Linux Audio

Check our new training course

Embedded Linux Audio

Check our new training course
with Creative Commons CC-BY-SA
lecture materials

Bootlin logo

Elixir Cross Referencer

Loading...
   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
/*
 *  linux/arch/x86-64/kernel/time.c
 *
 *  "High Precision Event Timer" based timekeeping.
 *
 *  Copyright (c) 1991,1992,1995  Linus Torvalds
 *  Copyright (c) 1994  Alan Modra
 *  Copyright (c) 1995  Markus Kuhn
 *  Copyright (c) 1996  Ingo Molnar
 *  Copyright (c) 1998  Andrea Arcangeli
 *  Copyright (c) 2002,2006  Vojtech Pavlik
 *  Copyright (c) 2003  Andi Kleen
 *  RTC support code taken from arch/i386/kernel/timers/time_hpet.c
 */

#include <linux/kernel.h>
#include <linux/sched.h>
#include <linux/interrupt.h>
#include <linux/init.h>
#include <linux/mc146818rtc.h>
#include <linux/time.h>
#include <linux/ioport.h>
#include <linux/module.h>
#include <linux/device.h>
#include <linux/sysdev.h>
#include <linux/bcd.h>
#include <linux/notifier.h>
#include <linux/cpu.h>
#include <linux/kallsyms.h>
#include <linux/acpi.h>
#ifdef CONFIG_ACPI
#include <acpi/achware.h>	/* for PM timer frequency */
#include <acpi/acpi_bus.h>
#endif
#include <asm/8253pit.h>
#include <asm/pgtable.h>
#include <asm/vsyscall.h>
#include <asm/timex.h>
#include <asm/proto.h>
#include <asm/hpet.h>
#include <asm/sections.h>
#include <linux/cpufreq.h>
#include <linux/hpet.h>
#include <asm/apic.h>

#ifdef CONFIG_CPU_FREQ
static void cpufreq_delayed_get(void);
#endif
extern void i8254_timer_resume(void);
extern int using_apic_timer;

static char *timename = NULL;

DEFINE_SPINLOCK(rtc_lock);
EXPORT_SYMBOL(rtc_lock);
DEFINE_SPINLOCK(i8253_lock);

int nohpet __initdata = 0;
static int notsc __initdata = 0;

#define USEC_PER_TICK (USEC_PER_SEC / HZ)
#define NSEC_PER_TICK (NSEC_PER_SEC / HZ)
#define FSEC_PER_TICK (FSEC_PER_SEC / HZ)

#define NS_SCALE	10 /* 2^10, carefully chosen */
#define US_SCALE	32 /* 2^32, arbitralrily chosen */

unsigned int cpu_khz;					/* TSC clocks / usec, not used here */
EXPORT_SYMBOL(cpu_khz);
static unsigned long hpet_period;			/* fsecs / HPET clock */
unsigned long hpet_tick;				/* HPET clocks / interrupt */
int hpet_use_timer;				/* Use counter of hpet for time keeping, otherwise PIT */
unsigned long vxtime_hz = PIT_TICK_RATE;
int report_lost_ticks;				/* command line option */
unsigned long long monotonic_base;

struct vxtime_data __vxtime __section_vxtime;	/* for vsyscalls */

volatile unsigned long __jiffies __section_jiffies = INITIAL_JIFFIES;
struct timespec __xtime __section_xtime;
struct timezone __sys_tz __section_sys_tz;

/*
 * do_gettimeoffset() returns microseconds since last timer interrupt was
 * triggered by hardware. A memory read of HPET is slower than a register read
 * of TSC, but much more reliable. It's also synchronized to the timer
 * interrupt. Note that do_gettimeoffset() may return more than hpet_tick, if a
 * timer interrupt has happened already, but vxtime.trigger wasn't updated yet.
 * This is not a problem, because jiffies hasn't updated either. They are bound
 * together by xtime_lock.
 */

static inline unsigned int do_gettimeoffset_tsc(void)
{
	unsigned long t;
	unsigned long x;
	t = get_cycles_sync();
	if (t < vxtime.last_tsc) 
		t = vxtime.last_tsc; /* hack */
	x = ((t - vxtime.last_tsc) * vxtime.tsc_quot) >> US_SCALE;
	return x;
}

static inline unsigned int do_gettimeoffset_hpet(void)
{
	/* cap counter read to one tick to avoid inconsistencies */
	unsigned long counter = hpet_readl(HPET_COUNTER) - vxtime.last;
	return (min(counter,hpet_tick) * vxtime.quot) >> US_SCALE;
}

unsigned int (*do_gettimeoffset)(void) = do_gettimeoffset_tsc;

/*
 * This version of gettimeofday() has microsecond resolution and better than
 * microsecond precision, as we're using at least a 10 MHz (usually 14.31818
 * MHz) HPET timer.
 */

void do_gettimeofday(struct timeval *tv)
{
	unsigned long seq;
 	unsigned int sec, usec;

	do {
		seq = read_seqbegin(&xtime_lock);

		sec = xtime.tv_sec;
		usec = xtime.tv_nsec / NSEC_PER_USEC;

		/* i386 does some correction here to keep the clock 
		   monotonous even when ntpd is fixing drift.
		   But they didn't work for me, there is a non monotonic
		   clock anyways with ntp.
		   I dropped all corrections now until a real solution can
		   be found. Note when you fix it here you need to do the same
		   in arch/x86_64/kernel/vsyscall.c and export all needed
		   variables in vmlinux.lds. -AK */ 
		usec += do_gettimeoffset();

	} while (read_seqretry(&xtime_lock, seq));

	tv->tv_sec = sec + usec / USEC_PER_SEC;
	tv->tv_usec = usec % USEC_PER_SEC;
}

EXPORT_SYMBOL(do_gettimeofday);

/*
 * settimeofday() first undoes the correction that gettimeofday would do
 * on the time, and then saves it. This is ugly, but has been like this for
 * ages already.
 */

int do_settimeofday(struct timespec *tv)
{
	time_t wtm_sec, sec = tv->tv_sec;
	long wtm_nsec, nsec = tv->tv_nsec;

	if ((unsigned long)tv->tv_nsec >= NSEC_PER_SEC)
		return -EINVAL;

	write_seqlock_irq(&xtime_lock);

	nsec -= do_gettimeoffset() * NSEC_PER_USEC;

	wtm_sec  = wall_to_monotonic.tv_sec + (xtime.tv_sec - sec);
	wtm_nsec = wall_to_monotonic.tv_nsec + (xtime.tv_nsec - nsec);

	set_normalized_timespec(&xtime, sec, nsec);
	set_normalized_timespec(&wall_to_monotonic, wtm_sec, wtm_nsec);

	ntp_clear();

	write_sequnlock_irq(&xtime_lock);
	clock_was_set();
	return 0;
}

EXPORT_SYMBOL(do_settimeofday);

unsigned long profile_pc(struct pt_regs *regs)
{
	unsigned long pc = instruction_pointer(regs);

	/* Assume the lock function has either no stack frame or a copy
	   of eflags from PUSHF
	   Eflags always has bits 22 and up cleared unlike kernel addresses. */
	if (!user_mode(regs) && in_lock_functions(pc)) {
		unsigned long *sp = (unsigned long *)regs->rsp;
		if (sp[0] >> 22)
			return sp[0];
		if (sp[1] >> 22)
			return sp[1];
	}
	return pc;
}
EXPORT_SYMBOL(profile_pc);

/*
 * In order to set the CMOS clock precisely, set_rtc_mmss has to be called 500
 * ms after the second nowtime has started, because when nowtime is written
 * into the registers of the CMOS clock, it will jump to the next second
 * precisely 500 ms later. Check the Motorola MC146818A or Dallas DS12887 data
 * sheet for details.
 */

static void set_rtc_mmss(unsigned long nowtime)
{
	int real_seconds, real_minutes, cmos_minutes;
	unsigned char control, freq_select;

/*
 * IRQs are disabled when we're called from the timer interrupt,
 * no need for spin_lock_irqsave()
 */

	spin_lock(&rtc_lock);

/*
 * Tell the clock it's being set and stop it.
 */

	control = CMOS_READ(RTC_CONTROL);
	CMOS_WRITE(control | RTC_SET, RTC_CONTROL);

	freq_select = CMOS_READ(RTC_FREQ_SELECT);
	CMOS_WRITE(freq_select | RTC_DIV_RESET2, RTC_FREQ_SELECT);

	cmos_minutes = CMOS_READ(RTC_MINUTES);
		BCD_TO_BIN(cmos_minutes);

/*
 * since we're only adjusting minutes and seconds, don't interfere with hour
 * overflow. This avoids messing with unknown time zones but requires your RTC
 * not to be off by more than 15 minutes. Since we're calling it only when
 * our clock is externally synchronized using NTP, this shouldn't be a problem.
 */

	real_seconds = nowtime % 60;
	real_minutes = nowtime / 60;
	if (((abs(real_minutes - cmos_minutes) + 15) / 30) & 1)
		real_minutes += 30;		/* correct for half hour time zone */
	real_minutes %= 60;

	if (abs(real_minutes - cmos_minutes) >= 30) {
		printk(KERN_WARNING "time.c: can't update CMOS clock "
		       "from %d to %d\n", cmos_minutes, real_minutes);
	} else {
		BIN_TO_BCD(real_seconds);
		BIN_TO_BCD(real_minutes);
		CMOS_WRITE(real_seconds, RTC_SECONDS);
		CMOS_WRITE(real_minutes, RTC_MINUTES);
	}

/*
 * The following flags have to be released exactly in this order, otherwise the
 * DS12887 (popular MC146818A clone with integrated battery and quartz) will
 * not reset the oscillator and will not update precisely 500 ms later. You
 * won't find this mentioned in the Dallas Semiconductor data sheets, but who
 * believes data sheets anyway ... -- Markus Kuhn
 */

	CMOS_WRITE(control, RTC_CONTROL);
	CMOS_WRITE(freq_select, RTC_FREQ_SELECT);

	spin_unlock(&rtc_lock);
}


/* monotonic_clock(): returns # of nanoseconds passed since time_init()
 *		Note: This function is required to return accurate
 *		time even in the absence of multiple timer ticks.
 */
static inline unsigned long long cycles_2_ns(unsigned long long cyc);
unsigned long long monotonic_clock(void)
{
	unsigned long seq;
 	u32 last_offset, this_offset, offset;
	unsigned long long base;

	if (vxtime.mode == VXTIME_HPET) {
		do {
			seq = read_seqbegin(&xtime_lock);

			last_offset = vxtime.last;
			base = monotonic_base;
			this_offset = hpet_readl(HPET_COUNTER);
		} while (read_seqretry(&xtime_lock, seq));
		offset = (this_offset - last_offset);
		offset *= NSEC_PER_TICK / hpet_tick;
	} else {
		do {
			seq = read_seqbegin(&xtime_lock);

			last_offset = vxtime.last_tsc;
			base = monotonic_base;
		} while (read_seqretry(&xtime_lock, seq));
		this_offset = get_cycles_sync();
		offset = cycles_2_ns(this_offset - last_offset);
	}
	return base + offset;
}
EXPORT_SYMBOL(monotonic_clock);

static noinline void handle_lost_ticks(int lost)
{
	static long lost_count;
	static int warned;
	if (report_lost_ticks) {
		printk(KERN_WARNING "time.c: Lost %d timer tick(s)! ", lost);
		print_symbol("rip %s)\n", get_irq_regs()->rip);
	}

	if (lost_count == 1000 && !warned) {
		printk(KERN_WARNING "warning: many lost ticks.\n"
		       KERN_WARNING "Your time source seems to be instable or "
		   		"some driver is hogging interupts\n");
		print_symbol("rip %s\n", get_irq_regs()->rip);
		if (vxtime.mode == VXTIME_TSC && vxtime.hpet_address) {
			printk(KERN_WARNING "Falling back to HPET\n");
			if (hpet_use_timer)
				vxtime.last = hpet_readl(HPET_T0_CMP) - 
							hpet_tick;
			else
				vxtime.last = hpet_readl(HPET_COUNTER);
			vxtime.mode = VXTIME_HPET;
			do_gettimeoffset = do_gettimeoffset_hpet;
		}
		/* else should fall back to PIT, but code missing. */
		warned = 1;
	} else
		lost_count++;

#ifdef CONFIG_CPU_FREQ
	/* In some cases the CPU can change frequency without us noticing
	   Give cpufreq a change to catch up. */
	if ((lost_count+1) % 25 == 0)
		cpufreq_delayed_get();
#endif
}

void main_timer_handler(void)
{
	static unsigned long rtc_update = 0;
	unsigned long tsc;
	int delay = 0, offset = 0, lost = 0;

/*
 * Here we are in the timer irq handler. We have irqs locally disabled (so we
 * don't need spin_lock_irqsave()) but we don't know if the timer_bh is running
 * on the other CPU, so we need a lock. We also need to lock the vsyscall
 * variables, because both do_timer() and us change them -arca+vojtech
 */

	write_seqlock(&xtime_lock);

	if (vxtime.hpet_address)
		offset = hpet_readl(HPET_COUNTER);

	if (hpet_use_timer) {
		/* if we're using the hpet timer functionality,
		 * we can more accurately know the counter value
		 * when the timer interrupt occured.
		 */
		offset = hpet_readl(HPET_T0_CMP) - hpet_tick;
		delay = hpet_readl(HPET_COUNTER) - offset;
	} else if (!pmtmr_ioport) {
		spin_lock(&i8253_lock);
		outb_p(0x00, 0x43);
		delay = inb_p(0x40);
		delay |= inb(0x40) << 8;
		spin_unlock(&i8253_lock);
		delay = LATCH - 1 - delay;
	}

	tsc = get_cycles_sync();

	if (vxtime.mode == VXTIME_HPET) {
		if (offset - vxtime.last > hpet_tick) {
			lost = (offset - vxtime.last) / hpet_tick - 1;
		}

		monotonic_base += 
			(offset - vxtime.last) * NSEC_PER_TICK / hpet_tick;

		vxtime.last = offset;
#ifdef CONFIG_X86_PM_TIMER
	} else if (vxtime.mode == VXTIME_PMTMR) {
		lost = pmtimer_mark_offset();
#endif
	} else {
		offset = (((tsc - vxtime.last_tsc) *
			   vxtime.tsc_quot) >> US_SCALE) - USEC_PER_TICK;

		if (offset < 0)
			offset = 0;

		if (offset > USEC_PER_TICK) {
			lost = offset / USEC_PER_TICK;
			offset %= USEC_PER_TICK;
		}

		monotonic_base += cycles_2_ns(tsc - vxtime.last_tsc);

		vxtime.last_tsc = tsc - vxtime.quot * delay / vxtime.tsc_quot;

		if ((((tsc - vxtime.last_tsc) *
		      vxtime.tsc_quot) >> US_SCALE) < offset)
			vxtime.last_tsc = tsc -
				(((long) offset << US_SCALE) / vxtime.tsc_quot) - 1;
	}

	if (lost > 0)
		handle_lost_ticks(lost);
	else
		lost = 0;

/*
 * Do the timer stuff.
 */

	do_timer(lost + 1);
#ifndef CONFIG_SMP
	update_process_times(user_mode(get_irq_regs()));
#endif

/*
 * In the SMP case we use the local APIC timer interrupt to do the profiling,
 * except when we simulate SMP mode on a uniprocessor system, in that case we
 * have to call the local interrupt handler.
 */

	if (!using_apic_timer)
		smp_local_timer_interrupt();

/*
 * If we have an externally synchronized Linux clock, then update CMOS clock
 * accordingly every ~11 minutes. set_rtc_mmss() will be called in the jiffy
 * closest to exactly 500 ms before the next second. If the update fails, we
 * don't care, as it'll be updated on the next turn, and the problem (time way
 * off) isn't likely to go away much sooner anyway.
 */

	if (ntp_synced() && xtime.tv_sec > rtc_update &&
		abs(xtime.tv_nsec - 500000000) <= tick_nsec / 2) {
		set_rtc_mmss(xtime.tv_sec);
		rtc_update = xtime.tv_sec + 660;
	}
 
	write_sequnlock(&xtime_lock);
}

static irqreturn_t timer_interrupt(int irq, void *dev_id)
{
	if (apic_runs_main_timer > 1)
		return IRQ_HANDLED;
	main_timer_handler();
	if (using_apic_timer)
		smp_send_timer_broadcast_ipi();
	return IRQ_HANDLED;
}

static unsigned int cyc2ns_scale __read_mostly;

static inline void set_cyc2ns_scale(unsigned long cpu_khz)
{
	cyc2ns_scale = (NSEC_PER_MSEC << NS_SCALE) / cpu_khz;
}

static inline unsigned long long cycles_2_ns(unsigned long long cyc)
{
	return (cyc * cyc2ns_scale) >> NS_SCALE;
}

unsigned long long sched_clock(void)
{
	unsigned long a = 0;

#if 0
	/* Don't do a HPET read here. Using TSC always is much faster
	   and HPET may not be mapped yet when the scheduler first runs.
           Disadvantage is a small drift between CPUs in some configurations,
	   but that should be tolerable. */
	if (__vxtime.mode == VXTIME_HPET)
		return (hpet_readl(HPET_COUNTER) * vxtime.quot) >> US_SCALE;
#endif

	/* Could do CPU core sync here. Opteron can execute rdtsc speculatively,
	   which means it is not completely exact and may not be monotonous between
	   CPUs. But the errors should be too small to matter for scheduling
	   purposes. */

	rdtscll(a);
	return cycles_2_ns(a);
}

static unsigned long get_cmos_time(void)
{
	unsigned int year, mon, day, hour, min, sec;
	unsigned long flags;
	unsigned extyear = 0;

	spin_lock_irqsave(&rtc_lock, flags);

	do {
		sec = CMOS_READ(RTC_SECONDS);
		min = CMOS_READ(RTC_MINUTES);
		hour = CMOS_READ(RTC_HOURS);
		day = CMOS_READ(RTC_DAY_OF_MONTH);
		mon = CMOS_READ(RTC_MONTH);
		year = CMOS_READ(RTC_YEAR);
#ifdef CONFIG_ACPI
		if (acpi_fadt.revision >= FADT2_REVISION_ID &&
					acpi_fadt.century)
			extyear = CMOS_READ(acpi_fadt.century);
#endif
	} while (sec != CMOS_READ(RTC_SECONDS));

	spin_unlock_irqrestore(&rtc_lock, flags);

	/*
	 * We know that x86-64 always uses BCD format, no need to check the
	 * config register.
 	 */

	BCD_TO_BIN(sec);
	BCD_TO_BIN(min);
	BCD_TO_BIN(hour);
	BCD_TO_BIN(day);
	BCD_TO_BIN(mon);
	BCD_TO_BIN(year);

	if (extyear) {
		BCD_TO_BIN(extyear);
		year += extyear;
		printk(KERN_INFO "Extended CMOS year: %d\n", extyear);
	} else { 
		/*
		 * x86-64 systems only exists since 2002.
		 * This will work up to Dec 31, 2100
	 	 */
		year += 2000;
	}

	return mktime(year, mon, day, hour, min, sec);
}

#ifdef CONFIG_CPU_FREQ

/* Frequency scaling support. Adjust the TSC based timer when the cpu frequency
   changes.
   
   RED-PEN: On SMP we assume all CPUs run with the same frequency.  It's
   not that important because current Opteron setups do not support
   scaling on SMP anyroads.

   Should fix up last_tsc too. Currently gettimeofday in the
   first tick after the change will be slightly wrong. */

#include <linux/workqueue.h>

static unsigned int cpufreq_delayed_issched = 0;
static unsigned int cpufreq_init = 0;
static struct work_struct cpufreq_delayed_get_work;

static void handle_cpufreq_delayed_get(void *v)
{
	unsigned int cpu;
	for_each_online_cpu(cpu) {
		cpufreq_get(cpu);
	}
	cpufreq_delayed_issched = 0;
}

/* if we notice lost ticks, schedule a call to cpufreq_get() as it tries
 * to verify the CPU frequency the timing core thinks the CPU is running
 * at is still correct.
 */
static void cpufreq_delayed_get(void)
{
	static int warned;
	if (cpufreq_init && !cpufreq_delayed_issched) {
		cpufreq_delayed_issched = 1;
		if (!warned) {
			warned = 1;
			printk(KERN_DEBUG 
	"Losing some ticks... checking if CPU frequency changed.\n");
		}
		schedule_work(&cpufreq_delayed_get_work);
	}
}

static unsigned int  ref_freq = 0;
static unsigned long loops_per_jiffy_ref = 0;

static unsigned long cpu_khz_ref = 0;

static int time_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
				 void *data)
{
        struct cpufreq_freqs *freq = data;
	unsigned long *lpj, dummy;

	if (cpu_has(&cpu_data[freq->cpu], X86_FEATURE_CONSTANT_TSC))
		return 0;

	lpj = &dummy;
	if (!(freq->flags & CPUFREQ_CONST_LOOPS))
#ifdef CONFIG_SMP
		lpj = &cpu_data[freq->cpu].loops_per_jiffy;
#else
		lpj = &boot_cpu_data.loops_per_jiffy;
#endif

	if (!ref_freq) {
		ref_freq = freq->old;
		loops_per_jiffy_ref = *lpj;
		cpu_khz_ref = cpu_khz;
	}
        if ((val == CPUFREQ_PRECHANGE  && freq->old < freq->new) ||
            (val == CPUFREQ_POSTCHANGE && freq->old > freq->new) ||
	    (val == CPUFREQ_RESUMECHANGE)) {
                *lpj =
		cpufreq_scale(loops_per_jiffy_ref, ref_freq, freq->new);

		cpu_khz = cpufreq_scale(cpu_khz_ref, ref_freq, freq->new);
		if (!(freq->flags & CPUFREQ_CONST_LOOPS))
			vxtime.tsc_quot = (USEC_PER_MSEC << US_SCALE) / cpu_khz;
	}
	
	set_cyc2ns_scale(cpu_khz_ref);

	return 0;
}
 
static struct notifier_block time_cpufreq_notifier_block = {
         .notifier_call  = time_cpufreq_notifier
};

static int __init cpufreq_tsc(void)
{
	INIT_WORK(&cpufreq_delayed_get_work, handle_cpufreq_delayed_get, NULL);
	if (!cpufreq_register_notifier(&time_cpufreq_notifier_block,
				       CPUFREQ_TRANSITION_NOTIFIER))
		cpufreq_init = 1;
	return 0;
}

core_initcall(cpufreq_tsc);

#endif

/*
 * calibrate_tsc() calibrates the processor TSC in a very simple way, comparing
 * it to the HPET timer of known frequency.
 */

#define TICK_COUNT 100000000

static unsigned int __init hpet_calibrate_tsc(void)
{
	int tsc_start, hpet_start;
	int tsc_now, hpet_now;
	unsigned long flags;

	local_irq_save(flags);
	local_irq_disable();

	hpet_start = hpet_readl(HPET_COUNTER);
	rdtscl(tsc_start);

	do {
		local_irq_disable();
		hpet_now = hpet_readl(HPET_COUNTER);
		tsc_now = get_cycles_sync();
		local_irq_restore(flags);
	} while ((tsc_now - tsc_start) < TICK_COUNT &&
		 (hpet_now - hpet_start) < TICK_COUNT);

	return (tsc_now - tsc_start) * 1000000000L
		/ ((hpet_now - hpet_start) * hpet_period / 1000);
}


/*
 * pit_calibrate_tsc() uses the speaker output (channel 2) of
 * the PIT. This is better than using the timer interrupt output,
 * because we can read the value of the speaker with just one inb(),
 * where we need three i/o operations for the interrupt channel.
 * We count how many ticks the TSC does in 50 ms.
 */

static unsigned int __init pit_calibrate_tsc(void)
{
	unsigned long start, end;
	unsigned long flags;

	spin_lock_irqsave(&i8253_lock, flags);

	outb((inb(0x61) & ~0x02) | 0x01, 0x61);

	outb(0xb0, 0x43);
	outb((PIT_TICK_RATE / (1000 / 50)) & 0xff, 0x42);
	outb((PIT_TICK_RATE / (1000 / 50)) >> 8, 0x42);
	start = get_cycles_sync();
	while ((inb(0x61) & 0x20) == 0);
	end = get_cycles_sync();

	spin_unlock_irqrestore(&i8253_lock, flags);
	
	return (end - start) / 50;
}

#ifdef	CONFIG_HPET
static __init int late_hpet_init(void)
{
	struct hpet_data	hd;
	unsigned int 		ntimer;

	if (!vxtime.hpet_address)
        	return 0;

	memset(&hd, 0, sizeof (hd));

	ntimer = hpet_readl(HPET_ID);
	ntimer = (ntimer & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT;
	ntimer++;

	/*
	 * Register with driver.
	 * Timer0 and Timer1 is used by platform.
	 */
	hd.hd_phys_address = vxtime.hpet_address;
	hd.hd_address = (void __iomem *)fix_to_virt(FIX_HPET_BASE);
	hd.hd_nirqs = ntimer;
	hd.hd_flags = HPET_DATA_PLATFORM;
	hpet_reserve_timer(&hd, 0);
#ifdef	CONFIG_HPET_EMULATE_RTC
	hpet_reserve_timer(&hd, 1);
#endif
	hd.hd_irq[0] = HPET_LEGACY_8254;
	hd.hd_irq[1] = HPET_LEGACY_RTC;
	if (ntimer > 2) {
		struct hpet		*hpet;
		struct hpet_timer	*timer;
		int			i;

		hpet = (struct hpet *) fix_to_virt(FIX_HPET_BASE);
		timer = &hpet->hpet_timers[2];
		for (i = 2; i < ntimer; timer++, i++)
			hd.hd_irq[i] = (timer->hpet_config &
					Tn_INT_ROUTE_CNF_MASK) >>
				Tn_INT_ROUTE_CNF_SHIFT;

	}

	hpet_alloc(&hd);
	return 0;
}
fs_initcall(late_hpet_init);
#endif

static int hpet_timer_stop_set_go(unsigned long tick)
{
	unsigned int cfg;

/*
 * Stop the timers and reset the main counter.
 */

	cfg = hpet_readl(HPET_CFG);
	cfg &= ~(HPET_CFG_ENABLE | HPET_CFG_LEGACY);
	hpet_writel(cfg, HPET_CFG);
	hpet_writel(0, HPET_COUNTER);
	hpet_writel(0, HPET_COUNTER + 4);

/*
 * Set up timer 0, as periodic with first interrupt to happen at hpet_tick,
 * and period also hpet_tick.
 */
	if (hpet_use_timer) {
		hpet_writel(HPET_TN_ENABLE | HPET_TN_PERIODIC | HPET_TN_SETVAL |
		    HPET_TN_32BIT, HPET_T0_CFG);
		hpet_writel(hpet_tick, HPET_T0_CMP); /* next interrupt */
		hpet_writel(hpet_tick, HPET_T0_CMP); /* period */
		cfg |= HPET_CFG_LEGACY;
	}
/*
 * Go!
 */

	cfg |= HPET_CFG_ENABLE;
	hpet_writel(cfg, HPET_CFG);

	return 0;
}

static int hpet_init(void)
{
	unsigned int id;

	if (!vxtime.hpet_address)
		return -1;
	set_fixmap_nocache(FIX_HPET_BASE, vxtime.hpet_address);
	__set_fixmap(VSYSCALL_HPET, vxtime.hpet_address, PAGE_KERNEL_VSYSCALL_NOCACHE);

/*
 * Read the period, compute tick and quotient.
 */

	id = hpet_readl(HPET_ID);

	if (!(id & HPET_ID_VENDOR) || !(id & HPET_ID_NUMBER))
		return -1;

	hpet_period = hpet_readl(HPET_PERIOD);
	if (hpet_period < 100000 || hpet_period > 100000000)
		return -1;

	hpet_tick = (FSEC_PER_TICK + hpet_period / 2) / hpet_period;

	hpet_use_timer = (id & HPET_ID_LEGSUP);

	return hpet_timer_stop_set_go(hpet_tick);
}

static int hpet_reenable(void)
{
	return hpet_timer_stop_set_go(hpet_tick);
}

#define PIT_MODE 0x43
#define PIT_CH0  0x40

static void __init __pit_init(int val, u8 mode)
{
	unsigned long flags;

	spin_lock_irqsave(&i8253_lock, flags);
	outb_p(mode, PIT_MODE);
	outb_p(val & 0xff, PIT_CH0);	/* LSB */
	outb_p(val >> 8, PIT_CH0);	/* MSB */
	spin_unlock_irqrestore(&i8253_lock, flags);
}

void __init pit_init(void)
{
	__pit_init(LATCH, 0x34); /* binary, mode 2, LSB/MSB, ch 0 */
}

void __init pit_stop_interrupt(void)
{
	__pit_init(0, 0x30); /* mode 0 */
}

void __init stop_timer_interrupt(void)
{
	char *name;
	if (vxtime.hpet_address) {
		name = "HPET";
		hpet_timer_stop_set_go(0);
	} else {
		name = "PIT";
		pit_stop_interrupt();
	}
	printk(KERN_INFO "timer: %s interrupt stopped.\n", name);
}

int __init time_setup(char *str)
{
	report_lost_ticks = 1;
	return 1;
}

static struct irqaction irq0 = {
	timer_interrupt, IRQF_DISABLED, CPU_MASK_NONE, "timer", NULL, NULL
};

void __init time_init(void)
{
	if (nohpet)
		vxtime.hpet_address = 0;

	xtime.tv_sec = get_cmos_time();
	xtime.tv_nsec = 0;

	set_normalized_timespec(&wall_to_monotonic,
	                        -xtime.tv_sec, -xtime.tv_nsec);

	if (!hpet_init())
                vxtime_hz = (FSEC_PER_SEC + hpet_period / 2) / hpet_period;
	else
		vxtime.hpet_address = 0;

	if (hpet_use_timer) {
		/* set tick_nsec to use the proper rate for HPET */
	  	tick_nsec = TICK_NSEC_HPET;
		cpu_khz = hpet_calibrate_tsc();
		timename = "HPET";
#ifdef CONFIG_X86_PM_TIMER
	} else if (pmtmr_ioport && !vxtime.hpet_address) {
		vxtime_hz = PM_TIMER_FREQUENCY;
		timename = "PM";
		pit_init();
		cpu_khz = pit_calibrate_tsc();
#endif
	} else {
		pit_init();
		cpu_khz = pit_calibrate_tsc();
		timename = "PIT";
	}

	vxtime.mode = VXTIME_TSC;
	vxtime.quot = (USEC_PER_SEC << US_SCALE) / vxtime_hz;
	vxtime.tsc_quot = (USEC_PER_MSEC << US_SCALE) / cpu_khz;
	vxtime.last_tsc = get_cycles_sync();
	set_cyc2ns_scale(cpu_khz);
	setup_irq(0, &irq0);

#ifndef CONFIG_SMP
	time_init_gtod();
#endif
}

/*
 * Make an educated guess if the TSC is trustworthy and synchronized
 * over all CPUs.
 */
__cpuinit int unsynchronized_tsc(void)
{
#ifdef CONFIG_SMP
	if (apic_is_clustered_box())
		return 1;
#endif
	/* Most intel systems have synchronized TSCs except for
	   multi node systems */
 	if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL) {
#ifdef CONFIG_ACPI
		/* But TSC doesn't tick in C3 so don't use it there */
		if (acpi_fadt.length > 0 && acpi_fadt.plvl3_lat < 1000)
			return 1;
#endif
 		return 0;
	}

 	/* Assume multi socket systems are not synchronized */
 	return num_present_cpus() > 1;
}

/*
 * Decide what mode gettimeofday should use.
 */
void time_init_gtod(void)
{
	char *timetype;

	if (unsynchronized_tsc())
		notsc = 1;

 	if (cpu_has(&boot_cpu_data, X86_FEATURE_RDTSCP))
		vgetcpu_mode = VGETCPU_RDTSCP;
	else
		vgetcpu_mode = VGETCPU_LSL;

	if (vxtime.hpet_address && notsc) {
		timetype = hpet_use_timer ? "HPET" : "PIT/HPET";
		if (hpet_use_timer)
			vxtime.last = hpet_readl(HPET_T0_CMP) - hpet_tick;
		else
			vxtime.last = hpet_readl(HPET_COUNTER);
		vxtime.mode = VXTIME_HPET;
		do_gettimeoffset = do_gettimeoffset_hpet;
#ifdef CONFIG_X86_PM_TIMER
	/* Using PM for gettimeofday is quite slow, but we have no other
	   choice because the TSC is too unreliable on some systems. */
	} else if (pmtmr_ioport && !vxtime.hpet_address && notsc) {
		timetype = "PM";
		do_gettimeoffset = do_gettimeoffset_pm;
		vxtime.mode = VXTIME_PMTMR;
		sysctl_vsyscall = 0;
		printk(KERN_INFO "Disabling vsyscall due to use of PM timer\n");
#endif
	} else {
		timetype = hpet_use_timer ? "HPET/TSC" : "PIT/TSC";
		vxtime.mode = VXTIME_TSC;
	}

	printk(KERN_INFO "time.c: Using %ld.%06ld MHz WALL %s GTOD %s timer.\n",
	       vxtime_hz / 1000000, vxtime_hz % 1000000, timename, timetype);
	printk(KERN_INFO "time.c: Detected %d.%03d MHz processor.\n",
		cpu_khz / 1000, cpu_khz % 1000);
	vxtime.quot = (USEC_PER_SEC << US_SCALE) / vxtime_hz;
	vxtime.tsc_quot = (USEC_PER_MSEC << US_SCALE) / cpu_khz;
	vxtime.last_tsc = get_cycles_sync();

	set_cyc2ns_scale(cpu_khz);
}

__setup("report_lost_ticks", time_setup);

static long clock_cmos_diff;
static unsigned long sleep_start;

/*
 * sysfs support for the timer.
 */

static int timer_suspend(struct sys_device *dev, pm_message_t state)
{
	/*
	 * Estimate time zone so that set_time can update the clock
	 */
	long cmos_time =  get_cmos_time();

	clock_cmos_diff = -cmos_time;
	clock_cmos_diff += get_seconds();
	sleep_start = cmos_time;
	return 0;
}

static int timer_resume(struct sys_device *dev)
{
	unsigned long flags;
	unsigned long sec;
	unsigned long ctime = get_cmos_time();
	long sleep_length = (ctime - sleep_start) * HZ;

	if (sleep_length < 0) {
		printk(KERN_WARNING "Time skew detected in timer resume!\n");
		/* The time after the resume must not be earlier than the time
		 * before the suspend or some nasty things will happen
		 */
		sleep_length = 0;
		ctime = sleep_start;
	}
	if (vxtime.hpet_address)
		hpet_reenable();
	else
		i8254_timer_resume();

	sec = ctime + clock_cmos_diff;
	write_seqlock_irqsave(&xtime_lock,flags);
	xtime.tv_sec = sec;
	xtime.tv_nsec = 0;
	if (vxtime.mode == VXTIME_HPET) {
		if (hpet_use_timer)
			vxtime.last = hpet_readl(HPET_T0_CMP) - hpet_tick;
		else
			vxtime.last = hpet_readl(HPET_COUNTER);
#ifdef CONFIG_X86_PM_TIMER
	} else if (vxtime.mode == VXTIME_PMTMR) {
		pmtimer_resume();
#endif
	} else
		vxtime.last_tsc = get_cycles_sync();
	write_sequnlock_irqrestore(&xtime_lock,flags);
	jiffies += sleep_length;
	monotonic_base += sleep_length * (NSEC_PER_SEC/HZ);
	touch_softlockup_watchdog();
	return 0;
}

static struct sysdev_class timer_sysclass = {
	.resume = timer_resume,
	.suspend = timer_suspend,
	set_kset_name("timer"),
};

/* XXX this driverfs stuff should probably go elsewhere later -john */
static struct sys_device device_timer = {
	.id	= 0,
	.cls	= &timer_sysclass,
};

static int time_init_device(void)
{
	int error = sysdev_class_register(&timer_sysclass);
	if (!error)
		error = sysdev_register(&device_timer);
	return error;
}

device_initcall(time_init_device);

#ifdef CONFIG_HPET_EMULATE_RTC
/* HPET in LegacyReplacement Mode eats up RTC interrupt line. When, HPET
 * is enabled, we support RTC interrupt functionality in software.
 * RTC has 3 kinds of interrupts:
 * 1) Update Interrupt - generate an interrupt, every sec, when RTC clock
 *    is updated
 * 2) Alarm Interrupt - generate an interrupt at a specific time of day
 * 3) Periodic Interrupt - generate periodic interrupt, with frequencies
 *    2Hz-8192Hz (2Hz-64Hz for non-root user) (all freqs in powers of 2)
 * (1) and (2) above are implemented using polling at a frequency of
 * 64 Hz. The exact frequency is a tradeoff between accuracy and interrupt
 * overhead. (DEFAULT_RTC_INT_FREQ)
 * For (3), we use interrupts at 64Hz or user specified periodic
 * frequency, whichever is higher.
 */
#include <linux/rtc.h>

#define DEFAULT_RTC_INT_FREQ 	64
#define RTC_NUM_INTS 		1

static unsigned long UIE_on;
static unsigned long prev_update_sec;

static unsigned long AIE_on;
static struct rtc_time alarm_time;

static unsigned long PIE_on;
static unsigned long PIE_freq = DEFAULT_RTC_INT_FREQ;
static unsigned long PIE_count;

static unsigned long hpet_rtc_int_freq; /* RTC interrupt frequency */
static unsigned int hpet_t1_cmp; /* cached comparator register */

int is_hpet_enabled(void)
{
	return vxtime.hpet_address != 0;
}

/*
 * Timer 1 for RTC, we do not use periodic interrupt feature,
 * even if HPET supports periodic interrupts on Timer 1.
 * The reason being, to set up a periodic interrupt in HPET, we need to
 * stop the main counter. And if we do that everytime someone diables/enables
 * RTC, we will have adverse effect on main kernel timer running on Timer 0.
 * So, for the time being, simulate the periodic interrupt in software.
 *
 * hpet_rtc_timer_init() is called for the first time and during subsequent
 * interuppts reinit happens through hpet_rtc_timer_reinit().
 */
int hpet_rtc_timer_init(void)
{
	unsigned int cfg, cnt;
	unsigned long flags;

	if (!is_hpet_enabled())
		return 0;
	/*
	 * Set the counter 1 and enable the interrupts.
	 */
	if (PIE_on && (PIE_freq > DEFAULT_RTC_INT_FREQ))
		hpet_rtc_int_freq = PIE_freq;
	else
		hpet_rtc_int_freq = DEFAULT_RTC_INT_FREQ;

	local_irq_save(flags);

	cnt = hpet_readl(HPET_COUNTER);
	cnt += ((hpet_tick*HZ)/hpet_rtc_int_freq);
	hpet_writel(cnt, HPET_T1_CMP);
	hpet_t1_cmp = cnt;

	cfg = hpet_readl(HPET_T1_CFG);
	cfg &= ~HPET_TN_PERIODIC;
	cfg |= HPET_TN_ENABLE | HPET_TN_32BIT;
	hpet_writel(cfg, HPET_T1_CFG);

	local_irq_restore(flags);

	return 1;
}

static void hpet_rtc_timer_reinit(void)
{
	unsigned int cfg, cnt, ticks_per_int, lost_ints;

	if (unlikely(!(PIE_on | AIE_on | UIE_on))) {
		cfg = hpet_readl(HPET_T1_CFG);
		cfg &= ~HPET_TN_ENABLE;
		hpet_writel(cfg, HPET_T1_CFG);
		return;
	}

	if (PIE_on && (PIE_freq > DEFAULT_RTC_INT_FREQ))
		hpet_rtc_int_freq = PIE_freq;
	else
		hpet_rtc_int_freq = DEFAULT_RTC_INT_FREQ;

	/* It is more accurate to use the comparator value than current count.*/
	ticks_per_int = hpet_tick * HZ / hpet_rtc_int_freq;
	hpet_t1_cmp += ticks_per_int;
	hpet_writel(hpet_t1_cmp, HPET_T1_CMP);

	/*
	 * If the interrupt handler was delayed too long, the write above tries
	 * to schedule the next interrupt in the past and the hardware would
	 * not interrupt until the counter had wrapped around.
	 * So we have to check that the comparator wasn't set to a past time.
	 */
	cnt = hpet_readl(HPET_COUNTER);
	if (unlikely((int)(cnt - hpet_t1_cmp) > 0)) {
		lost_ints = (cnt - hpet_t1_cmp) / ticks_per_int + 1;
		/* Make sure that, even with the time needed to execute
		 * this code, the next scheduled interrupt has been moved
		 * back to the future: */
		lost_ints++;

		hpet_t1_cmp += lost_ints * ticks_per_int;
		hpet_writel(hpet_t1_cmp, HPET_T1_CMP);

		if (PIE_on)
			PIE_count += lost_ints;

		printk(KERN_WARNING "rtc: lost some interrupts at %ldHz.\n",
		       hpet_rtc_int_freq);
	}
}

/*
 * The functions below are called from rtc driver.
 * Return 0 if HPET is not being used.
 * Otherwise do the necessary changes and return 1.
 */
int hpet_mask_rtc_irq_bit(unsigned long bit_mask)
{
	if (!is_hpet_enabled())
		return 0;

	if (bit_mask & RTC_UIE)
		UIE_on = 0;
	if (bit_mask & RTC_PIE)
		PIE_on = 0;
	if (bit_mask & RTC_AIE)
		AIE_on = 0;

	return 1;
}

int hpet_set_rtc_irq_bit(unsigned long bit_mask)
{
	int timer_init_reqd = 0;

	if (!is_hpet_enabled())
		return 0;

	if (!(PIE_on | AIE_on | UIE_on))
		timer_init_reqd = 1;

	if (bit_mask & RTC_UIE) {
		UIE_on = 1;
	}
	if (bit_mask & RTC_PIE) {
		PIE_on = 1;
		PIE_count = 0;
	}
	if (bit_mask & RTC_AIE) {
		AIE_on = 1;
	}

	if (timer_init_reqd)
		hpet_rtc_timer_init();

	return 1;
}

int hpet_set_alarm_time(unsigned char hrs, unsigned char min, unsigned char sec)
{
	if (!is_hpet_enabled())
		return 0;

	alarm_time.tm_hour = hrs;
	alarm_time.tm_min = min;
	alarm_time.tm_sec = sec;

	return 1;
}

int hpet_set_periodic_freq(unsigned long freq)
{
	if (!is_hpet_enabled())
		return 0;

	PIE_freq = freq;
	PIE_count = 0;

	return 1;
}

int hpet_rtc_dropped_irq(void)
{
	if (!is_hpet_enabled())
		return 0;

	return 1;
}

irqreturn_t hpet_rtc_interrupt(int irq, void *dev_id, struct pt_regs *regs)
{
	struct rtc_time curr_time;
	unsigned long rtc_int_flag = 0;
	int call_rtc_interrupt = 0;

	hpet_rtc_timer_reinit();

	if (UIE_on | AIE_on) {
		rtc_get_rtc_time(&curr_time);
	}
	if (UIE_on) {
		if (curr_time.tm_sec != prev_update_sec) {
			/* Set update int info, call real rtc int routine */
			call_rtc_interrupt = 1;
			rtc_int_flag = RTC_UF;
			prev_update_sec = curr_time.tm_sec;
		}
	}
	if (PIE_on) {
		PIE_count++;
		if (PIE_count >= hpet_rtc_int_freq/PIE_freq) {
			/* Set periodic int info, call real rtc int routine */
			call_rtc_interrupt = 1;
			rtc_int_flag |= RTC_PF;
			PIE_count = 0;
		}
	}
	if (AIE_on) {
		if ((curr_time.tm_sec == alarm_time.tm_sec) &&
		    (curr_time.tm_min == alarm_time.tm_min) &&
		    (curr_time.tm_hour == alarm_time.tm_hour)) {
			/* Set alarm int info, call real rtc int routine */
			call_rtc_interrupt = 1;
			rtc_int_flag |= RTC_AF;
		}
	}
	if (call_rtc_interrupt) {
		rtc_int_flag |= (RTC_IRQF | (RTC_NUM_INTS << 8));
		rtc_interrupt(rtc_int_flag, dev_id);
	}
	return IRQ_HANDLED;
}
#endif

static int __init nohpet_setup(char *s) 
{ 
	nohpet = 1;
	return 1;
} 

__setup("nohpet", nohpet_setup);

int __init notsc_setup(char *s)
{
	notsc = 1;
	return 1;
}

__setup("notsc", notsc_setup);