop; of_node_put(qe); }; return brg_clk; } /* This function is used by UARTS, or anything else that uses a 16x * oversampled clock. */ void qe_setbrg(u32 brg, u32 rate) { volatile u32 *bp; u32 divisor, tempval; int div16 = 0; bp = &qe_immr->brg.brgc[brg]; divisor = (get_brg_clk() / rate); if (divisor > QE_BRGC_DIVISOR_MAX + 1) { div16 = 1; divisor /= 16; } tempval = ((divisor - 1) << QE_BRGC_DIVISOR_SHIFT) | QE_BRGC_ENABLE; if (div16) tempval |= QE_BRGC_DIV16; out_be32(bp, tempval); } /* Initialize SNUMs (thread serial numbers) according to * QE Module Control chapter, SNUM table */ static void qe_snums_init(void) { int i; static const u8 snum_init[] = { 0x04, 0x05, 0x0C, 0x0D, 0x14, 0x15, 0x1C, 0x1D, 0x24, 0x25, 0x2C, 0x2D, 0x34, 0x35, 0x88, 0x89, 0x98, 0x99, 0xA8, 0xA9, 0xB8, 0xB9, 0xC8, 0xC9, 0xD8, 0xD9, 0xE8, 0xE9, }; for (i = 0; i < QE_NUM_OF_SNUM; i++) { snums[i].num = snum_init[i]; snums[i].state = QE_SNUM_STATE_FREE; } } int qe_get_snum(void) { unsigned long flags; int snum = -EBUSY; int i; spin_lock_irqsave(&qe_lock, flags); for (i = 0; i < QE_NUM_OF_SNUM; i++) { if (snums[i].state == QE_SNUM_STATE_FREE) { snums[i].state = QE_SNUM_STATE_USED; snum = snums[i].num; break; } } spin_unlock_irqrestore(&qe_lock, flags); return snum; } EXPORT_SYMBOL(qe_get_snum); void qe_put_snum(u8 snum) { int i; for (i = 0; i < QE_NUM_OF_SNUM; i++) { if (snums[i].num == snum) { snums[i].state = QE_SNUM_STATE_FREE; break; } } } EXPORT_SYMBOL(qe_put_snum); static int qe_sdma_init(void) { struct sdma *sdma = &qe_immr->sdma; u32 sdma_buf_offset; if (!sdma) return -ENODEV; /* allocate 2 internal temporary buffers (512 bytes size each) for * the SDMA */ sdma_buf_offset = qe_muram_alloc(512 * 2, 64); if (IS_MURAM_ERR(sdma_buf_offset)) return -ENOMEM; out_be32(&sdma->sdebcr, sdma_buf_offset & QE_SDEBCR_BA_MASK); out_be32(&sdma->sdmr, (QE_SDMR_GLB_1_MSK | (0x1 >> QE_SDMR_CEN_SHIFT))); return 0; } /* * muram_alloc / muram_free bits. */ static DEFINE_SPINLOCK(qe_muram_lock); /* 16 blocks should be enough to satisfy all requests * until the memory subsystem goes up... */ static rh_block_t qe_boot_muram_rh_block[16]; static rh_info_t qe_muram_info; static void qe_muram_init(void) { struct device_node *np; u32 address; u64 size; unsigned int flags; /* initialize the info header */ rh_init(&qe_muram_info, 1, sizeof(qe_boot_muram_rh_block) / sizeof(qe_boot_muram_rh_block[0]), qe_boot_muram_rh_block); /* Attach the usable muram area */ /* XXX: This is a subset of the available muram. It * varies with the processor and the microcode patches activated. */ if ((np = of_find_node_by_name(NULL, "data-only")) != NULL) { address = *of_get_address(np, 0, &size, &flags); of_node_put(np); rh_attach_region(&qe_muram_info, (void *)address, (int)size); } } /* This function returns an index into the MURAM area. */ u32 qe_muram_alloc(u32 size, u32 align) { void *start; unsigned long flags; spin_lock_irqsave(&qe_muram_lock, flags); start = rh_alloc_align(&qe_muram_info, size, align, "QE"); spin_unlock_irqrestore(&qe_muram_lock, flags); return (u32) start; } EXPORT_SYMBOL(qe_muram_alloc); int qe_muram_free(u32 offset) { int ret; unsigned long flags; spin_lock_irqsave(&qe_muram_lock, flags); ret = rh_free(&qe_muram_info, (void *)offset); spin_unlock_irqrestore(&qe_muram_lock, flags); return ret; } EXPORT_SYMBOL(qe_muram_free); /* not sure if this is ever needed */ u32 qe_muram_alloc_fixed(u32 offset, u32 size) { void *start; unsigned long flags; spin_lock_irqsave(&qe_muram_lock, flags); start = rh_alloc_fixed(&qe_muram_info, (void *)offset, size, "commproc"); spin_unlock_irqrestore(&qe_muram_lock, flags); return (u32) start; } EXPORT_SYMBOL(qe_muram_alloc_fixed); void qe_muram_dump(void) { rh_dump(&qe_muram_info); } EXPORT_SYMBOL(qe_muram_dump); void *qe_muram_addr(u32 offset) { return (void *)&qe_immr->muram[offset]; } EXPORT_SYMBOL(qe_muram_addr); |