Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 | /* * This file is subject to the terms and conditions of the GNU General Public * License. See the file "COPYING" in the main directory of this archive * for more details. * * arch/sh64/kernel/process.c * * Copyright (C) 2000, 2001 Paolo Alberelli * Copyright (C) 2003 Paul Mundt * Copyright (C) 2003, 2004 Richard Curnow * * Started from SH3/4 version: * Copyright (C) 1999, 2000 Niibe Yutaka & Kaz Kojima * * In turn started from i386 version: * Copyright (C) 1995 Linus Torvalds * */ /* * This file handles the architecture-dependent parts of process handling.. */ #include <linux/mm.h> #include <linux/ptrace.h> #include <linux/reboot.h> #include <linux/init.h> #include <linux/module.h> #include <asm/uaccess.h> #include <asm/pgtable.h> struct task_struct *last_task_used_math = NULL; static int hlt_counter = 1; #define HARD_IDLE_TIMEOUT (HZ / 3) void disable_hlt(void) { hlt_counter++; } void enable_hlt(void) { hlt_counter--; } static int __init nohlt_setup(char *__unused) { hlt_counter = 1; return 1; } static int __init hlt_setup(char *__unused) { hlt_counter = 0; return 1; } __setup("nohlt", nohlt_setup); __setup("hlt", hlt_setup); static inline void hlt(void) { __asm__ __volatile__ ("sleep" : : : "memory"); } /* * The idle loop on a uniprocessor SH.. */ void cpu_idle(void) { /* endless idle loop with no priority at all */ while (1) { if (hlt_counter) { while (!need_resched()) cpu_relax(); } else { local_irq_disable(); while (!need_resched()) { local_irq_enable(); hlt(); local_irq_disable(); } local_irq_enable(); } preempt_enable_no_resched(); schedule(); preempt_disable(); } } void machine_restart(char * __unused) { extern void phys_stext(void); phys_stext(); } void machine_halt(void) { for (;;); } void machine_power_off(void) { extern void enter_deep_standby(void); enter_deep_standby(); } void (*pm_power_off)(void) = machine_power_off; EXPORT_SYMBOL(pm_power_off); void show_regs(struct pt_regs * regs) { unsigned long long ah, al, bh, bl, ch, cl; printk("\n"); ah = (regs->pc) >> 32; al = (regs->pc) & 0xffffffff; bh = (regs->regs[18]) >> 32; bl = (regs->regs[18]) & 0xffffffff; ch = (regs->regs[15]) >> 32; cl = (regs->regs[15]) & 0xffffffff; printk("PC : %08Lx%08Lx LINK: %08Lx%08Lx SP : %08Lx%08Lx\n", ah, al, bh, bl, ch, cl); ah = (regs->sr) >> 32; al = (regs->sr) & 0xffffffff; asm volatile ("getcon " __TEA ", %0" : "=r" (bh)); asm volatile ("getcon " __TEA ", %0" : "=r" (bl)); bh = (bh) >> 32; bl = (bl) & 0xffffffff; asm volatile ("getcon " __KCR0 ", %0" : "=r" (ch)); asm volatile ("getcon " __KCR0 ", %0" : "=r" (cl)); ch = (ch) >> 32; cl = (cl) & 0xffffffff; printk("SR : %08Lx%08Lx TEA : %08Lx%08Lx KCR0: %08Lx%08Lx\n", ah, al, bh, bl, ch, cl); ah = (regs->regs[0]) >> 32; al = (regs->regs[0]) & 0xffffffff; bh = (regs->regs[1]) >> 32; bl = (regs->regs[1]) & 0xffffffff; ch = (regs->regs[2]) >> 32; cl = (regs->regs[2]) & 0xffffffff; printk("R0 : %08Lx%08Lx R1 : %08Lx%08Lx R2 : %08Lx%08Lx\n", ah, al, bh, bl, ch, cl); ah = (regs->regs[3]) >> 32; al = (regs->regs[3]) & 0xffffffff; bh = (regs->regs[4]) >> 32; bl = (regs->regs[4]) & 0xffffffff; ch = (regs->regs[5]) >> 32; cl = (regs->regs[5]) & 0xffffffff; printk("R3 : %08Lx%08Lx R4 : %08Lx%08Lx R5 : %08Lx%08Lx\n", ah, al, bh, bl, ch, cl); ah = (regs->regs[6]) >> 32; al = (regs->regs[6]) & 0xffffffff; bh = (regs->regs[7]) >> 32; bl = (regs->regs[7]) & 0xffffffff; ch = (regs->regs[8]) >> 32; cl = (regs->regs[8]) & 0xffffffff; printk("R6 : %08Lx%08Lx R7 : %08Lx%08Lx R8 : %08Lx%08Lx\n", ah, al, bh, bl, ch, cl); ah = (regs->regs[9]) >> 32; al = (regs->regs[9]) & 0xffffffff; bh = (regs->regs[10]) >> 32; bl = (regs->regs[10]) & 0xffffffff; ch = (regs->regs[11]) >> 32; cl = (regs->regs[11]) & 0xffffffff; printk("R9 : %08Lx%08Lx R10 : %08Lx%08Lx R11 : %08Lx%08Lx\n", ah, al, bh, bl, ch, cl); ah = (regs->regs[12]) >> 32; al = (regs->regs[12]) & 0xffffffff; bh = (regs->regs[13]) >> 32; bl = (regs->regs[13]) & 0xffffffff; ch = (regs->regs[14]) >> 32; cl = (regs->regs[14]) & 0xffffffff; printk("R12 : %08Lx%08Lx R13 : %08Lx%08Lx R14 : %08Lx%08Lx\n", ah, al, bh, bl, ch, cl); ah = (regs->regs[16]) >> 32; al = (regs->regs[16]) & 0xffffffff; bh = (regs->regs[17]) >> 32; bl = (regs->regs[17]) & 0xffffffff; ch = (regs->regs[19]) >> 32; cl = (regs->regs[19]) & 0xffffffff; printk("R16 : %08Lx%08Lx R17 : %08Lx%08Lx R19 : %08Lx%08Lx\n", ah, al, bh, bl, ch, cl); ah = (regs->regs[20]) >> 32; al = (regs->regs[20]) & 0xffffffff; bh = (regs->regs[21]) >> 32; bl = (regs->regs[21]) & 0xffffffff; ch = (regs->regs[22]) >> 32; cl = (regs->regs[22]) & 0xffffffff; printk("R20 : %08Lx%08Lx R21 : %08Lx%08Lx R22 : %08Lx%08Lx\n", ah, al, bh, bl, ch, cl); ah = (regs->regs[23]) >> 32; al = (regs->regs[23]) & 0xffffffff; bh = (regs->regs[24]) >> 32; bl = (regs->regs[24]) & 0xffffffff; ch = (regs->regs[25]) >> 32; cl = (regs->regs[25]) & 0xffffffff; printk("R23 : %08Lx%08Lx R24 : %08Lx%08Lx R25 : %08Lx%08Lx\n", ah, al, bh, bl, ch, cl); ah = (regs->regs[26]) >> 32; al = (regs->regs[26]) & 0xffffffff; bh = (regs->regs[27]) >> 32; bl = (regs->regs[27]) & 0xffffffff; ch = (regs->regs[28]) >> 32; cl = (regs->regs[28]) & 0xffffffff; printk("R26 : %08Lx%08Lx R27 : %08Lx%08Lx R28 : %08Lx%08Lx\n", ah, al, bh, bl, ch, cl); ah = (regs->regs[29]) >> 32; al = (regs->regs[29]) & 0xffffffff; bh = (regs->regs[30]) >> 32; bl = (regs->regs[30]) & 0xffffffff; ch = (regs->regs[31]) >> 32; cl = (regs->regs[31]) & 0xffffffff; printk("R29 : %08Lx%08Lx R30 : %08Lx%08Lx R31 : %08Lx%08Lx\n", ah, al, bh, bl, ch, cl); ah = (regs->regs[32]) >> 32; al = (regs->regs[32]) & 0xffffffff; bh = (regs->regs[33]) >> 32; bl = (regs->regs[33]) & 0xffffffff; ch = (regs->regs[34]) >> 32; cl = (regs->regs[34]) & 0xffffffff; printk("R32 : %08Lx%08Lx R33 : %08Lx%08Lx R34 : %08Lx%08Lx\n", ah, al, bh, bl, ch, cl); ah = (regs->regs[35]) >> 32; al = (regs->regs[35]) & 0xffffffff; bh = (regs->regs[36]) >> 32; bl = (regs->regs[36]) & 0xffffffff; ch = (regs->regs[37]) >> 32; cl = (regs->regs[37]) & 0xffffffff; printk("R35 : %08Lx%08Lx R36 : %08Lx%08Lx R37 : %08Lx%08Lx\n", ah, al, bh, bl, ch, cl); ah = (regs->regs[38]) >> 32; al = (regs->regs[38]) & 0xffffffff; bh = (regs->regs[39]) >> 32; bl = (regs->regs[39]) & 0xffffffff; ch = (regs->regs[40]) >> 32; cl = (regs->regs[40]) & 0xffffffff; printk("R38 : %08Lx%08Lx R39 : %08Lx%08Lx R40 : %08Lx%08Lx\n", ah, al, bh, bl, ch, cl); ah = (regs->regs[41]) >> 32; al = (regs->regs[41]) & 0xffffffff; bh = (regs->regs[42]) >> 32; bl = (regs->regs[42]) & 0xffffffff; ch = (regs->regs[43]) >> 32; cl = (regs->regs[43]) & 0xffffffff; printk("R41 : %08Lx%08Lx R42 : %08Lx%08Lx R43 : %08Lx%08Lx\n", ah, al, bh, bl, ch, cl); ah = (regs->regs[44]) >> 32; al = (regs->regs[44]) & 0xffffffff; bh = (regs->regs[45]) >> 32; bl = (regs->regs[45]) & 0xffffffff; ch = (regs->regs[46]) >> 32; cl = (regs->regs[46]) & 0xffffffff; printk("R44 : %08Lx%08Lx R45 : %08Lx%08Lx R46 : %08Lx%08Lx\n", ah, al, bh, bl, ch, cl); ah = (regs->regs[47]) >> 32; al = (regs->regs[47]) & 0xffffffff; bh = (regs->regs[48]) >> 32; bl = (regs->regs[48]) & 0xffffffff; ch = (regs->regs[49]) >> 32; cl = (regs->regs[49]) & 0xffffffff; printk("R47 : %08Lx%08Lx R48 : %08Lx%08Lx R49 : %08Lx%08Lx\n", ah, al, bh, bl, ch, cl); ah = (regs->regs[50]) >> 32; al = (regs->regs[50]) & 0xffffffff; bh = (regs->regs[51]) >> 32; bl = (regs->regs[51]) & 0xffffffff; ch = (regs->regs[52]) >> 32; cl = (regs->regs[52]) & 0xffffffff; printk("R50 : %08Lx%08Lx R51 : %08Lx%08Lx R52 : %08Lx%08Lx\n", ah, al, bh, bl, ch, cl); ah = (regs->regs[53]) >> 32; al = (regs->regs[53]) & 0xffffffff; bh = (regs->regs[54]) >> 32; bl = (regs->regs[54]) & 0xffffffff; ch = (regs->regs[55]) >> 32; cl = (regs->regs[55]) & 0xffffffff; printk("R53 : %08Lx%08Lx R54 : %08Lx%08Lx R55 : %08Lx%08Lx\n", ah, al, bh, bl, ch, cl); ah = (regs->regs[56]) >> 32; al = (regs->regs[56]) & 0xffffffff; bh = (regs->regs[57]) >> 32; bl = (regs->regs[57]) & 0xffffffff; ch = (regs->regs[58]) >> 32; cl = (regs->regs[58]) & 0xffffffff; printk("R56 : %08Lx%08Lx R57 : %08Lx%08Lx R58 : %08Lx%08Lx\n", ah, al, bh, bl, ch, cl); ah = (regs->regs[59]) >> 32; al = (regs->regs[59]) & 0xffffffff; bh = (regs->regs[60]) >> 32; bl = (regs->regs[60]) & 0xffffffff; ch = (regs->regs[61]) >> 32; cl = (regs->regs[61]) & 0xffffffff; printk("R59 : %08Lx%08Lx R60 : %08Lx%08Lx R61 : %08Lx%08Lx\n", ah, al, bh, bl, ch, cl); ah = (regs->regs[62]) >> 32; al = (regs->regs[62]) & 0xffffffff; bh = (regs->tregs[0]) >> 32; bl = (regs->tregs[0]) & 0xffffffff; ch = (regs->tregs[1]) >> 32; cl = (regs->tregs[1]) & 0xffffffff; printk("R62 : %08Lx%08Lx T0 : %08Lx%08Lx T1 : %08Lx%08Lx\n", ah, al, bh, bl, ch, cl); ah = (regs->tregs[2]) >> 32; al = (regs->tregs[2]) & 0xffffffff; bh = (regs->tregs[3]) >> 32; bl = (regs->tregs[3]) & 0xffffffff; ch = (regs->tregs[4]) >> 32; cl = (regs->tregs[4]) & 0xffffffff; printk("T2 : %08Lx%08Lx T3 : %08Lx%08Lx T4 : %08Lx%08Lx\n", ah, al, bh, bl, ch, cl); ah = (regs->tregs[5]) >> 32; al = (regs->tregs[5]) & 0xffffffff; bh = (regs->tregs[6]) >> 32; bl = (regs->tregs[6]) & 0xffffffff; ch = (regs->tregs[7]) >> 32; cl = (regs->tregs[7]) & 0xffffffff; printk("T5 : %08Lx%08Lx T6 : %08Lx%08Lx T7 : %08Lx%08Lx\n", ah, al, bh, bl, ch, cl); /* * If we're in kernel mode, dump the stack too.. */ if (!user_mode(regs)) { void show_stack(struct task_struct *tsk, unsigned long *sp); unsigned long sp = regs->regs[15] & 0xffffffff; struct task_struct *tsk = get_current(); tsk->thread.kregs = regs; show_stack(tsk, (unsigned long *)sp); } } struct task_struct * alloc_task_struct(void) { /* Get task descriptor pages */ return (struct task_struct *) __get_free_pages(GFP_KERNEL, get_order(THREAD_SIZE)); } void free_task_struct(struct task_struct *p) { free_pages((unsigned long) p, get_order(THREAD_SIZE)); } /* * Create a kernel thread */ ATTRIB_NORET void kernel_thread_helper(void *arg, int (*fn)(void *)) { do_exit(fn(arg)); } /* * This is the mechanism for creating a new kernel thread. * * NOTE! Only a kernel-only process(ie the swapper or direct descendants * who haven't done an "execve()") should use this: it will work within * a system call from a "real" process, but the process memory space will * not be free'd until both the parent and the child have exited. */ int kernel_thread(int (*fn)(void *), void * arg, unsigned long flags) { struct pt_regs regs; memset(®s, 0, sizeof(regs)); regs.regs[2] = (unsigned long)arg; regs.regs[3] = (unsigned long)fn; regs.pc = (unsigned long)kernel_thread_helper; regs.sr = (1 << 30); return do_fork(flags | CLONE_VM | CLONE_UNTRACED, 0, ®s, 0, NULL, NULL); } /* * Free current thread data structures etc.. */ void exit_thread(void) { /* See arch/sparc/kernel/process.c for the precedent for doing this -- RPC. The SH-5 FPU save/restore approach relies on last_task_used_math pointing to a live task_struct. When another task tries to use the FPU for the 1st time, the FPUDIS trap handling (see arch/sh64/kernel/fpu.c) will save the existing FPU state to the FP regs field within last_task_used_math before re-loading the new task's FPU state (or initialising it if the FPU has been used before). So if last_task_used_math is stale, and its page has already been re-allocated for another use, the consequences are rather grim. Unless we null it here, there is no other path through which it would get safely nulled. */ #ifdef CONFIG_SH_FPU if (last_task_used_math == current) { last_task_used_math = NULL; } #endif } void flush_thread(void) { /* Called by fs/exec.c (flush_old_exec) to remove traces of a * previously running executable. */ #ifdef CONFIG_SH_FPU if (last_task_used_math == current) { last_task_used_math = NULL; } /* Force FPU state to be reinitialised after exec */ clear_used_math(); #endif /* if we are a kernel thread, about to change to user thread, * update kreg */ if(current->thread.kregs==&fake_swapper_regs) { current->thread.kregs = ((struct pt_regs *)(THREAD_SIZE + (unsigned long) current) - 1); current->thread.uregs = current->thread.kregs; } } void release_thread(struct task_struct *dead_task) { /* do nothing */ } /* Fill in the fpu structure for a core dump.. */ int dump_fpu(struct pt_regs *regs, elf_fpregset_t *fpu) { #ifdef CONFIG_SH_FPU int fpvalid; struct task_struct *tsk = current; fpvalid = !!tsk_used_math(tsk); if (fpvalid) { if (current == last_task_used_math) { grab_fpu(); fpsave(&tsk->thread.fpu.hard); release_fpu(); last_task_used_math = 0; regs->sr |= SR_FD; } memcpy(fpu, &tsk->thread.fpu.hard, sizeof(*fpu)); } return fpvalid; #else return 0; /* Task didn't use the fpu at all. */ #endif } asmlinkage void ret_from_fork(void); int copy_thread(int nr, unsigned long clone_flags, unsigned long usp, unsigned long unused, struct task_struct *p, struct pt_regs *regs) { struct pt_regs *childregs; unsigned long long se; /* Sign extension */ #ifdef CONFIG_SH_FPU if(last_task_used_math == current) { grab_fpu(); fpsave(¤t->thread.fpu.hard); release_fpu(); last_task_used_math = NULL; regs->sr |= SR_FD; } #endif /* Copy from sh version */ childregs = (struct pt_regs *)(THREAD_SIZE + task_stack_page(p)) - 1; *childregs = *regs; if (user_mode(regs)) { childregs->regs[15] = usp; p->thread.uregs = childregs; } else { childregs->regs[15] = (unsigned long)task_stack_page(p) + THREAD_SIZE; } childregs->regs[9] = 0; /* Set return value for child */ childregs->sr |= SR_FD; /* Invalidate FPU flag */ p->thread.sp = (unsigned long) childregs; p->thread.pc = (unsigned long) ret_from_fork; /* * Sign extend the edited stack. * Note that thread.pc and thread.pc will stay * 32-bit wide and context switch must take care * of NEFF sign extension. */ se = childregs->regs[15]; se = (se & NEFF_SIGN) ? (se | NEFF_MASK) : se; childregs->regs[15] = se; return 0; } asmlinkage int sys_fork(unsigned long r2, unsigned long r3, unsigned long r4, unsigned long r5, unsigned long r6, unsigned long r7, struct pt_regs *pregs) { return do_fork(SIGCHLD, pregs->regs[15], pregs, 0, 0, 0); } asmlinkage int sys_clone(unsigned long clone_flags, unsigned long newsp, unsigned long r4, unsigned long r5, unsigned long r6, unsigned long r7, struct pt_regs *pregs) { if (!newsp) newsp = pregs->regs[15]; return do_fork(clone_flags, newsp, pregs, 0, 0, 0); } /* * This is trivial, and on the face of it looks like it * could equally well be done in user mode. * * Not so, for quite unobvious reasons - register pressure. * In user mode vfork() cannot have a stack frame, and if * done by calling the "clone()" system call directly, you * do not have enough call-clobbered registers to hold all * the information you need. */ asmlinkage int sys_vfork(unsigned long r2, unsigned long r3, unsigned long r4, unsigned long r5, unsigned long r6, unsigned long r7, struct pt_regs *pregs) { return do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, pregs->regs[15], pregs, 0, 0, 0); } /* * sys_execve() executes a new program. */ asmlinkage int sys_execve(char *ufilename, char **uargv, char **uenvp, unsigned long r5, unsigned long r6, unsigned long r7, struct pt_regs *pregs) { int error; char *filename; lock_kernel(); filename = getname((char __user *)ufilename); error = PTR_ERR(filename); if (IS_ERR(filename)) goto out; error = do_execve(filename, (char __user * __user *)uargv, (char __user * __user *)uenvp, pregs); if (error == 0) { task_lock(current); current->ptrace &= ~PT_DTRACE; task_unlock(current); } putname(filename); out: unlock_kernel(); return error; } /* * These bracket the sleeping functions.. */ extern void interruptible_sleep_on(wait_queue_head_t *q); #define mid_sched ((unsigned long) interruptible_sleep_on) static int in_sh64_switch_to(unsigned long pc) { extern char __sh64_switch_to_end; /* For a sleeping task, the PC is somewhere in the middle of the function, so we don't have to worry about masking the LSB off */ return (pc >= (unsigned long) sh64_switch_to) && (pc < (unsigned long) &__sh64_switch_to_end); } unsigned long get_wchan(struct task_struct *p) { unsigned long schedule_fp; unsigned long sh64_switch_to_fp; unsigned long schedule_caller_pc; unsigned long pc; if (!p || p == current || p->state == TASK_RUNNING) return 0; /* * The same comment as on the Alpha applies here, too ... */ pc = thread_saved_pc(p); #ifdef CONFIG_FRAME_POINTER if (in_sh64_switch_to(pc)) { sh64_switch_to_fp = (long) p->thread.sp; /* r14 is saved at offset 4 in the sh64_switch_to frame */ schedule_fp = *(unsigned long *) (long)(sh64_switch_to_fp + 4); /* and the caller of 'schedule' is (currently!) saved at offset 24 in the frame of schedule (from disasm) */ schedule_caller_pc = *(unsigned long *) (long)(schedule_fp + 24); return schedule_caller_pc; } #endif return pc; } /* Provide a /proc/asids file that lists out the ASIDs currently associated with the processes. (If the DM.PC register is examined through the debug link, this shows ASID + PC. To make use of this, the PID->ASID relationship needs to be known. This is primarily for debugging.) */ #if defined(CONFIG_SH64_PROC_ASIDS) #include <linux/init.h> #include <linux/proc_fs.h> static int asids_proc_info(char *buf, char **start, off_t fpos, int length, int *eof, void *data) { int len=0; struct task_struct *p; read_lock(&tasklist_lock); for_each_process(p) { int pid = p->pid; struct mm_struct *mm; if (!pid) continue; mm = p->mm; if (mm) { unsigned long asid, context; context = mm->context; asid = (context & 0xff); len += sprintf(buf+len, "%5d : %02lx\n", pid, asid); } else { len += sprintf(buf+len, "%5d : (none)\n", pid); } } read_unlock(&tasklist_lock); *eof = 1; return len; } static int __init register_proc_asids(void) { create_proc_read_entry("asids", 0, NULL, asids_proc_info, NULL); return 0; } __initcall(register_proc_asids); #endif |