Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 | /* * arch/sh/kernel/time.c * * Copyright (C) 1999 Tetsuya Okada & Niibe Yutaka * Copyright (C) 2000 Philipp Rumpf <prumpf@tux.org> * Copyright (C) 2002 - 2006 Paul Mundt * Copyright (C) 2002 M. R. Brown <mrbrown@linux-sh.org> * * Some code taken from i386 version. * Copyright (C) 1991, 1992, 1995 Linus Torvalds */ #include <linux/kernel.h> #include <linux/module.h> #include <linux/init.h> #include <linux/profile.h> #include <asm/clock.h> #include <asm/rtc.h> #include <asm/timer.h> #include <asm/kgdb.h> struct sys_timer *sys_timer; /* Move this somewhere more sensible.. */ DEFINE_SPINLOCK(rtc_lock); EXPORT_SYMBOL(rtc_lock); /* Dummy RTC ops */ static void null_rtc_get_time(struct timespec *tv) { tv->tv_sec = mktime(2000, 1, 1, 0, 0, 0); tv->tv_nsec = 0; } static int null_rtc_set_time(const time_t secs) { return 0; } void (*rtc_sh_get_time)(struct timespec *) = null_rtc_get_time; int (*rtc_sh_set_time)(const time_t) = null_rtc_set_time; /* * Scheduler clock - returns current time in nanosec units. */ unsigned long long __attribute__ ((weak)) sched_clock(void) { return (unsigned long long)jiffies * (1000000000 / HZ); } #ifndef CONFIG_GENERIC_TIME void do_gettimeofday(struct timeval *tv) { unsigned long seq; unsigned long usec, sec; do { seq = read_seqbegin(&xtime_lock); usec = get_timer_offset(); sec = xtime.tv_sec; usec += xtime.tv_nsec / 1000; } while (read_seqretry(&xtime_lock, seq)); while (usec >= 1000000) { usec -= 1000000; sec++; } tv->tv_sec = sec; tv->tv_usec = usec; } EXPORT_SYMBOL(do_gettimeofday); int do_settimeofday(struct timespec *tv) { time_t wtm_sec, sec = tv->tv_sec; long wtm_nsec, nsec = tv->tv_nsec; if ((unsigned long)tv->tv_nsec >= NSEC_PER_SEC) return -EINVAL; write_seqlock_irq(&xtime_lock); /* * This is revolting. We need to set "xtime" correctly. However, the * value in this location is the value at the most recent update of * wall time. Discover what correction gettimeofday() would have * made, and then undo it! */ nsec -= 1000 * get_timer_offset(); wtm_sec = wall_to_monotonic.tv_sec + (xtime.tv_sec - sec); wtm_nsec = wall_to_monotonic.tv_nsec + (xtime.tv_nsec - nsec); set_normalized_timespec(&xtime, sec, nsec); set_normalized_timespec(&wall_to_monotonic, wtm_sec, wtm_nsec); ntp_clear(); write_sequnlock_irq(&xtime_lock); clock_was_set(); return 0; } EXPORT_SYMBOL(do_settimeofday); #endif /* !CONFIG_GENERIC_TIME */ /* last time the RTC clock got updated */ static long last_rtc_update; /* * handle_timer_tick() needs to keep up the real-time clock, * as well as call the "do_timer()" routine every clocktick */ void handle_timer_tick(void) { do_timer(1); #ifndef CONFIG_SMP update_process_times(user_mode(get_irq_regs())); #endif if (current->pid) profile_tick(CPU_PROFILING); #ifdef CONFIG_HEARTBEAT if (sh_mv.mv_heartbeat != NULL) sh_mv.mv_heartbeat(); #endif /* * If we have an externally synchronized Linux clock, then update * RTC clock accordingly every ~11 minutes. Set_rtc_mmss() has to be * called as close as possible to 500 ms before the new second starts. */ if (ntp_synced() && xtime.tv_sec > last_rtc_update + 660 && (xtime.tv_nsec / 1000) >= 500000 - ((unsigned) TICK_SIZE) / 2 && (xtime.tv_nsec / 1000) <= 500000 + ((unsigned) TICK_SIZE) / 2) { if (rtc_sh_set_time(xtime.tv_sec) == 0) last_rtc_update = xtime.tv_sec; else /* do it again in 60s */ last_rtc_update = xtime.tv_sec - 600; } } #ifdef CONFIG_PM int timer_suspend(struct sys_device *dev, pm_message_t state) { struct sys_timer *sys_timer = container_of(dev, struct sys_timer, dev); sys_timer->ops->stop(); return 0; } int timer_resume(struct sys_device *dev) { struct sys_timer *sys_timer = container_of(dev, struct sys_timer, dev); sys_timer->ops->start(); return 0; } #else #define timer_suspend NULL #define timer_resume NULL #endif static struct sysdev_class timer_sysclass = { set_kset_name("timer"), .suspend = timer_suspend, .resume = timer_resume, }; static int __init timer_init_sysfs(void) { int ret = sysdev_class_register(&timer_sysclass); if (ret != 0) return ret; sys_timer->dev.cls = &timer_sysclass; return sysdev_register(&sys_timer->dev); } device_initcall(timer_init_sysfs); void (*board_time_init)(void); void __init time_init(void) { if (board_time_init) board_time_init(); clk_init(); rtc_sh_get_time(&xtime); set_normalized_timespec(&wall_to_monotonic, -xtime.tv_sec, -xtime.tv_nsec); /* * Find the timer to use as the system timer, it will be * initialized for us. */ sys_timer = get_sys_timer(); printk(KERN_INFO "Using %s for system timer\n", sys_timer->name); #if defined(CONFIG_SH_KGDB) /* * Set up kgdb as requested. We do it here because the serial * init uses the timer vars we just set up for figuring baud. */ kgdb_init(); #endif } |