Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 | /* Copyright 2000, Compaq Computer Corporation * Fibre Channel Host Bus Adapter * 64-bit, 66MHz PCI * Originally developed and tested on: * (front): [chip] Tachyon TS HPFC-5166A/1.2 L2C1090 ... * SP# P225CXCBFIEL6T, Rev XC * SP# 161290-001, Rev XD * (back): Board No. 010008-001 A/W Rev X5, FAB REV X5 * * This program is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License as published by the * Free Software Foundation; either version 2, or (at your option) any * later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * Written by Don Zimmerman */ /* These functions control the host bus adapter (HBA) hardware. The main chip control takes place in the interrupt handler where we process the IMQ (Inbound Message Queue). The IMQ is Tachyon's way of communicating FC link events and state information to the driver. The Single Frame Queue (SFQ) buffers incoming FC frames for processing by the driver. References to "TL/TS UG" are for: "HP HPFC-5100/5166 Tachyon TL/TS ICs User Guide", August 16, 1999, 1st Ed. Hewlitt Packard Manual Part Number 5968-1083E. */ #define LinuxVersionCode(v, p, s) (((v)<<16)+((p)<<8)+(s)) #include <linux/blkdev.h> #include <linux/kernel.h> #include <linux/string.h> #include <linux/ioport.h> // request_region() prototype #include <linux/sched.h> #include <linux/slab.h> // need "kfree" for ext. S/G pages #include <linux/types.h> #include <linux/pci.h> #include <linux/delay.h> #include <linux/unistd.h> #include <asm/io.h> // struct pt_regs for IRQ handler & Port I/O #include <asm/irq.h> #include <linux/spinlock.h> #include "scsi.h" #include "hosts.h" // Scsi_Host definition for INT handler #include "cpqfcTSchip.h" #include "cpqfcTSstructs.h" //#define IMQ_DEBUG 1 static void fcParseLinkStatusCounters(TACHYON * fcChip); static void CpqTsGetSFQEntry(TACHYON * fcChip, USHORT pi, ULONG * buffr, BOOLEAN UpdateChip); static void cpqfc_free_dma_consistent(CPQFCHBA *cpqfcHBAdata) { // free up the primary EXCHANGES struct and Link Q PTACHYON fcChip = &cpqfcHBAdata->fcChip; if (fcChip->Exchanges != NULL) pci_free_consistent(cpqfcHBAdata->PciDev, sizeof(FC_EXCHANGES), fcChip->Exchanges, fcChip->exch_dma_handle); fcChip->Exchanges = NULL; if (cpqfcHBAdata->fcLQ != NULL) pci_free_consistent(cpqfcHBAdata->PciDev, sizeof(FC_LINK_QUE), cpqfcHBAdata->fcLQ, cpqfcHBAdata->fcLQ_dma_handle); cpqfcHBAdata->fcLQ = NULL; } // Note special requirements for Q alignment! (TL/TS UG pg. 190) // We place critical index pointers at end of QUE elements to assist // in non-symbolic (i.e. memory dump) debugging // opcode defines placement of Queues (e.g. local/external RAM) int CpqTsCreateTachLiteQues( void* pHBA, int opcode) { CPQFCHBA *cpqfcHBAdata = (CPQFCHBA*)pHBA; PTACHYON fcChip = &cpqfcHBAdata->fcChip; int iStatus=0; unsigned long ulAddr; dma_addr_t ERQdma, IMQdma, SPQdma, SESTdma; int i; // NOTE! fcMemManager() will return system virtual addresses. // System (kernel) virtual addresses, though non-paged, still // aren't physical addresses. Convert to PHYSICAL_ADDRESS for Tachyon's // DMA use. ENTER("CreateTachLiteQues"); // Allocate primary EXCHANGES array... fcChip->Exchanges = NULL; cpqfcHBAdata->fcLQ = NULL; /* printk("Allocating %u for %u Exchanges ", (ULONG)sizeof(FC_EXCHANGES), TACH_MAX_XID); */ fcChip->Exchanges = pci_alloc_consistent(cpqfcHBAdata->PciDev, sizeof(FC_EXCHANGES), &fcChip->exch_dma_handle); /* printk("@ %p\n", fcChip->Exchanges); */ if( fcChip->Exchanges == NULL ) // fatal error!! { printk("pci_alloc_consistent failure on Exchanges: fatal error\n"); return -1; } // zero out the entire EXCHANGE space memset( fcChip->Exchanges, 0, sizeof( FC_EXCHANGES)); /* printk("Allocating %u for LinkQ ", (ULONG)sizeof(FC_LINK_QUE)); */ cpqfcHBAdata->fcLQ = pci_alloc_consistent(cpqfcHBAdata->PciDev, sizeof( FC_LINK_QUE), &cpqfcHBAdata->fcLQ_dma_handle); /* printk("@ %p (%u elements)\n", cpqfcHBAdata->fcLQ, FC_LINKQ_DEPTH); */ memset( cpqfcHBAdata->fcLQ, 0, sizeof( FC_LINK_QUE)); if( cpqfcHBAdata->fcLQ == NULL ) // fatal error!! { cpqfc_free_dma_consistent(cpqfcHBAdata); printk("pci_alloc_consistent() failure on fc Link Que: fatal error\n"); return -1; } // zero out the entire EXCHANGE space memset( cpqfcHBAdata->fcLQ, 0, sizeof( FC_LINK_QUE)); // Verify that basic Tach I/O registers are not NULL if( !fcChip->Registers.ReMapMemBase ) { cpqfc_free_dma_consistent(cpqfcHBAdata); printk("HBA base address NULL: fatal error\n"); return -1; } // Initialize the fcMemManager memory pairs (stores allocated/aligned // pairs for future freeing) memset( cpqfcHBAdata->dynamic_mem, 0, sizeof(cpqfcHBAdata->dynamic_mem)); // Allocate Tach's Exchange Request Queue (each ERQ entry 32 bytes) fcChip->ERQ = fcMemManager( cpqfcHBAdata->PciDev, &cpqfcHBAdata->dynamic_mem[0], sizeof( TachLiteERQ ), 32*(ERQ_LEN), 0L, &ERQdma); if( !fcChip->ERQ ) { cpqfc_free_dma_consistent(cpqfcHBAdata); printk("pci_alloc_consistent/alignment failure on ERQ: fatal error\n"); return -1; } fcChip->ERQ->length = ERQ_LEN-1; ulAddr = (ULONG) ERQdma; #if BITS_PER_LONG > 32 if( (ulAddr >> 32) ) { cpqfc_free_dma_consistent(cpqfcHBAdata); printk(" FATAL! ERQ ptr %p exceeds Tachyon's 32-bit register size\n", (void*)ulAddr); return -1; // failed } #endif fcChip->ERQ->base = (ULONG)ulAddr; // copy for quick reference // Allocate Tach's Inbound Message Queue (32 bytes per entry) fcChip->IMQ = fcMemManager( cpqfcHBAdata->PciDev, &cpqfcHBAdata->dynamic_mem[0], sizeof( TachyonIMQ ), 32*(IMQ_LEN), 0L, &IMQdma ); if( !fcChip->IMQ ) { cpqfc_free_dma_consistent(cpqfcHBAdata); printk("pci_alloc_consistent/alignment failure on IMQ: fatal error\n"); return -1; } fcChip->IMQ->length = IMQ_LEN-1; ulAddr = IMQdma; #if BITS_PER_LONG > 32 if( (ulAddr >> 32) ) { cpqfc_free_dma_consistent(cpqfcHBAdata); printk(" FATAL! IMQ ptr %p exceeds Tachyon's 32-bit register size\n", (void*)ulAddr); return -1; // failed } #endif fcChip->IMQ->base = (ULONG)ulAddr; // copy for quick reference // Allocate Tach's Single Frame Queue (64 bytes per entry) fcChip->SFQ = fcMemManager( cpqfcHBAdata->PciDev, &cpqfcHBAdata->dynamic_mem[0], sizeof( TachLiteSFQ ), 64*(SFQ_LEN),0L, &SPQdma ); if( !fcChip->SFQ ) { cpqfc_free_dma_consistent(cpqfcHBAdata); printk("pci_alloc_consistent/alignment failure on SFQ: fatal error\n"); return -1; } fcChip->SFQ->length = SFQ_LEN-1; // i.e. Que length [# entries - // min. 32; max. 4096 (0xffff)] ulAddr = SPQdma; #if BITS_PER_LONG > 32 if( (ulAddr >> 32) ) { cpqfc_free_dma_consistent(cpqfcHBAdata); printk(" FATAL! SFQ ptr %p exceeds Tachyon's 32-bit register size\n", (void*)ulAddr); return -1; // failed } #endif fcChip->SFQ->base = (ULONG)ulAddr; // copy for quick reference // Allocate SCSI Exchange State Table; aligned nearest @sizeof // power-of-2 boundary // LIVE DANGEROUSLY! Assume the boundary for SEST mem will // be on physical page (e.g. 4k) boundary. /* printk("Allocating %u for TachSEST for %u Exchanges\n", (ULONG)sizeof(TachSEST), TACH_SEST_LEN); */ fcChip->SEST = fcMemManager( cpqfcHBAdata->PciDev, &cpqfcHBAdata->dynamic_mem[0], sizeof(TachSEST), 4, 0L, &SESTdma ); // sizeof(TachSEST), 64*TACH_SEST_LEN, 0L ); if( !fcChip->SEST ) { cpqfc_free_dma_consistent(cpqfcHBAdata); printk("pci_alloc_consistent/alignment failure on SEST: fatal error\n"); return -1; } for( i=0; i < TACH_SEST_LEN; i++) // for each exchange fcChip->SEST->sgPages[i] = NULL; fcChip->SEST->length = TACH_SEST_LEN; // e.g. DON'T subtract one // (TL/TS UG, pg 153) ulAddr = SESTdma; #if BITS_PER_LONG > 32 if( (ulAddr >> 32) ) { cpqfc_free_dma_consistent(cpqfcHBAdata); printk(" FATAL! SFQ ptr %p exceeds Tachyon's 32-bit register size\n", (void*)ulAddr); return -1; // failed } #endif fcChip->SEST->base = (ULONG)ulAddr; // copy for quick reference // Now that structures are defined, // fill in Tachyon chip registers... // EEEEEEEE EXCHANGE REQUEST QUEUE writel( fcChip->ERQ->base, (fcChip->Registers.ReMapMemBase + TL_MEM_ERQ_BASE)); writel( fcChip->ERQ->length, (fcChip->Registers.ReMapMemBase + TL_MEM_ERQ_LENGTH)); fcChip->ERQ->producerIndex = 0L; writel( fcChip->ERQ->producerIndex, (fcChip->Registers.ReMapMemBase + TL_MEM_ERQ_PRODUCER_INDEX)); // NOTE! write consumer index last, since the write // causes Tachyon to process the other registers ulAddr = ((unsigned long)&fcChip->ERQ->consumerIndex - (unsigned long)fcChip->ERQ) + (unsigned long) ERQdma; // NOTE! Tachyon DMAs to the ERQ consumer Index host // address; must be correctly aligned writel( (ULONG)ulAddr, (fcChip->Registers.ReMapMemBase + TL_MEM_ERQ_CONSUMER_INDEX_ADR)); // IIIIIIIIIIIII INBOUND MESSAGE QUEUE // Tell Tachyon where the Que starts // set the Host's pointer for Tachyon to access /* printk(" cpqfcTS: writing IMQ BASE %Xh ", fcChip->IMQ->base ); */ writel( fcChip->IMQ->base, (fcChip->Registers.ReMapMemBase + IMQ_BASE)); writel( fcChip->IMQ->length, (fcChip->Registers.ReMapMemBase + IMQ_LENGTH)); writel( fcChip->IMQ->consumerIndex, (fcChip->Registers.ReMapMemBase + IMQ_CONSUMER_INDEX)); // NOTE: TachLite DMAs to the producerIndex host address // must be correctly aligned with address bits 1-0 cleared // Writing the BASE register clears the PI register, so write it last ulAddr = ((unsigned long)&fcChip->IMQ->producerIndex - (unsigned long)fcChip->IMQ) + (unsigned long) IMQdma; #if BITS_PER_LONG > 32 if( (ulAddr >> 32) ) { cpqfc_free_dma_consistent(cpqfcHBAdata); printk(" FATAL! IMQ ptr %p exceeds Tachyon's 32-bit register size\n", (void*)ulAddr); return -1; // failed } #endif #if DBG printk(" PI %Xh\n", (ULONG)ulAddr ); #endif writel( (ULONG)ulAddr, (fcChip->Registers.ReMapMemBase + IMQ_PRODUCER_INDEX)); // SSSSSSSSSSSSSSS SINGLE FRAME SEQUENCE // Tell TachLite where the Que starts writel( fcChip->SFQ->base, (fcChip->Registers.ReMapMemBase + TL_MEM_SFQ_BASE)); writel( fcChip->SFQ->length, (fcChip->Registers.ReMapMemBase + TL_MEM_SFQ_LENGTH)); // tell TachLite where SEST table is & how long writel( fcChip->SEST->base, (fcChip->Registers.ReMapMemBase + TL_MEM_SEST_BASE)); /* printk(" cpqfcTS: SEST %p(virt): Wrote base %Xh @ %p\n", fcChip->SEST, fcChip->SEST->base, fcChip->Registers.ReMapMemBase + TL_MEM_SEST_BASE); */ writel( fcChip->SEST->length, (fcChip->Registers.ReMapMemBase + TL_MEM_SEST_LENGTH)); writel( (TL_EXT_SG_PAGE_COUNT-1), (fcChip->Registers.ReMapMemBase + TL_MEM_SEST_SG_PAGE)); LEAVE("CreateTachLiteQues"); return iStatus; } // function to return TachLite to Power On state // 1st - reset tachyon ('SOFT' reset) // others - future int CpqTsResetTachLite(void *pHBA, int type) { CPQFCHBA *cpqfcHBAdata = (CPQFCHBA*)pHBA; PTACHYON fcChip = &cpqfcHBAdata->fcChip; ULONG ulBuff, i; int ret_status=0; // def. success ENTER("ResetTach"); switch(type) { case CLEAR_FCPORTS: // in case he was running previously, mask Tach's interrupt writeb( 0, (fcChip->Registers.ReMapMemBase + IINTEN)); // de-allocate mem for any Logged in ports // (e.g., our module is unloading) // search the forward linked list, de-allocating // the memory we allocated when the port was initially logged in { PFC_LOGGEDIN_PORT pLoggedInPort = fcChip->fcPorts.pNextPort; PFC_LOGGEDIN_PORT ptr; // printk("checking for allocated LoggedInPorts...\n"); while( pLoggedInPort ) { ptr = pLoggedInPort; pLoggedInPort = ptr->pNextPort; // printk("kfree(%p) on FC LoggedInPort port_id 0x%06lX\n", // ptr, ptr->port_id); kfree( ptr ); } } // (continue resetting hardware...) case 1: // RESTART Tachyon (power-up state) // in case he was running previously, mask Tach's interrupt writeb( 0, (fcChip->Registers.ReMapMemBase + IINTEN)); // turn OFF laser (NOTE: laser is turned // off during reset, because GPIO4 is cleared // to 0 by reset action - see TLUM, sec 7.22) // However, CPQ 64-bit HBAs have a "health // circuit" which keeps laser ON for a brief // period after it is turned off ( < 1s) fcChip->LaserControl( fcChip->Registers.ReMapMemBase, 0); // soft reset timing constraints require: // 1. set RST to 1 // 2. read SOFTRST register // (128 times per R. Callison code) // 3. clear PCI ints // 4. clear RST to 0 writel( 0xff000001L, (fcChip->Registers.ReMapMemBase + TL_MEM_SOFTRST)); for( i=0; i<128; i++) ulBuff = readl( fcChip->Registers.ReMapMemBase + TL_MEM_SOFTRST); // clear the soft reset for( i=0; i<8; i++) writel( 0, (fcChip->Registers.ReMapMemBase + TL_MEM_SOFTRST)); // clear out our copy of Tach regs, // because they must be invalid now, // since TachLite reset all his regs. CpqTsDestroyTachLiteQues(cpqfcHBAdata,0); // remove Host-based Que structs cpqfcTSClearLinkStatusCounters(fcChip); // clear our s/w accumulators // lower bits give GBIC info fcChip->Registers.TYstatus.value = readl( fcChip->Registers.TYstatus.address ); break; /* case 2: // freeze SCSI case 3: // reset Outbound command que (ERQ) case 4: // unfreeze OSM (Outbound Seq. Man.) 'er' case 5: // report status break; */ default: ret_status = -1; // invalid option passed to RESET function break; } LEAVE("ResetTach"); return ret_status; } // 'addrBase' is IOBaseU for both TachLite and (older) Tachyon int CpqTsLaserControl( void* addrBase, int opcode ) { ULONG dwBuff; dwBuff = readl((addrBase + TL_MEM_TACH_CONTROL) ); // read TL Control reg // (change only bit 4) if( opcode == 1) dwBuff |= ~0xffffffefL; // set - ON else dwBuff &= 0xffffffefL; // clear - OFF writel( dwBuff, (addrBase + TL_MEM_TACH_CONTROL)); // write TL Control reg return 0; } // Use controller's "Options" field to determine loopback mode (if any) // internal loopback (silicon - no GBIC) // external loopback (GBIC - no FC loop) // no loopback: L_PORT, external cable from GBIC required int CpqTsInitializeFrameManager( void *pChip, int opcode) { PTACHYON fcChip; int iStatus; ULONG wwnLo, wwnHi; // for readback verification ENTER("InitializeFrameManager"); fcChip = (PTACHYON)pChip; if( !fcChip->Registers.ReMapMemBase ) // undefined controller? return -1; // TL/TS UG, pg. 184 // 0x0065 = 100ms for RT_TOV // 0x01f5 = 500ms for ED_TOV // 0x07D1 = 2000ms fcChip->Registers.ed_tov.value = 0x006507D1; writel( fcChip->Registers.ed_tov.value, (fcChip->Registers.ed_tov.address)); // Set LP_TOV to the FC-AL2 specified 2 secs. // TL/TS UG, pg. 185 writel( 0x07d00010, fcChip->Registers.ReMapMemBase +TL_MEM_FM_TIMEOUT2); // Now try to read the WWN from the adapter's NVRAM iStatus = CpqTsReadWriteWWN( fcChip, 1); // '1' for READ if( iStatus ) // NVRAM read failed? { printk(" WARNING! HBA NVRAM WWN read failed - make alias\n"); // make up a WWN. If NULL or duplicated on loop, FC loop may hang! fcChip->Registers.wwn_hi = (__u32)jiffies; fcChip->Registers.wwn_hi |= 0x50000000L; fcChip->Registers.wwn_lo = 0x44556677L; } writel( fcChip->Registers.wwn_hi, fcChip->Registers.ReMapMemBase + TL_MEM_FM_WWN_HI); writel( fcChip->Registers.wwn_lo, fcChip->Registers.ReMapMemBase + TL_MEM_FM_WWN_LO); // readback for verification: wwnHi = readl( fcChip->Registers.ReMapMemBase + TL_MEM_FM_WWN_HI ); wwnLo = readl( fcChip->Registers.ReMapMemBase + TL_MEM_FM_WWN_LO); // test for correct chip register WRITE/READ DEBUG_PCI( printk(" WWN %08X%08X\n", fcChip->Registers.wwn_hi, fcChip->Registers.wwn_lo ) ); if( wwnHi != fcChip->Registers.wwn_hi || wwnLo != fcChip->Registers.wwn_lo ) { printk( "cpqfcTS: WorldWideName register load failed\n"); return -1; // FAILED! } // set Frame Manager Initialize command fcChip->Registers.FMcontrol.value = 0x06; // Note: for test/debug purposes, we may use "Hard" address, // but we completely support "soft" addressing, including // dynamically changing our address. if( fcChip->Options.intLoopback == 1 ) // internal loopback fcChip->Registers.FMconfig.value = 0x0f002080L; else if( fcChip->Options.extLoopback == 1 ) // internal loopback fcChip->Registers.FMconfig.value = 0x0f004080L; else // L_Port fcChip->Registers.FMconfig.value = 0x55000100L; // hard address (55h start) // fcChip->Registers.FMconfig.value = 0x01000080L; // soft address (can't pick) // fcChip->Registers.FMconfig.value = 0x55000100L; // hard address (55h start) // write config to FM if( !fcChip->Options.intLoopback && !fcChip->Options.extLoopback ) // (also need LASER for real LOOP) fcChip->LaserControl( fcChip->Registers.ReMapMemBase, 1); // turn on LASER writel( fcChip->Registers.FMconfig.value, fcChip->Registers.FMconfig.address); // issue INITIALIZE command to FM - ACTION! writel( fcChip->Registers.FMcontrol.value, fcChip->Registers.FMcontrol.address); LEAVE("InitializeFrameManager"); return 0; } // This "look ahead" function examines the IMQ for occurrence of // "type". Returns 1 if found, 0 if not. static int PeekIMQEntry( PTACHYON fcChip, ULONG type) { ULONG CI = fcChip->IMQ->consumerIndex; ULONG PI = fcChip->IMQ->producerIndex; // snapshot of IMQ indexes while( CI != PI ) { // proceed with search if( (++CI) >= IMQ_LEN ) CI = 0; // rollover check switch( type ) { case ELS_LILP_FRAME: { // first, we need to find an Inbound Completion message, // If we find it, check the incoming frame payload (1st word) // for LILP frame if( (fcChip->IMQ->QEntry[CI].type & 0x1FF) == 0x104 ) { TachFCHDR_GCMND* fchs; ULONG ulFibreFrame[2048/4]; // max DWORDS in incoming FC Frame USHORT SFQpi = (USHORT)(fcChip->IMQ->QEntry[CI].word[0] & 0x0fffL); CpqTsGetSFQEntry( fcChip, SFQpi, // SFQ producer ndx ulFibreFrame, // contiguous dest. buffer FALSE); // DON'T update chip--this is a "lookahead" fchs = (TachFCHDR_GCMND*)&ulFibreFrame; if( fchs->pl[0] == ELS_LILP_FRAME) { return 1; // found the LILP frame! } else { // keep looking... } } } break; case OUTBOUND_COMPLETION: if( (fcChip->IMQ->QEntry[CI].type & 0x1FF) == 0x00 ) { // any OCM errors? if( fcChip->IMQ->QEntry[CI].word[2] & 0x7a000000L ) return 1; // found OCM error } break; default: break; } } return 0; // failed to find "type" } static void SetTachTOV( CPQFCHBA* cpqfcHBAdata) { PTACHYON fcChip = &cpqfcHBAdata->fcChip; // TL/TS UG, pg. 184 // 0x0065 = 100ms for RT_TOV // 0x01f5 = 500ms for ED_TOV // 0x07d1 = 2000ms for ED_TOV // SANMark Level 1 requires an "initialization backoff" // (See "SANMark Test Suite Level 1": // initialization_timeout.fcal.SANMark-1.fc) // We have to use 2sec, 24sec, then 128sec when login/ // port discovery processes fail to complete. // when port discovery completes (logins done), we set // ED_TOV to 500ms -- this is the normal operational case // On the first Link Down, we'll move to 2 secs (7D1 ms) if( (fcChip->Registers.ed_tov.value &0xFFFF) <= 0x1f5) fcChip->Registers.ed_tov.value = 0x006507D1; // If we get another LST after we moved TOV to 2 sec, // increase to 24 seconds (5DC1 ms) per SANMark! else if( (fcChip->Registers.ed_tov.value &0xFFFF) <= 0x7D1) fcChip->Registers.ed_tov.value = 0x00655DC1; // If we get still another LST, set the max TOV (Tachyon // has only 16 bits for ms timer, so the max is 65.5 sec) else if( (fcChip->Registers.ed_tov.value &0xFFFF) <= 0x5DC1) fcChip->Registers.ed_tov.value = 0x0065FFFF; writel( fcChip->Registers.ed_tov.value, (fcChip->Registers.ed_tov.address)); // keep the same 2sec LP_TOV writel( 0x07D00010, fcChip->Registers.ReMapMemBase +TL_MEM_FM_TIMEOUT2); } // The IMQ is an array with IMQ_LEN length, each element (QEntry) // with eight 32-bit words. Tachyon PRODUCES a QEntry with each // message it wants to send to the host. The host CONSUMES IMQ entries // This function copies the current // (or oldest not-yet-processed) QEntry to // the caller, clears/ re-enables the interrupt, and updates the // (Host) Consumer Index. // Return value: // 0 message processed, none remain (producer and consumer // indexes match) // 1 message processed, more messages remain // -1 no message processed - none were available to process // Remarks: // TL/TS UG specifices that the following actions for // INTA_L handling: // 1. read PCI Interrupt Status register (0xff) // 2. all IMQ messages should be processed before writing the // IMQ consumer index. int CpqTsProcessIMQEntry(void *host) { struct Scsi_Host *HostAdapter = (struct Scsi_Host *)host; CPQFCHBA *cpqfcHBAdata = (CPQFCHBA *)HostAdapter->hostdata; PTACHYON fcChip = &cpqfcHBAdata->fcChip; FC_EXCHANGES *Exchanges = fcChip->Exchanges; int iStatus; USHORT i, RPCset, DPCset; ULONG x_ID; ULONG ulBuff, dwStatus; TachFCHDR_GCMND* fchs; ULONG ulFibreFrame[2048/4]; // max number of DWORDS in incoming Fibre Frame UCHAR ucInboundMessageType; // Inbound CM, dword 3 "type" field ENTER("ProcessIMQEntry"); // check TachLite's IMQ producer index - // is a new message waiting for us? // equal indexes means empty que if( fcChip->IMQ->producerIndex != fcChip->IMQ->consumerIndex ) { // need to process message #ifdef IMQ_DEBUG printk("PI %X, CI %X type: %X\n", fcChip->IMQ->producerIndex,fcChip->IMQ->consumerIndex, fcChip->IMQ->QEntry[fcChip->IMQ->consumerIndex].type); #endif // Examine Completion Messages in IMQ // what CM_Type? switch( (UCHAR)(fcChip->IMQ->QEntry[fcChip->IMQ->consumerIndex].type & 0xffL) ) { case OUTBOUND_COMPLETION: // Remarks: // x_IDs (OX_ID, RX_ID) are partitioned by SEST entries // (starting at 0), and SFS entries (starting at // SEST_LEN -- outside the SEST space). // Psuedo code: // x_ID (OX_ID or RX_ID) from message is Trans_ID or SEST index // range check - x_ID // if x_ID outside 'Transactions' length, error - exit // if any OCM error, copy error status to Exchange slot // if FCP ASSIST transaction (x_ID within SEST), // call fcComplete (to App) // ... ulBuff = fcChip->IMQ->QEntry[fcChip->IMQ->consumerIndex].word[1]; x_ID = ulBuff & 0x7fffL; // lower 14 bits SEST_Index/Trans_ID // Range check CM OX/RX_ID value... if( x_ID < TACH_MAX_XID ) // don't go beyond array space { if( ulBuff & 0x20000000L ) // RPC -Response Phase Complete? RPCset = 1; // (SEST transactions only) else RPCset = 0; if( ulBuff & 0x40000000L ) // DPC -Data Phase Complete? DPCset = 1; // (SEST transactions only) else DPCset = 0; // set the status for this Outbound transaction's ID dwStatus = 0L; if( ulBuff & 0x10000000L ) // SPE? (SEST Programming Error) dwStatus |= SESTPROG_ERR; ulBuff = fcChip->IMQ->QEntry[fcChip->IMQ->consumerIndex].word[2]; if( ulBuff & 0x7a000000L ) // any other errs? { if( ulBuff & 0x40000000L ) dwStatus |= INV_ENTRY; if( ulBuff & 0x20000000L ) dwStatus |= FRAME_TO; // FTO if( ulBuff & 0x10000000L ) dwStatus |= HOSTPROG_ERR; if( ulBuff & 0x08000000L ) dwStatus |= LINKFAIL_TX; if( ulBuff & 0x02000000L ) dwStatus |= ABORTSEQ_NOTIFY; // ASN } if( dwStatus ) // any errors? { // set the Outbound Completion status Exchanges->fcExchange[ x_ID ].status |= dwStatus; // if this Outbound frame was for a SEST entry, automatically // reque it in the case of LINKFAIL (it will restart on PDISC) if( x_ID < TACH_SEST_LEN ) { printk(" #OCM error %Xh x_ID %X# ", dwStatus, x_ID); Exchanges->fcExchange[x_ID].timeOut = 30000; // seconds default // We Q ABTS for each exchange. // NOTE: We can get FRAME_TO on bad alpa (device gone). Since // bad alpa is reported before FRAME_TO, examine the status // flags to see if the device is removed. If so, DON'T // post an ABTS, since it will be terminated by the bad alpa // message. if( dwStatus & FRAME_TO ) // check for device removed... { if( !(Exchanges->fcExchange[x_ID].status & DEVICE_REMOVED) ) { // presumes device is still there: send ABTS. cpqfcTSPutLinkQue( cpqfcHBAdata, BLS_ABTS, &x_ID); } } else // Abort all other errors { cpqfcTSPutLinkQue( cpqfcHBAdata, BLS_ABTS, &x_ID); } // if the HPE bit is set, we have to CLose the LOOP // (see TL/TS UG, pg. 239) if( dwStatus &= HOSTPROG_ERR ) // set CL bit (see TL/TS UG, pg. 172) writel( 4, fcChip->Registers.FMcontrol.address); } } // NOTE: we don't necessarily care about ALL completion messages... // SCSI resp. complete OR if( ((x_ID < TACH_SEST_LEN) && RPCset)|| (x_ID >= TACH_SEST_LEN) ) // non-SCSI command { // exchange done; complete to upper levels with status // (if necessary) and free the exchange slot if( x_ID >= TACH_SEST_LEN ) // Link Service Outbound frame? // A Request or Reply has been sent { // signal waiting WorkerThread up( cpqfcHBAdata->TYOBcomplete); // frame is OUT of Tach // WorkerThread will complete Xchng } else // X_ID is for FCP assist (SEST) { // TBD (target mode) // fcCompleteExchange( fcChip, x_ID); // TRE completed } } } else // ERROR CONDITION! bogus x_ID in completion message { printk(" ProcessIMQ (OBCM) x_id out of range %Xh\n", x_ID); } // Load the Frame Manager's error counters. We check them here // because presumably the link is up and healthy enough for the // counters to be meaningful (i.e., don't check them while loop // is initializing). fcChip->Registers.FMLinkStatus1.value = // get TL's counter readl(fcChip->Registers.FMLinkStatus1.address); fcChip->Registers.FMLinkStatus2.value = // get TL's counter readl(fcChip->Registers.FMLinkStatus2.address); fcParseLinkStatusCounters( fcChip); // load into 6 s/w accumulators break; case ERROR_IDLE_COMPLETION: // TachLite Error Idle... // We usually get this when the link goes down during heavy traffic. // For now, presume that if SEST Exchanges are open, we will // get this as our cue to INVALIDATE all SEST entries // (and we OWN all the SEST entries). // See TL/TS UG, pg. 53 for( x_ID = 0; x_ID < TACH_SEST_LEN; x_ID++) { // Does this VALid SEST entry need to be invalidated for Abort? fcChip->SEST->u[ x_ID].IWE.Hdr_Len &= 0x7FFFFFFF; } CpqTsUnFreezeTachlite( fcChip, 2); // unfreeze Tachyon, if Link OK break; case INBOUND_SFS_COMPLETION: //0x04 // NOTE! we must process this SFQ message to avoid SFQ filling // up and stopping TachLite. Incoming commands are placed here, // as well as 'unknown' frames (e.g. LIP loop position data) // write this CM's producer index to global... // TL/TS UG, pg 234: // Type: 0 - reserved // 1 - Unassisted FCP // 2 - BAD FCP // 3 - Unkown Frame // 4-F reserved fcChip->SFQ->producerIndex = (USHORT) (fcChip->IMQ->QEntry[fcChip->IMQ->consumerIndex].word[0] & 0x0fffL); ucInboundMessageType = 0; // default to useless frame // we can only process two Types: 1, Unassisted FCP, and 3, Unknown // Also, we aren't interested in processing frame fragments // so don't Que anything with 'LKF' bit set if( !(fcChip->IMQ->QEntry[fcChip->IMQ->consumerIndex].word[2] & 0x40000000) ) // 'LKF' link failure bit clear? { ucInboundMessageType = (UCHAR) // ICM DWord3, "Type" (fcChip->IMQ->QEntry[fcChip->IMQ->consumerIndex].word[2] & 0x0fL); } else { fcChip->fcStats.linkFailRX++; // printk("LKF (link failure) bit set on inbound message\n"); } // clears SFQ entry from Tachyon buffer; copies to contiguous ulBuff CpqTsGetSFQEntry( fcChip, // i.e. this Device Object (USHORT)fcChip->SFQ->producerIndex, // SFQ producer ndx ulFibreFrame, TRUE); // contiguous destination buffer, update chip // analyze the incoming frame outside the INT handler... // (i.e., Worker) if( ucInboundMessageType == 1 ) { fchs = (TachFCHDR_GCMND*)ulFibreFrame; // cast to examine IB frame // don't fill up our Q with garbage - only accept FCP-CMND // or XRDY frames if( (fchs->d_id & 0xFF000000) == 0x06000000 ) // CMND { // someone sent us a SCSI command // fcPutScsiQue( cpqfcHBAdata, // SFQ_UNASSISTED_FCP, ulFibreFrame); } else if( ((fchs->d_id & 0xFF000000) == 0x07000000) || // RSP (status) (fchs->d_id & 0xFF000000) == 0x05000000 ) // XRDY { ULONG x_ID; // Unfortunately, ABTS requires a Freeze on the chip so // we can modify the shared memory SEST. When frozen, // any received Exchange frames cannot be processed by // Tachyon, so they will be dumped in here. It is too // complex to attempt the reconstruct these frames in // the correct Exchange context, so we simply seek to // find status or transfer ready frames, and cause the // exchange to complete with errors before the timeout // expires. We use a Linux Scsi Cmnd result code that // causes immediate retry. // Do we have an open exchange that matches this s_id // and ox_id? for( x_ID = 0; x_ID < TACH_SEST_LEN; x_ID++) { if( (fchs->s_id & 0xFFFFFF) == (Exchanges->fcExchange[x_ID].fchs.d_id & 0xFFFFFF) && (fchs->ox_rx_id & 0xFFFF0000) == (Exchanges->fcExchange[x_ID].fchs.ox_rx_id & 0xFFFF0000) ) { // printk(" #R/X frame x_ID %08X# ", fchs->ox_rx_id ); // simulate the anticipated error - since the // SEST was frozen, frames were lost... Exchanges->fcExchange[ x_ID ].status |= SFQ_FRAME; // presumes device is still there: send ABTS. cpqfcTSPutLinkQue( cpqfcHBAdata, BLS_ABTS, &x_ID); break; // done } } } } else if( ucInboundMessageType == 3) { // FC Link Service frames (e.g. PLOGI, ACC) come in here. cpqfcTSPutLinkQue( cpqfcHBAdata, SFQ_UNKNOWN, ulFibreFrame); } else if( ucInboundMessageType == 2 ) // "bad FCP"? { #ifdef IMQ_DEBUG printk("Bad FCP incoming frame discarded\n"); #endif } else // don't know this type { #ifdef IMQ_DEBUG printk("Incoming frame discarded, type: %Xh\n", ucInboundMessageType); #endif } // Check the Frame Manager's error counters. We check them here // because presumably the link is up and healthy enough for the // counters to be meaningful (i.e., don't check them while loop // is initializing). fcChip->Registers.FMLinkStatus1.value = // get TL's counter readl(fcChip->Registers.FMLinkStatus1.address); fcChip->Registers.FMLinkStatus2.value = // get TL's counter readl(fcChip->Registers.FMLinkStatus2.address); break; // We get this CM because we issued a freeze // command to stop outbound frames. We issue the // freeze command at Link Up time; when this message // is received, the ERQ base can be switched and PDISC // frames can be sent. case ERQ_FROZEN_COMPLETION: // note: expect ERQ followed immediately // by FCP when freezing TL fcChip->Registers.TYstatus.value = // read what's frozen readl(fcChip->Registers.TYstatus.address); // (do nothing; wait for FCP frozen message) break; case FCP_FROZEN_COMPLETION: fcChip->Registers.TYstatus.value = // read what's frozen readl(fcChip->Registers.TYstatus.address); // Signal the kernel thread to proceed with SEST modification up( cpqfcHBAdata->TachFrozen); break; case INBOUND_C1_TIMEOUT: case MFS_BUF_WARN: case IMQ_BUF_WARN: break; // In older Tachyons, we 'clear' the internal 'core' interrupt state // by reading the FMstatus register. In newer TachLite (Tachyon), // we must WRITE the register // to clear the condition (TL/TS UG, pg 179) case FRAME_MGR_INTERRUPT: { PFC_LOGGEDIN_PORT pLoggedInPort; fcChip->Registers.FMstatus.value = readl( fcChip->Registers.FMstatus.address ); // PROBLEM: It is possible, especially with "dumb" hubs that // don't automatically LIP on by-pass of ports that are going // away, for the hub by-pass process to destroy critical // ordered sets of a frame. The result of this is a hung LPSM // (Loop Port State Machine), which on Tachyon results in a // (default 2 sec) Loop State Timeout (LST) FM message. We // want to avoid this relatively huge timeout by detecting // likely scenarios which will result in LST. // To do this, we could examine FMstatus for Loss of Synchronization // and/or Elastic Store (ES) errors. Of these, Elastic Store is better // because we get this indication more quickly than the LOS. // Not all ES errors are harmfull, so we don't want to LIP on every // ES. Instead, on every ES, detect whether our LPSM in in one // of the LST states: ARBITRATING, OPEN, OPENED, XMITTED CLOSE, // or RECEIVED CLOSE. (See TL/TS UG, pg. 181) // If any of these LPSM states are detected // in combination with the LIP while LDn is not set, // send an FM init (LIP F7,F7 for loops)! // It is critical to the physical link stability NOT to reset (LIP) // more than absolutely necessary; this is a basic premise of the // SANMark level 1 spec. { ULONG Lpsm = (fcChip->Registers.FMstatus.value & 0xF0) >>4; if( (fcChip->Registers.FMstatus.value & 0x400) // ElasticStore? && !(fcChip->Registers.FMstatus.value & 0x100) // NOT LDn && !(fcChip->Registers.FMstatus.value & 0x1000)) // NOT LF { if( (Lpsm != 0) || // not MONITORING? or !(Lpsm & 0x8) )// not already offline? { // now check the particular LST states... if( (Lpsm == ARBITRATING) || (Lpsm == OPEN) || (Lpsm == OPENED) || (Lpsm == XMITTD_CLOSE) || (Lpsm == RCVD_CLOSE) ) { // re-init the loop before it hangs itself! printk(" #req FMinit on E-S: LPSM %Xh# ",Lpsm); fcChip->fcStats.FMinits++; writel( 6, fcChip->Registers.FMcontrol.address); // LIP } } } else if( fcChip->Registers.FMstatus.value & 0x40000 ) // LST? { printk(" #req FMinit on LST, LPSM %Xh# ",Lpsm); fcChip->fcStats.FMinits++; writel( 6, fcChip->Registers.FMcontrol.address); // LIP } } // clear only the 'interrupting' type bits for this REG read writel( (fcChip->Registers.FMstatus.value & 0xff3fff00L), fcChip->Registers.FMstatus.address); // copy frame manager status to unused ULONG slot fcChip->IMQ->QEntry[fcChip->IMQ->consumerIndex].word[0] = fcChip->Registers.FMstatus.value; // (for debugging) // Load the Frame Manager's error counters. We check them here // because presumably the link is up and healthy enough for the // counters to be meaningful (i.e., don't check them while loop // is initializing). fcChip->Registers.FMLinkStatus1.value = // get TL's counter readl(fcChip->Registers.FMLinkStatus1.address); fcChip->Registers.FMLinkStatus2.value = // get TL's counter readl(fcChip->Registers.FMLinkStatus2.address); // Get FM BB_Credit Zero Reg - does not clear on READ fcChip->Registers.FMBB_CreditZero.value = // get TL's counter readl(fcChip->Registers.FMBB_CreditZero.address); fcParseLinkStatusCounters( fcChip); // load into 6 s/w accumulators // LINK DOWN if( fcChip->Registers.FMstatus.value & 0x100L ) // Link DOWN bit { #ifdef IMQ_DEBUG printk("LinkDn\n"); #endif printk(" #LDn# "); fcChip->fcStats.linkDown++; SetTachTOV( cpqfcHBAdata); // must set according to SANMark // Check the ERQ - force it to be "empty" to prevent Tach // from sending out frames before we do logins. if( fcChip->ERQ->producerIndex != fcChip->ERQ->consumerIndex) { // printk("#ERQ PI != CI#"); CpqTsFreezeTachlite( fcChip, 1); // freeze ERQ only fcChip->ERQ->producerIndex = fcChip->ERQ->consumerIndex = 0; writel( fcChip->ERQ->base, (fcChip->Registers.ReMapMemBase + TL_MEM_ERQ_BASE)); // re-writing base forces ERQ PI to equal CI } // link down transition occurred -- port_ids can change // on next LinkUp, so we must invalidate current logins // (and any I/O in progress) until PDISC or PLOGI/PRLI // completes { pLoggedInPort = &fcChip->fcPorts; while( pLoggedInPort ) // for all ports which are expecting // PDISC after the next LIP, set the // logoutTimer { if( pLoggedInPort->pdisc) // expecting PDISC within 2 sec? { pLoggedInPort->LOGO_timer = 3; // we want 2 seconds // but Timer granularity // is 1 second } // suspend any I/O in progress until // PDISC received... pLoggedInPort->prli = FALSE; // block FCP-SCSI commands pLoggedInPort = pLoggedInPort->pNextPort; } // ... all Previously known ports checked } // since any hot plugging device may NOT support LILP frames // (such as early Tachyon chips), clear this flag indicating // we shouldn't use (our copy of) a LILP map. // If we receive an LILP frame, we'll set it again. fcChip->Options.LILPin = 0; // our LILPmap is invalid cpqfcHBAdata->PortDiscDone = 0; // must re-validate FC ports! // also, we want to invalidate (i.e. INITIATOR_ABORT) any // open Login exchanges, in case the LinkDown happened in the // middle of logins. It's possible that some ports already // ACCepted login commands which we have not processed before // another LinkDown occurred. Any accepted Login exhanges are // invalidated by LinkDown, even before they are acknowledged. // It's also possible for a port to have a Queued Reply or Request // for login which was interrupted by LinkDown; it may come later, // but it will be unacceptable to us. // we must scan the entire exchange space, find every Login type // originated by us, and abort it. This is NOT an abort due to // timeout, so we don't actually send abort to the other port - // we just complete it to free up the fcExchange slot. for( i=TACH_SEST_LEN; i< TACH_MAX_XID; i++) { // looking for Extended Link Serv.Exchanges if( Exchanges->fcExchange[i].type == ELS_PDISC || Exchanges->fcExchange[i].type == ELS_PLOGI || Exchanges->fcExchange[i].type == ELS_PRLI ) { // ABORT the exchange! #ifdef IMQ_DEBUG printk("Originator ABORT x_id %Xh, type %Xh, port_id %Xh on LDn\n", i, Exchanges->fcExchange[i].type, Exchanges->fcExchange[i].fchs.d_id); #endif Exchanges->fcExchange[i].status |= INITIATOR_ABORT; cpqfcTSCompleteExchange( cpqfcHBAdata->PciDev, fcChip, i); // abort on LDn } } } // ################ LINK UP ################## if( fcChip->Registers.FMstatus.value & 0x200L ) // Link Up bit { // AL_PA could have changed // We need the following code, duplicated from LinkDn condition, // because it's possible for the Tachyon to re-initialize (hard // reset) without ever getting a LinkDn indication. pLoggedInPort = &fcChip->fcPorts; while( pLoggedInPort ) // for all ports which are expecting // PDISC after the next LIP, set the // logoutTimer { if( pLoggedInPort->pdisc) // expecting PDISC within 2 sec? { pLoggedInPort->LOGO_timer = 3; // we want 2 seconds // but Timer granularity // is 1 second // suspend any I/O in progress until // PDISC received... } pLoggedInPort = pLoggedInPort->pNextPort; } // ... all Previously known ports checked // CpqTs acquired AL_PA in register AL_PA (ACQ_ALPA) fcChip->Registers.rcv_al_pa.value = readl(fcChip->Registers.rcv_al_pa.address); // Now, if our acquired address is DIFFERENT from our // previous one, we are not allow to do PDISC - we // must go back to PLOGI, which will terminate I/O in // progress for ALL logged in FC devices... // (This is highly unlikely). if( (fcChip->Registers.my_al_pa & 0xFF) != ((fcChip->Registers.rcv_al_pa.value >> 16) &0xFF) ) { // printk(" #our HBA port_id changed!# "); // FC port_id changed!! pLoggedInPort = &fcChip->fcPorts; while( pLoggedInPort ) // for all ports which are expecting // PDISC after the next LIP, set the // logoutTimer { pLoggedInPort->pdisc = FALSE; pLoggedInPort->prli = FALSE; pLoggedInPort = pLoggedInPort->pNextPort; } // ... all Previously known ports checked // when the port_id changes, we must terminate // all open exchanges. cpqfcTSTerminateExchange( cpqfcHBAdata, NULL, PORTID_CHANGED); } // Replace the entire 24-bit port_id. We only know the // lower 8 bits (alpa) from Tachyon; if a FLOGI is done, // we'll get the upper 16-bits from the FLOGI ACC frame. // If someone plugs into Fabric switch, we'll do FLOGI and // get full 24-bit port_id; someone could then remove and // hot-plug us into a dumb hub. If we send a 24-bit PLOGI // to a "private" loop device, it might blow up. // Consequently, we force the upper 16-bits of port_id to // be re-set on every LinkUp transition fcChip->Registers.my_al_pa = (fcChip->Registers.rcv_al_pa.value >> 16) & 0xFF; // copy frame manager status to unused ULONG slot fcChip->IMQ->QEntry[fcChip->IMQ->consumerIndex].word[1] = fcChip->Registers.my_al_pa; // (for debugging) // for TachLite, we need to write the acquired al_pa // back into the FMconfig register, because after // first initialization, the AQ (prev. acq.) bit gets // set, causing TL FM to use the AL_PA field in FMconfig. // (In Tachyon, FM writes the acquired AL_PA for us.) ulBuff = readl( fcChip->Registers.FMconfig.address); ulBuff &= 0x00ffffffL; // mask out current al_pa ulBuff |= ( fcChip->Registers.my_al_pa << 24 ); // or in acq. al_pa fcChip->Registers.FMconfig.value = ulBuff; // copy it back writel( fcChip->Registers.FMconfig.value, // put in TachLite fcChip->Registers.FMconfig.address); #ifdef IMQ_DEBUG printk("#LUp %Xh, FMstat 0x%08X#", fcChip->Registers.my_al_pa, fcChip->Registers.FMstatus.value); #endif // also set the WRITE-ONLY My_ID Register (for Fabric // initialization) writel( fcChip->Registers.my_al_pa, fcChip->Registers.ReMapMemBase +TL_MEM_TACH_My_ID); fcChip->fcStats.linkUp++; // reset TL statistics counters // (we ignore these error counters // while link is down) ulBuff = // just reset TL's counter readl( fcChip->Registers.FMLinkStatus1.address); ulBuff = // just reset TL's counter readl( fcChip->Registers.FMLinkStatus2.address); // for initiator, need to start verifying ports (e.g. PDISC) CpqTsUnFreezeTachlite( fcChip, 2); // unfreeze Tachlite, if Link OK // Tachyon creates an interesting problem for us on LILP frames. // Instead of writing the incoming LILP frame into the SFQ before // indicating LINK UP (the actual order of events), Tachyon tells // us LINK UP, and later us the LILP. So we delay, then examine the // IMQ for an Inbound CM (x04); if found, we can set // LINKACTIVE after processing the LILP. Otherwise, just proceed. // Since Tachyon imposes this time delay (and doesn't tell us // what it is), we have to impose a delay before "Peeking" the IMQ // for Tach hardware (DMA) delivery. // Processing LILP is required by SANMark udelay( 1000); // microsec delay waiting for LILP (if it comes) if( PeekIMQEntry( fcChip, ELS_LILP_FRAME) ) { // found SFQ LILP, which will post LINKACTIVE // printk("skipping LINKACTIVE post\n"); } else cpqfcTSPutLinkQue( cpqfcHBAdata, LINKACTIVE, ulFibreFrame); } // ******* Set Fabric Login indication ******** if( fcChip->Registers.FMstatus.value & 0x2000 ) { printk(" #Fabric# "); fcChip->Options.fabric = 1; } else fcChip->Options.fabric = 0; // ******* LIP(F8,x) or BAD AL_PA? ******** if( fcChip->Registers.FMstatus.value & 0x30000L ) { // copy the error AL_PAs fcChip->Registers.rcv_al_pa.value = readl(fcChip->Registers.rcv_al_pa.address); // Bad AL_PA? if( fcChip->Registers.FMstatus.value & 0x10000L ) { PFC_LOGGEDIN_PORT pLoggedInPort; // copy "BAD" al_pa field fcChip->IMQ->QEntry[fcChip->IMQ->consumerIndex].word[1] = (fcChip->Registers.rcv_al_pa.value & 0xff00L) >> 8; pLoggedInPort = fcFindLoggedInPort( fcChip, NULL, // DON'T search Scsi Nexus fcChip->IMQ->QEntry[fcChip->IMQ->consumerIndex].word[1], // port id NULL, // DON'T search linked list for FC WWN NULL); // DON'T care about end of list if( pLoggedInPort ) { // Just in case we got this BAD_ALPA because a device // quietly disappeared (can happen on non-managed hubs such // as the Vixel Rapport 1000), // do an Implicit Logout. We never expect this on a Logged // in port (but do expect it on port discovery). // (As a reasonable alternative, this could be changed to // simply start the implicit logout timer, giving the device // several seconds to "come back".) // printk(" #BAD alpa %Xh# ", fcChip->IMQ->QEntry[fcChip->IMQ->consumerIndex].word[1]); cpqfcTSImplicitLogout( cpqfcHBAdata, pLoggedInPort); } } // LIP(f8,x)? if( fcChip->Registers.FMstatus.value & 0x20000L ) { // for debugging, copy al_pa field fcChip->IMQ->QEntry[fcChip->IMQ->consumerIndex].word[2] = (fcChip->Registers.rcv_al_pa.value & 0xffL); // get the other port's al_pa // (one that sent LIP(F8,?) ) } } // Elastic store err if( fcChip->Registers.FMstatus.value & 0x400L ) { // don't count e-s if loop is down! if( !(USHORT)(fcChip->Registers.FMstatus.value & 0x80) ) fcChip->fcStats.e_stores++; } } break; case INBOUND_FCP_XCHG_COMPLETION: // 0x0C // Remarks: // On Tachlite TL/TS, we get this message when the data phase // of a SEST inbound transfer is complete. For example, if a WRITE command // was received with OX_ID 0, we might respond with XFER_RDY with // RX_ID 8001. This would start the SEST controlled data phases. When // all data frames are received, we get this inbound completion. This means // we should send a status frame to complete the status phase of the // FCP-SCSI exchange, using the same OX_ID,RX_ID that we used for data // frames. // See Outbound CM discussion of x_IDs // Psuedo Code // Get SEST index (x_ID) // x_ID out of range, return (err condition) // set status bits from 2nd dword // free transactionID & SEST entry // call fcComplete with transactionID & status ulBuff = fcChip->IMQ->QEntry[fcChip->IMQ->consumerIndex].word[0]; x_ID = ulBuff & 0x7fffL; // lower 14 bits SEST_Index/Trans_ID // (mask out MSB "direction" bit) // Range check CM OX/RX_ID value... if( x_ID < TACH_SEST_LEN ) // don't go beyond SEST array space { //#define FCP_COMPLETION_DBG 1 #ifdef FCP_COMPLETION_DBG printk(" FCP_CM x_ID %Xh, status %Xh, Cmnd %p\n", x_ID, ulBuff, Exchanges->fcExchange[x_ID].Cmnd); #endif if( ulBuff & 0x08000000L ) // RPC -Response Phase Complete - or - // time to send response frame? RPCset = 1; // (SEST transaction) else RPCset = 0; // set the status for this Inbound SCSI transaction's ID dwStatus = 0L; if( ulBuff & 0x70000000L ) // any errs? { if( ulBuff & 0x40000000L ) dwStatus |= LINKFAIL_RX; if( ulBuff & 0x20000000L ) dwStatus |= COUNT_ERROR; if( ulBuff & 0x10000000L ) dwStatus |= OVERFLOW; } // FCP transaction done - copy status Exchanges->fcExchange[ x_ID ].status = dwStatus; // Did the exchange get an FCP-RSP response frame? // (Note the little endian/big endian FC payload difference) if( RPCset ) // SEST transaction Response frame rec'd { // complete the command in our driver... cpqfcTSCompleteExchange( cpqfcHBAdata->PciDev,fcChip, x_ID); } // end "RPCset" else // ("target" logic) { // Tachlite says all data frames have been received - now it's time // to analyze data transfer (successful?), then send a response // frame for this exchange ulFibreFrame[0] = x_ID; // copy for later reference // if this was a TWE, we have to send satus response if( Exchanges->fcExchange[ x_ID].type == SCSI_TWE ) { // fcPutScsiQue( cpqfcHBAdata, // NEED_FCP_RSP, ulFibreFrame); // (ulFibreFrame not used here) } } } else // ERROR CONDITION! bogus x_ID in completion message { printk("IN FCP_XCHG: bad x_ID: %Xh\n", x_ID); } break; case INBOUND_SCSI_DATA_COMMAND: case BAD_SCSI_FRAME: case INB_SCSI_STATUS_COMPLETION: case BUFFER_PROCESSED_COMPLETION: break; } // Tachyon is producing; // we are consuming fcChip->IMQ->consumerIndex++; // increment OUR consumerIndex if( fcChip->IMQ->consumerIndex >= IMQ_LEN)// check for rollover fcChip->IMQ->consumerIndex = 0L; // reset it if( fcChip->IMQ->producerIndex == fcChip->IMQ->consumerIndex ) { // all Messages are processed - iStatus = 0; // no more messages to process } else iStatus = 1; // more messages to process // update TachLite's ConsumerIndex... (clears INTA_L) // NOTE: according to TL/TS UG, the // "host must return completion messages in sequential order". // Does this mean one at a time, in the order received? We // presume so. writel( fcChip->IMQ->consumerIndex, (fcChip->Registers.ReMapMemBase + IMQ_CONSUMER_INDEX)); #if IMQ_DEBUG printk("Process IMQ: writing consumer ndx %d\n ", fcChip->IMQ->consumerIndex); printk("PI %X, CI %X\n", fcChip->IMQ->producerIndex,fcChip->IMQ->consumerIndex ); #endif } else { // hmmm... why did we get interrupted/called with no message? iStatus = -1; // nothing to process #if IMQ_DEBUG printk("Process IMQ: no message PI %Xh CI %Xh", fcChip->IMQ->producerIndex, fcChip->IMQ->consumerIndex); #endif } LEAVE("ProcessIMQEntry"); return iStatus; } // This routine initializes Tachyon according to the following // options (opcode1): // 1 - RESTART Tachyon, simulate power on condition by shutting // down laser, resetting the hardware, de-allocating all buffers; // continue // 2 - Config Tachyon / PCI registers; // continue // 3 - Allocating memory and setting Tachyon queues (write Tachyon regs); // continue // 4 - Config frame manager registers, initialize, turn on laser // // Returns: // -1 on fatal error // 0 on success int CpqTsInitializeTachLite( void *pHBA, int opcode1, int opcode2) { CPQFCHBA *cpqfcHBAdata = (CPQFCHBA*)pHBA; PTACHYON fcChip = &cpqfcHBAdata->fcChip; ULONG ulBuff; UCHAR bBuff; int iStatus=-1; // assume failure ENTER("InitializeTachLite"); // verify board's base address (sanity check) if( !fcChip->Registers.ReMapMemBase) // NULL address for card? return -1; // FATAL error! switch( opcode1 ) { case 1: // restore hardware to power-on (hard) restart iStatus = fcChip->ResetTachyon( cpqfcHBAdata, opcode2); // laser off, reset hardware // de-allocate aligned buffers /* TBD // reset FC link Q (producer and consumer = 0) fcLinkQReset(cpqfcHBAdata); */ if( iStatus ) break; case 2: // Config PCI/Tachyon registers // NOTE: For Tach TL/TS, bit 31 must be set to 1. For TS chips, a read // of bit 31 indicates state of M66EN signal; if 1, chip may run at // 33-66MHz (see TL/TS UG, pg 159) ulBuff = 0x80000000; // TachLite Configuration Register writel( ulBuff, fcChip->Registers.TYconfig.address); // ulBuff = 0x0147L; // CpqTs PCI CFGCMD register // WritePCIConfiguration( fcChip->Backplane.bus, // fcChip->Backplane.slot, TLCFGCMD, ulBuff, 4); // ulBuff = 0x0L; // test! // ReadPCIConfiguration( fcChip->Backplane.bus, // fcChip->Backplane.slot, TLCFGCMD, &ulBuff, 4); // read back for reference... fcChip->Registers.TYconfig.value = readl( fcChip->Registers.TYconfig.address ); // what is the PCI bus width? pci_read_config_byte( cpqfcHBAdata->PciDev, 0x43, // PCIMCTR offset &bBuff); fcChip->Registers.PCIMCTR = bBuff; // set string identifying the chip on the circuit board fcChip->Registers.TYstatus.value = readl( fcChip->Registers.TYstatus.address); { // Now that we are supporting multiple boards, we need to change // this logic to check for PCI vendor/device IDs... // for now, quick & dirty is simply checking Chip rev ULONG RevId = (fcChip->Registers.TYstatus.value &0x3E0)>>5; UCHAR Minor = (UCHAR)(RevId & 0x3); UCHAR Major = (UCHAR)((RevId & 0x1C) >>2); /* printk(" HBA Tachyon RevId %d.%d\n", Major, Minor); */ if( (Major == 1) && (Minor == 2) ) { sprintf( cpqfcHBAdata->fcChip.Name, STACHLITE66_TS12); } else if( (Major == 1) && (Minor == 3) ) { sprintf( cpqfcHBAdata->fcChip.Name, STACHLITE66_TS13); } else if( (Major == 2) && (Minor == 1) ) { sprintf( cpqfcHBAdata->fcChip.Name, SAGILENT_XL2_21); } else sprintf( cpqfcHBAdata->fcChip.Name, STACHLITE_UNKNOWN); } case 3: // allocate mem, set Tachyon Que registers iStatus = CpqTsCreateTachLiteQues( cpqfcHBAdata, opcode2); if( iStatus ) break; // now that the Queues exist, Tach can DMA to them, so // we can begin processing INTs // INTEN register - enable INT (TachLite interrupt) writeb( 0x1F, fcChip->Registers.ReMapMemBase + IINTEN); // Fall through case 4: // Config Fame Manager, Init Loop Command, laser on // L_PORT or loopback // depending on Options iStatus = CpqTsInitializeFrameManager( fcChip,0 ); if( iStatus ) { // failed to initialize Frame Manager break; } default: break; } LEAVE("InitializeTachLite"); return iStatus; } // Depending on the type of platform memory allocation (e.g. dynamic), // it's probably best to free memory in opposite order as it was allocated. // Order of allocation: see other function int CpqTsDestroyTachLiteQues( void *pHBA, int opcode) { CPQFCHBA *cpqfcHBAdata = (CPQFCHBA*)pHBA; PTACHYON fcChip = &cpqfcHBAdata->fcChip; USHORT i, iStatus=0; void* vPtr; // mem Align manager sets this to the freed address on success unsigned long ulPtr; // for 64-bit pointer cast (e.g. Alpa machine) FC_EXCHANGES *Exchanges = fcChip->Exchanges; PSGPAGES j, next; ENTER("DestroyTachLiteQues"); if( fcChip->SEST ) { // search out and free Pool for Extended S/G list pages for( i=0; i < TACH_SEST_LEN; i++) // for each exchange { // It's possible that extended S/G pages were allocated, mapped, and // not cleared due to error conditions or O/S driver termination. // Make sure they're all gone. if (Exchanges->fcExchange[i].Cmnd != NULL) cpqfc_pci_unmap(cpqfcHBAdata->PciDev, Exchanges->fcExchange[i].Cmnd, fcChip, i); // undo DMA mappings. for (j=fcChip->SEST->sgPages[i] ; j != NULL ; j = next) { next = j->next; kfree(j); } fcChip->SEST->sgPages[i] = NULL; } ulPtr = (unsigned long)fcChip->SEST; vPtr = fcMemManager( cpqfcHBAdata->PciDev, &cpqfcHBAdata->dynamic_mem[0], 0,0, (ULONG)ulPtr, NULL ); // 'free' mem fcChip->SEST = 0L; // null invalid ptr if( !vPtr ) { printk("SEST mem not freed\n"); iStatus = -1; } } if( fcChip->SFQ ) { ulPtr = (unsigned long)fcChip->SFQ; vPtr = fcMemManager( cpqfcHBAdata->PciDev, &cpqfcHBAdata->dynamic_mem[0], 0,0, (ULONG)ulPtr, NULL ); // 'free' mem fcChip->SFQ = 0L; // null invalid ptr if( !vPtr ) { printk("SFQ mem not freed\n"); iStatus = -2; } } if( fcChip->IMQ ) { // clear Indexes to show empty Queue fcChip->IMQ->producerIndex = 0; fcChip->IMQ->consumerIndex = 0; ulPtr = (unsigned long)fcChip->IMQ; vPtr = fcMemManager( cpqfcHBAdata->PciDev, &cpqfcHBAdata->dynamic_mem[0], 0,0, (ULONG)ulPtr, NULL ); // 'free' mem fcChip->IMQ = 0L; // null invalid ptr if( !vPtr ) { printk("IMQ mem not freed\n"); iStatus = -3; } } if( fcChip->ERQ ) // release memory blocks used by the queues { ulPtr = (unsigned long)fcChip->ERQ; vPtr = fcMemManager( cpqfcHBAdata->PciDev, &cpqfcHBAdata->dynamic_mem[0], 0,0, (ULONG)ulPtr, NULL ); // 'free' mem fcChip->ERQ = 0L; // null invalid ptr if( !vPtr ) { printk("ERQ mem not freed\n"); iStatus = -4; } } // free up the primary EXCHANGES struct and Link Q cpqfc_free_dma_consistent(cpqfcHBAdata); LEAVE("DestroyTachLiteQues"); return iStatus; // non-zero (failed) if any memory not freed } // The SFQ is an array with SFQ_LEN length, each element (QEntry) // with eight 32-bit words. TachLite places incoming FC frames (i.e. // a valid FC frame with our AL_PA ) in contiguous SFQ entries // and sends a completion message telling the host where the frame is // in the que. // This function copies the current (or oldest not-yet-processed) QEntry to // a caller's contiguous buffer and updates the Tachyon chip's consumer index // // NOTE: // An FC frame may consume one or many SFQ entries. We know the total // length from the completion message. The caller passes a buffer large // enough for the complete message (max 2k). static void CpqTsGetSFQEntry( PTACHYON fcChip, USHORT producerNdx, ULONG *ulDestPtr, // contiguous destination buffer BOOLEAN UpdateChip) { ULONG total_bytes=0; ULONG consumerIndex = fcChip->SFQ->consumerIndex; // check passed copy of SFQ producer index - // is a new message waiting for us? // equal indexes means SFS is copied while( producerNdx != consumerIndex ) { // need to process message total_bytes += 64; // maintain count to prevent writing past buffer // don't allow copies over Fibre Channel defined length! if( total_bytes <= 2048 ) { memcpy( ulDestPtr, &fcChip->SFQ->QEntry[consumerIndex], 64 ); // each SFQ entry is 64 bytes ulDestPtr += 16; // advance pointer to next 64 byte block } // Tachyon is producing, // and we are consuming if( ++consumerIndex >= SFQ_LEN)// check for rollover consumerIndex = 0L; // reset it } // if specified, update the Tachlite chip ConsumerIndex... if( UpdateChip ) { fcChip->SFQ->consumerIndex = consumerIndex; writel( fcChip->SFQ->consumerIndex, fcChip->Registers.SFQconsumerIndex.address); } } // TachLite routinely freezes it's core ques - Outbound FIFO, Inbound FIFO, // and Exchange Request Queue (ERQ) on error recover - // (e.g. whenever a LIP occurs). Here // we routinely RESUME by clearing these bits, but only if the loop is up // to avoid ERROR IDLE messages forever. void CpqTsUnFreezeTachlite( void *pChip, int type ) { PTACHYON fcChip = (PTACHYON)pChip; fcChip->Registers.TYcontrol.value = readl(fcChip->Registers.TYcontrol.address); // (bit 4 of value is GBIC LASER) // if we 'unfreeze' the core machines before the loop is healthy // (i.e. FLT, OS, LS failure bits set in FMstatus) // we can get 'error idle' messages forever. Verify that // FMstatus (Link Status) is OK before unfreezing. if( !(fcChip->Registers.FMstatus.value & 0x07000000L) && // bits clear? !(fcChip->Registers.FMstatus.value & 0x80 )) // Active LPSM? { fcChip->Registers.TYcontrol.value &= ~0x300L; // clear FEQ, FFA if( type == 1 ) // unfreeze ERQ only { // printk("Unfreezing ERQ\n"); fcChip->Registers.TYcontrol.value |= 0x10000L; // set REQ } else // unfreeze both ERQ and FCP-ASSIST (SEST) { // printk("Unfreezing ERQ & FCP-ASSIST\n"); // set ROF, RIF, REQ - resume Outbound FCP, Inbnd FCP, ERQ fcChip->Registers.TYcontrol.value |= 0x70000L; // set ROF, RIF, REQ } writel( fcChip->Registers.TYcontrol.value, fcChip->Registers.TYcontrol.address); } // readback for verify (TachLite still frozen?) fcChip->Registers.TYstatus.value = readl(fcChip->Registers.TYstatus.address); } // Whenever an FC Exchange Abort is required, we must manipulate the // Host/Tachyon shared memory SEST table. Before doing this, we // must freeze Tachyon, which flushes certain buffers and ensure we // can manipulate the SEST without contention. // This freeze function will result in FCP & ERQ FROZEN completion // messages (per argument "type"). void CpqTsFreezeTachlite( void *pChip, int type ) { PTACHYON fcChip = (PTACHYON)pChip; fcChip->Registers.TYcontrol.value = readl(fcChip->Registers.TYcontrol.address); //set FFA, FEQ - freezes SCSI assist and ERQ if( type == 1) // freeze ERQ only fcChip->Registers.TYcontrol.value |= 0x100L; // (bit 4 is laser) else // freeze both FCP assists (SEST) and ERQ fcChip->Registers.TYcontrol.value |= 0x300L; // (bit 4 is laser) writel( fcChip->Registers.TYcontrol.value, fcChip->Registers.TYcontrol.address); } // TL has two Frame Manager Link Status Registers, with three 8-bit // fields each. These eight bit counters are cleared after each read, // so we define six 32-bit accumulators for these TL counters. This // function breaks out each 8-bit field and adds the value to the existing // sum. (s/w counters cleared independently) void fcParseLinkStatusCounters(PTACHYON fcChip) { UCHAR bBuff; ULONG ulBuff; // The BB0 timer usually increments when TL is initialized, resulting // in an initially bogus count. If our own counter is ZERO, it means we // are reading this thing for the first time, so we ignore the first count. // Also, reading the register does not clear it, so we have to keep an // additional static counter to detect rollover (yuk). if( fcChip->fcStats.lastBB0timer == 0L) // TL was reset? (ignore 1st values) { // get TL's register counter - the "last" count fcChip->fcStats.lastBB0timer = fcChip->Registers.FMBB_CreditZero.value & 0x00ffffffL; } else // subsequent pass - check for rollover { // "this" count ulBuff = fcChip->Registers.FMBB_CreditZero.value & 0x00ffffffL; if( fcChip->fcStats.lastBB0timer > ulBuff ) // rollover happened { // counter advanced to max... fcChip->fcStats.BB0_Timer += (0x00FFFFFFL - fcChip->fcStats.lastBB0timer); fcChip->fcStats.BB0_Timer += ulBuff; // plus some more } else // no rollover -- more counts or no change { fcChip->fcStats.BB0_Timer += (ulBuff - fcChip->fcStats.lastBB0timer); } fcChip->fcStats.lastBB0timer = ulBuff; } bBuff = (UCHAR)(fcChip->Registers.FMLinkStatus1.value >> 24); fcChip->fcStats.LossofSignal += bBuff; bBuff = (UCHAR)(fcChip->Registers.FMLinkStatus1.value >> 16); fcChip->fcStats.BadRXChar += bBuff; bBuff = (UCHAR)(fcChip->Registers.FMLinkStatus1.value >> 8); fcChip->fcStats.LossofSync += bBuff; bBuff = (UCHAR)(fcChip->Registers.FMLinkStatus2.value >> 24); fcChip->fcStats.Rx_EOFa += bBuff; bBuff = (UCHAR)(fcChip->Registers.FMLinkStatus2.value >> 16); fcChip->fcStats.Dis_Frm += bBuff; bBuff = (UCHAR)(fcChip->Registers.FMLinkStatus2.value >> 8); fcChip->fcStats.Bad_CRC += bBuff; } void cpqfcTSClearLinkStatusCounters(PTACHYON fcChip) { ENTER("ClearLinkStatusCounters"); memset( &fcChip->fcStats, 0, sizeof( FCSTATS)); LEAVE("ClearLinkStatusCounters"); } // The following function reads the I2C hardware to get the adapter's // World Wide Name (WWN). // If the WWN is "500805f1fadb43e8" (as printed on the card), the // Tachyon WWN_hi (32-bit) register is 500805f1, and WWN_lo register // is fadb43e8. // In the NVRAM, the bytes appear as: // [2d] .. // [2e] .. // [2f] 50 // [30] 08 // [31] 05 // [32] f1 // [33] fa // [34] db // [35] 43 // [36] e8 // // In the Fibre Channel (Big Endian) format, the FC-AL LISM frame will // be correctly loaded by Tachyon silicon. In the login payload, bytes // must be correctly swapped for Big Endian format. int CpqTsReadWriteWWN( PVOID pChip, int Read) { PTACHYON fcChip = (PTACHYON)pChip; #define NVRAM_SIZE 512 unsigned short i, count = NVRAM_SIZE; UCHAR nvRam[NVRAM_SIZE], WWNbuf[8]; ULONG ulBuff; int iStatus=-1; // assume failure int WWNoffset; ENTER("ReadWriteWWN"); // Now try to read the WWN from the adapter's NVRAM if( Read ) // READing NVRAM WWN? { ulBuff = cpqfcTS_ReadNVRAM( fcChip->Registers.TYstatus.address, fcChip->Registers.TYcontrol.address, count, &nvRam[0] ); if( ulBuff ) // NVRAM read successful? { iStatus = 0; // success! // for engineering/ prototype boards, the data may be // invalid (GIGO, usually all "FF"); this prevents the // parse routine from working correctly, which means // nothing will be written to our passed buffer. WWNoffset = cpqfcTS_GetNVRAM_data( WWNbuf, nvRam ); if( !WWNoffset ) // uninitialized NVRAM -- copy bytes directly { printk( "CAUTION: Copying NVRAM data on fcChip\n"); for( i= 0; i < 8; i++) WWNbuf[i] = nvRam[i +0x2f]; // dangerous! some formats won't work } fcChip->Registers.wwn_hi = 0L; fcChip->Registers.wwn_lo = 0L; for( i=0; i<4; i++) // WWN bytes are big endian in NVRAM { ulBuff = 0L; ulBuff = (ULONG)(WWNbuf[i]) << (8 * (3-i)); fcChip->Registers.wwn_hi |= ulBuff; } for( i=0; i<4; i++) // WWN bytes are big endian in NVRAM { ulBuff = 0L; ulBuff = (ULONG)(WWNbuf[i+4]) << (8 * (3-i)); fcChip->Registers.wwn_lo |= ulBuff; } } // done reading else { printk( "cpqfcTS: NVRAM read failed\n"); } } else // WRITE { // NOTE: WRITE not supported & not used in released driver. printk("ReadWriteNRAM: can't write NVRAM; aborting write\n"); } LEAVE("ReadWriteWWN"); return iStatus; } // The following function reads or writes the entire "NVRAM" contents of // the I2C hardware (i.e. the NM24C03). Note that HP's 5121A (TS 66Mhz) // adapter does not use the NM24C03 chip, so this function only works on // Compaq's adapters. int CpqTsReadWriteNVRAM( PVOID pChip, PVOID buf, int Read) { PTACHYON fcChip = (PTACHYON)pChip; #define NVRAM_SIZE 512 ULONG ulBuff; UCHAR *ucPtr = buf; // cast caller's void ptr to UCHAR array int iStatus=-1; // assume failure if( Read ) // READing NVRAM? { ulBuff = cpqfcTS_ReadNVRAM( // TRUE on success fcChip->Registers.TYstatus.address, fcChip->Registers.TYcontrol.address, 256, // bytes to write ucPtr ); // source ptr if( ulBuff ) iStatus = 0; // success else { #ifdef DBG printk( "CAUTION: NVRAM read failed\n"); #endif } } // done reading else // WRITING NVRAM { printk("cpqfcTS: WRITE of FC Controller's NVRAM disabled\n"); } return iStatus; } |