Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 | /* * linux/arch/x86-64/kernel/time.c * * "High Precision Event Timer" based timekeeping. * * Copyright (c) 1991,1992,1995 Linus Torvalds * Copyright (c) 1994 Alan Modra * Copyright (c) 1995 Markus Kuhn * Copyright (c) 1996 Ingo Molnar * Copyright (c) 1998 Andrea Arcangeli * Copyright (c) 2002,2006 Vojtech Pavlik * Copyright (c) 2003 Andi Kleen * RTC support code taken from arch/i386/kernel/timers/time_hpet.c */ #include <linux/kernel.h> #include <linux/sched.h> #include <linux/interrupt.h> #include <linux/init.h> #include <linux/mc146818rtc.h> #include <linux/time.h> #include <linux/ioport.h> #include <linux/module.h> #include <linux/device.h> #include <linux/sysdev.h> #include <linux/bcd.h> #include <linux/notifier.h> #include <linux/cpu.h> #include <linux/kallsyms.h> #include <linux/acpi.h> #ifdef CONFIG_ACPI #include <acpi/achware.h> /* for PM timer frequency */ #include <acpi/acpi_bus.h> #endif #include <asm/8253pit.h> #include <asm/pgtable.h> #include <asm/vsyscall.h> #include <asm/timex.h> #include <asm/proto.h> #include <asm/hpet.h> #include <asm/sections.h> #include <linux/cpufreq.h> #include <linux/hpet.h> #include <asm/apic.h> #ifdef CONFIG_CPU_FREQ static void cpufreq_delayed_get(void); #endif extern void i8254_timer_resume(void); extern int using_apic_timer; static char *timename = NULL; DEFINE_SPINLOCK(rtc_lock); EXPORT_SYMBOL(rtc_lock); DEFINE_SPINLOCK(i8253_lock); int nohpet __initdata = 0; static int notsc __initdata = 0; #define USEC_PER_TICK (USEC_PER_SEC / HZ) #define NSEC_PER_TICK (NSEC_PER_SEC / HZ) #define FSEC_PER_TICK (FSEC_PER_SEC / HZ) #define NS_SCALE 10 /* 2^10, carefully chosen */ #define US_SCALE 32 /* 2^32, arbitralrily chosen */ unsigned int cpu_khz; /* TSC clocks / usec, not used here */ EXPORT_SYMBOL(cpu_khz); static unsigned long hpet_period; /* fsecs / HPET clock */ unsigned long hpet_tick; /* HPET clocks / interrupt */ int hpet_use_timer; /* Use counter of hpet for time keeping, otherwise PIT */ unsigned long vxtime_hz = PIT_TICK_RATE; int report_lost_ticks; /* command line option */ unsigned long long monotonic_base; struct vxtime_data __vxtime __section_vxtime; /* for vsyscalls */ volatile unsigned long __jiffies __section_jiffies = INITIAL_JIFFIES; struct timespec __xtime __section_xtime; struct timezone __sys_tz __section_sys_tz; /* * do_gettimeoffset() returns microseconds since last timer interrupt was * triggered by hardware. A memory read of HPET is slower than a register read * of TSC, but much more reliable. It's also synchronized to the timer * interrupt. Note that do_gettimeoffset() may return more than hpet_tick, if a * timer interrupt has happened already, but vxtime.trigger wasn't updated yet. * This is not a problem, because jiffies hasn't updated either. They are bound * together by xtime_lock. */ static inline unsigned int do_gettimeoffset_tsc(void) { unsigned long t; unsigned long x; t = get_cycles_sync(); if (t < vxtime.last_tsc) t = vxtime.last_tsc; /* hack */ x = ((t - vxtime.last_tsc) * vxtime.tsc_quot) >> US_SCALE; return x; } static inline unsigned int do_gettimeoffset_hpet(void) { /* cap counter read to one tick to avoid inconsistencies */ unsigned long counter = hpet_readl(HPET_COUNTER) - vxtime.last; return (min(counter,hpet_tick) * vxtime.quot) >> US_SCALE; } unsigned int (*do_gettimeoffset)(void) = do_gettimeoffset_tsc; /* * This version of gettimeofday() has microsecond resolution and better than * microsecond precision, as we're using at least a 10 MHz (usually 14.31818 * MHz) HPET timer. */ void do_gettimeofday(struct timeval *tv) { unsigned long seq; unsigned int sec, usec; do { seq = read_seqbegin(&xtime_lock); sec = xtime.tv_sec; usec = xtime.tv_nsec / NSEC_PER_USEC; /* i386 does some correction here to keep the clock monotonous even when ntpd is fixing drift. But they didn't work for me, there is a non monotonic clock anyways with ntp. I dropped all corrections now until a real solution can be found. Note when you fix it here you need to do the same in arch/x86_64/kernel/vsyscall.c and export all needed variables in vmlinux.lds. -AK */ usec += do_gettimeoffset(); } while (read_seqretry(&xtime_lock, seq)); tv->tv_sec = sec + usec / USEC_PER_SEC; tv->tv_usec = usec % USEC_PER_SEC; } EXPORT_SYMBOL(do_gettimeofday); /* * settimeofday() first undoes the correction that gettimeofday would do * on the time, and then saves it. This is ugly, but has been like this for * ages already. */ int do_settimeofday(struct timespec *tv) { time_t wtm_sec, sec = tv->tv_sec; long wtm_nsec, nsec = tv->tv_nsec; if ((unsigned long)tv->tv_nsec >= NSEC_PER_SEC) return -EINVAL; write_seqlock_irq(&xtime_lock); nsec -= do_gettimeoffset() * NSEC_PER_USEC; wtm_sec = wall_to_monotonic.tv_sec + (xtime.tv_sec - sec); wtm_nsec = wall_to_monotonic.tv_nsec + (xtime.tv_nsec - nsec); set_normalized_timespec(&xtime, sec, nsec); set_normalized_timespec(&wall_to_monotonic, wtm_sec, wtm_nsec); ntp_clear(); write_sequnlock_irq(&xtime_lock); clock_was_set(); return 0; } EXPORT_SYMBOL(do_settimeofday); unsigned long profile_pc(struct pt_regs *regs) { unsigned long pc = instruction_pointer(regs); /* Assume the lock function has either no stack frame or a copy of eflags from PUSHF Eflags always has bits 22 and up cleared unlike kernel addresses. */ if (!user_mode(regs) && in_lock_functions(pc)) { unsigned long *sp = (unsigned long *)regs->rsp; if (sp[0] >> 22) return sp[0]; if (sp[1] >> 22) return sp[1]; } return pc; } EXPORT_SYMBOL(profile_pc); /* * In order to set the CMOS clock precisely, set_rtc_mmss has to be called 500 * ms after the second nowtime has started, because when nowtime is written * into the registers of the CMOS clock, it will jump to the next second * precisely 500 ms later. Check the Motorola MC146818A or Dallas DS12887 data * sheet for details. */ static void set_rtc_mmss(unsigned long nowtime) { int real_seconds, real_minutes, cmos_minutes; unsigned char control, freq_select; /* * IRQs are disabled when we're called from the timer interrupt, * no need for spin_lock_irqsave() */ spin_lock(&rtc_lock); /* * Tell the clock it's being set and stop it. */ control = CMOS_READ(RTC_CONTROL); CMOS_WRITE(control | RTC_SET, RTC_CONTROL); freq_select = CMOS_READ(RTC_FREQ_SELECT); CMOS_WRITE(freq_select | RTC_DIV_RESET2, RTC_FREQ_SELECT); cmos_minutes = CMOS_READ(RTC_MINUTES); BCD_TO_BIN(cmos_minutes); /* * since we're only adjusting minutes and seconds, don't interfere with hour * overflow. This avoids messing with unknown time zones but requires your RTC * not to be off by more than 15 minutes. Since we're calling it only when * our clock is externally synchronized using NTP, this shouldn't be a problem. */ real_seconds = nowtime % 60; real_minutes = nowtime / 60; if (((abs(real_minutes - cmos_minutes) + 15) / 30) & 1) real_minutes += 30; /* correct for half hour time zone */ real_minutes %= 60; if (abs(real_minutes - cmos_minutes) >= 30) { printk(KERN_WARNING "time.c: can't update CMOS clock " "from %d to %d\n", cmos_minutes, real_minutes); } else { BIN_TO_BCD(real_seconds); BIN_TO_BCD(real_minutes); CMOS_WRITE(real_seconds, RTC_SECONDS); CMOS_WRITE(real_minutes, RTC_MINUTES); } /* * The following flags have to be released exactly in this order, otherwise the * DS12887 (popular MC146818A clone with integrated battery and quartz) will * not reset the oscillator and will not update precisely 500 ms later. You * won't find this mentioned in the Dallas Semiconductor data sheets, but who * believes data sheets anyway ... -- Markus Kuhn */ CMOS_WRITE(control, RTC_CONTROL); CMOS_WRITE(freq_select, RTC_FREQ_SELECT); spin_unlock(&rtc_lock); } /* monotonic_clock(): returns # of nanoseconds passed since time_init() * Note: This function is required to return accurate * time even in the absence of multiple timer ticks. */ static inline unsigned long long cycles_2_ns(unsigned long long cyc); unsigned long long monotonic_clock(void) { unsigned long seq; u32 last_offset, this_offset, offset; unsigned long long base; if (vxtime.mode == VXTIME_HPET) { do { seq = read_seqbegin(&xtime_lock); last_offset = vxtime.last; base = monotonic_base; this_offset = hpet_readl(HPET_COUNTER); } while (read_seqretry(&xtime_lock, seq)); offset = (this_offset - last_offset); offset *= NSEC_PER_TICK / hpet_tick; } else { do { seq = read_seqbegin(&xtime_lock); last_offset = vxtime.last_tsc; base = monotonic_base; } while (read_seqretry(&xtime_lock, seq)); this_offset = get_cycles_sync(); offset = cycles_2_ns(this_offset - last_offset); } return base + offset; } EXPORT_SYMBOL(monotonic_clock); static noinline void handle_lost_ticks(int lost) { static long lost_count; static int warned; if (report_lost_ticks) { printk(KERN_WARNING "time.c: Lost %d timer tick(s)! ", lost); print_symbol("rip %s)\n", get_irq_regs()->rip); } if (lost_count == 1000 && !warned) { printk(KERN_WARNING "warning: many lost ticks.\n" KERN_WARNING "Your time source seems to be instable or " "some driver is hogging interupts\n"); print_symbol("rip %s\n", get_irq_regs()->rip); if (vxtime.mode == VXTIME_TSC && vxtime.hpet_address) { printk(KERN_WARNING "Falling back to HPET\n"); if (hpet_use_timer) vxtime.last = hpet_readl(HPET_T0_CMP) - hpet_tick; else vxtime.last = hpet_readl(HPET_COUNTER); vxtime.mode = VXTIME_HPET; do_gettimeoffset = do_gettimeoffset_hpet; } /* else should fall back to PIT, but code missing. */ warned = 1; } else lost_count++; #ifdef CONFIG_CPU_FREQ /* In some cases the CPU can change frequency without us noticing Give cpufreq a change to catch up. */ if ((lost_count+1) % 25 == 0) cpufreq_delayed_get(); #endif } void main_timer_handler(void) { static unsigned long rtc_update = 0; unsigned long tsc; int delay = 0, offset = 0, lost = 0; /* * Here we are in the timer irq handler. We have irqs locally disabled (so we * don't need spin_lock_irqsave()) but we don't know if the timer_bh is running * on the other CPU, so we need a lock. We also need to lock the vsyscall * variables, because both do_timer() and us change them -arca+vojtech */ write_seqlock(&xtime_lock); if (vxtime.hpet_address) offset = hpet_readl(HPET_COUNTER); if (hpet_use_timer) { /* if we're using the hpet timer functionality, * we can more accurately know the counter value * when the timer interrupt occured. */ offset = hpet_readl(HPET_T0_CMP) - hpet_tick; delay = hpet_readl(HPET_COUNTER) - offset; } else if (!pmtmr_ioport) { spin_lock(&i8253_lock); outb_p(0x00, 0x43); delay = inb_p(0x40); delay |= inb(0x40) << 8; spin_unlock(&i8253_lock); delay = LATCH - 1 - delay; } tsc = get_cycles_sync(); if (vxtime.mode == VXTIME_HPET) { if (offset - vxtime.last > hpet_tick) { lost = (offset - vxtime.last) / hpet_tick - 1; } monotonic_base += (offset - vxtime.last) * NSEC_PER_TICK / hpet_tick; vxtime.last = offset; #ifdef CONFIG_X86_PM_TIMER } else if (vxtime.mode == VXTIME_PMTMR) { lost = pmtimer_mark_offset(); #endif } else { offset = (((tsc - vxtime.last_tsc) * vxtime.tsc_quot) >> US_SCALE) - USEC_PER_TICK; if (offset < 0) offset = 0; if (offset > USEC_PER_TICK) { lost = offset / USEC_PER_TICK; offset %= USEC_PER_TICK; } monotonic_base += cycles_2_ns(tsc - vxtime.last_tsc); vxtime.last_tsc = tsc - vxtime.quot * delay / vxtime.tsc_quot; if ((((tsc - vxtime.last_tsc) * vxtime.tsc_quot) >> US_SCALE) < offset) vxtime.last_tsc = tsc - (((long) offset << US_SCALE) / vxtime.tsc_quot) - 1; } if (lost > 0) handle_lost_ticks(lost); else lost = 0; /* * Do the timer stuff. */ do_timer(lost + 1); #ifndef CONFIG_SMP update_process_times(user_mode(get_irq_regs())); #endif /* * In the SMP case we use the local APIC timer interrupt to do the profiling, * except when we simulate SMP mode on a uniprocessor system, in that case we * have to call the local interrupt handler. */ if (!using_apic_timer) smp_local_timer_interrupt(); /* * If we have an externally synchronized Linux clock, then update CMOS clock * accordingly every ~11 minutes. set_rtc_mmss() will be called in the jiffy * closest to exactly 500 ms before the next second. If the update fails, we * don't care, as it'll be updated on the next turn, and the problem (time way * off) isn't likely to go away much sooner anyway. */ if (ntp_synced() && xtime.tv_sec > rtc_update && abs(xtime.tv_nsec - 500000000) <= tick_nsec / 2) { set_rtc_mmss(xtime.tv_sec); rtc_update = xtime.tv_sec + 660; } write_sequnlock(&xtime_lock); } static irqreturn_t timer_interrupt(int irq, void *dev_id) { if (apic_runs_main_timer > 1) return IRQ_HANDLED; main_timer_handler(); if (using_apic_timer) smp_send_timer_broadcast_ipi(); return IRQ_HANDLED; } static unsigned int cyc2ns_scale __read_mostly; static inline void set_cyc2ns_scale(unsigned long cpu_khz) { cyc2ns_scale = (NSEC_PER_MSEC << NS_SCALE) / cpu_khz; } static inline unsigned long long cycles_2_ns(unsigned long long cyc) { return (cyc * cyc2ns_scale) >> NS_SCALE; } unsigned long long sched_clock(void) { unsigned long a = 0; #if 0 /* Don't do a HPET read here. Using TSC always is much faster and HPET may not be mapped yet when the scheduler first runs. Disadvantage is a small drift between CPUs in some configurations, but that should be tolerable. */ if (__vxtime.mode == VXTIME_HPET) return (hpet_readl(HPET_COUNTER) * vxtime.quot) >> US_SCALE; #endif /* Could do CPU core sync here. Opteron can execute rdtsc speculatively, which means it is not completely exact and may not be monotonous between CPUs. But the errors should be too small to matter for scheduling purposes. */ rdtscll(a); return cycles_2_ns(a); } static unsigned long get_cmos_time(void) { unsigned int year, mon, day, hour, min, sec; unsigned long flags; unsigned extyear = 0; spin_lock_irqsave(&rtc_lock, flags); do { sec = CMOS_READ(RTC_SECONDS); min = CMOS_READ(RTC_MINUTES); hour = CMOS_READ(RTC_HOURS); day = CMOS_READ(RTC_DAY_OF_MONTH); mon = CMOS_READ(RTC_MONTH); year = CMOS_READ(RTC_YEAR); #ifdef CONFIG_ACPI if (acpi_fadt.revision >= FADT2_REVISION_ID && acpi_fadt.century) extyear = CMOS_READ(acpi_fadt.century); #endif } while (sec != CMOS_READ(RTC_SECONDS)); spin_unlock_irqrestore(&rtc_lock, flags); /* * We know that x86-64 always uses BCD format, no need to check the * config register. */ BCD_TO_BIN(sec); BCD_TO_BIN(min); BCD_TO_BIN(hour); BCD_TO_BIN(day); BCD_TO_BIN(mon); BCD_TO_BIN(year); if (extyear) { BCD_TO_BIN(extyear); year += extyear; printk(KERN_INFO "Extended CMOS year: %d\n", extyear); } else { /* * x86-64 systems only exists since 2002. * This will work up to Dec 31, 2100 */ year += 2000; } return mktime(year, mon, day, hour, min, sec); } #ifdef CONFIG_CPU_FREQ /* Frequency scaling support. Adjust the TSC based timer when the cpu frequency changes. RED-PEN: On SMP we assume all CPUs run with the same frequency. It's not that important because current Opteron setups do not support scaling on SMP anyroads. Should fix up last_tsc too. Currently gettimeofday in the first tick after the change will be slightly wrong. */ #include <linux/workqueue.h> static unsigned int cpufreq_delayed_issched = 0; static unsigned int cpufreq_init = 0; static struct work_struct cpufreq_delayed_get_work; static void handle_cpufreq_delayed_get(void *v) { unsigned int cpu; for_each_online_cpu(cpu) { cpufreq_get(cpu); } cpufreq_delayed_issched = 0; } /* if we notice lost ticks, schedule a call to cpufreq_get() as it tries * to verify the CPU frequency the timing core thinks the CPU is running * at is still correct. */ static void cpufreq_delayed_get(void) { static int warned; if (cpufreq_init && !cpufreq_delayed_issched) { cpufreq_delayed_issched = 1; if (!warned) { warned = 1; printk(KERN_DEBUG "Losing some ticks... checking if CPU frequency changed.\n"); } schedule_work(&cpufreq_delayed_get_work); } } static unsigned int ref_freq = 0; static unsigned long loops_per_jiffy_ref = 0; static unsigned long cpu_khz_ref = 0; static int time_cpufreq_notifier(struct notifier_block *nb, unsigned long val, void *data) { struct cpufreq_freqs *freq = data; unsigned long *lpj, dummy; if (cpu_has(&cpu_data[freq->cpu], X86_FEATURE_CONSTANT_TSC)) return 0; lpj = &dummy; if (!(freq->flags & CPUFREQ_CONST_LOOPS)) #ifdef CONFIG_SMP lpj = &cpu_data[freq->cpu].loops_per_jiffy; #else lpj = &boot_cpu_data.loops_per_jiffy; #endif if (!ref_freq) { ref_freq = freq->old; loops_per_jiffy_ref = *lpj; cpu_khz_ref = cpu_khz; } if ((val == CPUFREQ_PRECHANGE && freq->old < freq->new) || (val == CPUFREQ_POSTCHANGE && freq->old > freq->new) || (val == CPUFREQ_RESUMECHANGE)) { *lpj = cpufreq_scale(loops_per_jiffy_ref, ref_freq, freq->new); cpu_khz = cpufreq_scale(cpu_khz_ref, ref_freq, freq->new); if (!(freq->flags & CPUFREQ_CONST_LOOPS)) vxtime.tsc_quot = (USEC_PER_MSEC << US_SCALE) / cpu_khz; } set_cyc2ns_scale(cpu_khz_ref); return 0; } static struct notifier_block time_cpufreq_notifier_block = { .notifier_call = time_cpufreq_notifier }; static int __init cpufreq_tsc(void) { INIT_WORK(&cpufreq_delayed_get_work, handle_cpufreq_delayed_get, NULL); if (!cpufreq_register_notifier(&time_cpufreq_notifier_block, CPUFREQ_TRANSITION_NOTIFIER)) cpufreq_init = 1; return 0; } core_initcall(cpufreq_tsc); #endif /* * calibrate_tsc() calibrates the processor TSC in a very simple way, comparing * it to the HPET timer of known frequency. */ #define TICK_COUNT 100000000 static unsigned int __init hpet_calibrate_tsc(void) { int tsc_start, hpet_start; int tsc_now, hpet_now; unsigned long flags; local_irq_save(flags); local_irq_disable(); hpet_start = hpet_readl(HPET_COUNTER); rdtscl(tsc_start); do { local_irq_disable(); hpet_now = hpet_readl(HPET_COUNTER); tsc_now = get_cycles_sync(); local_irq_restore(flags); } while ((tsc_now - tsc_start) < TICK_COUNT && (hpet_now - hpet_start) < TICK_COUNT); return (tsc_now - tsc_start) * 1000000000L / ((hpet_now - hpet_start) * hpet_period / 1000); } /* * pit_calibrate_tsc() uses the speaker output (channel 2) of * the PIT. This is better than using the timer interrupt output, * because we can read the value of the speaker with just one inb(), * where we need three i/o operations for the interrupt channel. * We count how many ticks the TSC does in 50 ms. */ static unsigned int __init pit_calibrate_tsc(void) { unsigned long start, end; unsigned long flags; spin_lock_irqsave(&i8253_lock, flags); outb((inb(0x61) & ~0x02) | 0x01, 0x61); outb(0xb0, 0x43); outb((PIT_TICK_RATE / (1000 / 50)) & 0xff, 0x42); outb((PIT_TICK_RATE / (1000 / 50)) >> 8, 0x42); start = get_cycles_sync(); while ((inb(0x61) & 0x20) == 0); end = get_cycles_sync(); spin_unlock_irqrestore(&i8253_lock, flags); return (end - start) / 50; } #ifdef CONFIG_HPET static __init int late_hpet_init(void) { struct hpet_data hd; unsigned int ntimer; if (!vxtime.hpet_address) return 0; memset(&hd, 0, sizeof (hd)); ntimer = hpet_readl(HPET_ID); ntimer = (ntimer & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT; ntimer++; /* * Register with driver. * Timer0 and Timer1 is used by platform. */ hd.hd_phys_address = vxtime.hpet_address; hd.hd_address = (void __iomem *)fix_to_virt(FIX_HPET_BASE); hd.hd_nirqs = ntimer; hd.hd_flags = HPET_DATA_PLATFORM; hpet_reserve_timer(&hd, 0); #ifdef CONFIG_HPET_EMULATE_RTC hpet_reserve_timer(&hd, 1); #endif hd.hd_irq[0] = HPET_LEGACY_8254; hd.hd_irq[1] = HPET_LEGACY_RTC; if (ntimer > 2) { struct hpet *hpet; struct hpet_timer *timer; int i; hpet = (struct hpet *) fix_to_virt(FIX_HPET_BASE); timer = &hpet->hpet_timers[2]; for (i = 2; i < ntimer; timer++, i++) hd.hd_irq[i] = (timer->hpet_config & Tn_INT_ROUTE_CNF_MASK) >> Tn_INT_ROUTE_CNF_SHIFT; } hpet_alloc(&hd); return 0; } fs_initcall(late_hpet_init); #endif static int hpet_timer_stop_set_go(unsigned long tick) { unsigned int cfg; /* * Stop the timers and reset the main counter. */ cfg = hpet_readl(HPET_CFG); cfg &= ~(HPET_CFG_ENABLE | HPET_CFG_LEGACY); hpet_writel(cfg, HPET_CFG); hpet_writel(0, HPET_COUNTER); hpet_writel(0, HPET_COUNTER + 4); /* * Set up timer 0, as periodic with first interrupt to happen at hpet_tick, * and period also hpet_tick. */ if (hpet_use_timer) { hpet_writel(HPET_TN_ENABLE | HPET_TN_PERIODIC | HPET_TN_SETVAL | HPET_TN_32BIT, HPET_T0_CFG); hpet_writel(hpet_tick, HPET_T0_CMP); /* next interrupt */ hpet_writel(hpet_tick, HPET_T0_CMP); /* period */ cfg |= HPET_CFG_LEGACY; } /* * Go! */ cfg |= HPET_CFG_ENABLE; hpet_writel(cfg, HPET_CFG); return 0; } static int hpet_init(void) { unsigned int id; if (!vxtime.hpet_address) return -1; set_fixmap_nocache(FIX_HPET_BASE, vxtime.hpet_address); __set_fixmap(VSYSCALL_HPET, vxtime.hpet_address, PAGE_KERNEL_VSYSCALL_NOCACHE); /* * Read the period, compute tick and quotient. */ id = hpet_readl(HPET_ID); if (!(id & HPET_ID_VENDOR) || !(id & HPET_ID_NUMBER)) return -1; hpet_period = hpet_readl(HPET_PERIOD); if (hpet_period < 100000 || hpet_period > 100000000) return -1; hpet_tick = (FSEC_PER_TICK + hpet_period / 2) / hpet_period; hpet_use_timer = (id & HPET_ID_LEGSUP); return hpet_timer_stop_set_go(hpet_tick); } static int hpet_reenable(void) { return hpet_timer_stop_set_go(hpet_tick); } #define PIT_MODE 0x43 #define PIT_CH0 0x40 static void __init __pit_init(int val, u8 mode) { unsigned long flags; spin_lock_irqsave(&i8253_lock, flags); outb_p(mode, PIT_MODE); outb_p(val & 0xff, PIT_CH0); /* LSB */ outb_p(val >> 8, PIT_CH0); /* MSB */ spin_unlock_irqrestore(&i8253_lock, flags); } void __init pit_init(void) { __pit_init(LATCH, 0x34); /* binary, mode 2, LSB/MSB, ch 0 */ } void __init pit_stop_interrupt(void) { __pit_init(0, 0x30); /* mode 0 */ } void __init stop_timer_interrupt(void) { char *name; if (vxtime.hpet_address) { name = "HPET"; hpet_timer_stop_set_go(0); } else { name = "PIT"; pit_stop_interrupt(); } printk(KERN_INFO "timer: %s interrupt stopped.\n", name); } int __init time_setup(char *str) { report_lost_ticks = 1; return 1; } static struct irqaction irq0 = { timer_interrupt, IRQF_DISABLED, CPU_MASK_NONE, "timer", NULL, NULL }; void __init time_init(void) { if (nohpet) vxtime.hpet_address = 0; xtime.tv_sec = get_cmos_time(); xtime.tv_nsec = 0; set_normalized_timespec(&wall_to_monotonic, -xtime.tv_sec, -xtime.tv_nsec); if (!hpet_init()) vxtime_hz = (FSEC_PER_SEC + hpet_period / 2) / hpet_period; else vxtime.hpet_address = 0; if (hpet_use_timer) { /* set tick_nsec to use the proper rate for HPET */ tick_nsec = TICK_NSEC_HPET; cpu_khz = hpet_calibrate_tsc(); timename = "HPET"; #ifdef CONFIG_X86_PM_TIMER } else if (pmtmr_ioport && !vxtime.hpet_address) { vxtime_hz = PM_TIMER_FREQUENCY; timename = "PM"; pit_init(); cpu_khz = pit_calibrate_tsc(); #endif } else { pit_init(); cpu_khz = pit_calibrate_tsc(); timename = "PIT"; } vxtime.mode = VXTIME_TSC; vxtime.quot = (USEC_PER_SEC << US_SCALE) / vxtime_hz; vxtime.tsc_quot = (USEC_PER_MSEC << US_SCALE) / cpu_khz; vxtime.last_tsc = get_cycles_sync(); set_cyc2ns_scale(cpu_khz); setup_irq(0, &irq0); #ifndef CONFIG_SMP time_init_gtod(); #endif } /* * Make an educated guess if the TSC is trustworthy and synchronized * over all CPUs. */ __cpuinit int unsynchronized_tsc(void) { #ifdef CONFIG_SMP if (apic_is_clustered_box()) return 1; #endif /* Most intel systems have synchronized TSCs except for multi node systems */ if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL) { #ifdef CONFIG_ACPI /* But TSC doesn't tick in C3 so don't use it there */ if (acpi_fadt.length > 0 && acpi_fadt.plvl3_lat < 1000) return 1; #endif return 0; } /* Assume multi socket systems are not synchronized */ return num_present_cpus() > 1; } /* * Decide what mode gettimeofday should use. */ void time_init_gtod(void) { char *timetype; if (unsynchronized_tsc()) notsc = 1; if (cpu_has(&boot_cpu_data, X86_FEATURE_RDTSCP)) vgetcpu_mode = VGETCPU_RDTSCP; else vgetcpu_mode = VGETCPU_LSL; if (vxtime.hpet_address && notsc) { timetype = hpet_use_timer ? "HPET" : "PIT/HPET"; if (hpet_use_timer) vxtime.last = hpet_readl(HPET_T0_CMP) - hpet_tick; else vxtime.last = hpet_readl(HPET_COUNTER); vxtime.mode = VXTIME_HPET; do_gettimeoffset = do_gettimeoffset_hpet; #ifdef CONFIG_X86_PM_TIMER /* Using PM for gettimeofday is quite slow, but we have no other choice because the TSC is too unreliable on some systems. */ } else if (pmtmr_ioport && !vxtime.hpet_address && notsc) { timetype = "PM"; do_gettimeoffset = do_gettimeoffset_pm; vxtime.mode = VXTIME_PMTMR; sysctl_vsyscall = 0; printk(KERN_INFO "Disabling vsyscall due to use of PM timer\n"); #endif } else { timetype = hpet_use_timer ? "HPET/TSC" : "PIT/TSC"; vxtime.mode = VXTIME_TSC; } printk(KERN_INFO "time.c: Using %ld.%06ld MHz WALL %s GTOD %s timer.\n", vxtime_hz / 1000000, vxtime_hz % 1000000, timename, timetype); printk(KERN_INFO "time.c: Detected %d.%03d MHz processor.\n", cpu_khz / 1000, cpu_khz % 1000); vxtime.quot = (USEC_PER_SEC << US_SCALE) / vxtime_hz; vxtime.tsc_quot = (USEC_PER_MSEC << US_SCALE) / cpu_khz; vxtime.last_tsc = get_cycles_sync(); set_cyc2ns_scale(cpu_khz); } __setup("report_lost_ticks", time_setup); static long clock_cmos_diff; static unsigned long sleep_start; /* * sysfs support for the timer. */ static int timer_suspend(struct sys_device *dev, pm_message_t state) { /* * Estimate time zone so that set_time can update the clock */ long cmos_time = get_cmos_time(); clock_cmos_diff = -cmos_time; clock_cmos_diff += get_seconds(); sleep_start = cmos_time; return 0; } static int timer_resume(struct sys_device *dev) { unsigned long flags; unsigned long sec; unsigned long ctime = get_cmos_time(); long sleep_length = (ctime - sleep_start) * HZ; if (sleep_length < 0) { printk(KERN_WARNING "Time skew detected in timer resume!\n"); /* The time after the resume must not be earlier than the time * before the suspend or some nasty things will happen */ sleep_length = 0; ctime = sleep_start; } if (vxtime.hpet_address) hpet_reenable(); else i8254_timer_resume(); sec = ctime + clock_cmos_diff; write_seqlock_irqsave(&xtime_lock,flags); xtime.tv_sec = sec; xtime.tv_nsec = 0; if (vxtime.mode == VXTIME_HPET) { if (hpet_use_timer) vxtime.last = hpet_readl(HPET_T0_CMP) - hpet_tick; else vxtime.last = hpet_readl(HPET_COUNTER); #ifdef CONFIG_X86_PM_TIMER } else if (vxtime.mode == VXTIME_PMTMR) { pmtimer_resume(); #endif } else vxtime.last_tsc = get_cycles_sync(); write_sequnlock_irqrestore(&xtime_lock,flags); jiffies += sleep_length; monotonic_base += sleep_length * (NSEC_PER_SEC/HZ); touch_softlockup_watchdog(); return 0; } static struct sysdev_class timer_sysclass = { .resume = timer_resume, .suspend = timer_suspend, set_kset_name("timer"), }; /* XXX this driverfs stuff should probably go elsewhere later -john */ static struct sys_device device_timer = { .id = 0, .cls = &timer_sysclass, }; static int time_init_device(void) { int error = sysdev_class_register(&timer_sysclass); if (!error) error = sysdev_register(&device_timer); return error; } device_initcall(time_init_device); #ifdef CONFIG_HPET_EMULATE_RTC /* HPET in LegacyReplacement Mode eats up RTC interrupt line. When, HPET * is enabled, we support RTC interrupt functionality in software. * RTC has 3 kinds of interrupts: * 1) Update Interrupt - generate an interrupt, every sec, when RTC clock * is updated * 2) Alarm Interrupt - generate an interrupt at a specific time of day * 3) Periodic Interrupt - generate periodic interrupt, with frequencies * 2Hz-8192Hz (2Hz-64Hz for non-root user) (all freqs in powers of 2) * (1) and (2) above are implemented using polling at a frequency of * 64 Hz. The exact frequency is a tradeoff between accuracy and interrupt * overhead. (DEFAULT_RTC_INT_FREQ) * For (3), we use interrupts at 64Hz or user specified periodic * frequency, whichever is higher. */ #include <linux/rtc.h> #define DEFAULT_RTC_INT_FREQ 64 #define RTC_NUM_INTS 1 static unsigned long UIE_on; static unsigned long prev_update_sec; static unsigned long AIE_on; static struct rtc_time alarm_time; static unsigned long PIE_on; static unsigned long PIE_freq = DEFAULT_RTC_INT_FREQ; static unsigned long PIE_count; static unsigned long hpet_rtc_int_freq; /* RTC interrupt frequency */ static unsigned int hpet_t1_cmp; /* cached comparator register */ int is_hpet_enabled(void) { return vxtime.hpet_address != 0; } /* * Timer 1 for RTC, we do not use periodic interrupt feature, * even if HPET supports periodic interrupts on Timer 1. * The reason being, to set up a periodic interrupt in HPET, we need to * stop the main counter. And if we do that everytime someone diables/enables * RTC, we will have adverse effect on main kernel timer running on Timer 0. * So, for the time being, simulate the periodic interrupt in software. * * hpet_rtc_timer_init() is called for the first time and during subsequent * interuppts reinit happens through hpet_rtc_timer_reinit(). */ int hpet_rtc_timer_init(void) { unsigned int cfg, cnt; unsigned long flags; if (!is_hpet_enabled()) return 0; /* * Set the counter 1 and enable the interrupts. */ if (PIE_on && (PIE_freq > DEFAULT_RTC_INT_FREQ)) hpet_rtc_int_freq = PIE_freq; else hpet_rtc_int_freq = DEFAULT_RTC_INT_FREQ; local_irq_save(flags); cnt = hpet_readl(HPET_COUNTER); cnt += ((hpet_tick*HZ)/hpet_rtc_int_freq); hpet_writel(cnt, HPET_T1_CMP); hpet_t1_cmp = cnt; cfg = hpet_readl(HPET_T1_CFG); cfg &= ~HPET_TN_PERIODIC; cfg |= HPET_TN_ENABLE | HPET_TN_32BIT; hpet_writel(cfg, HPET_T1_CFG); local_irq_restore(flags); return 1; } static void hpet_rtc_timer_reinit(void) { unsigned int cfg, cnt, ticks_per_int, lost_ints; if (unlikely(!(PIE_on | AIE_on | UIE_on))) { cfg = hpet_readl(HPET_T1_CFG); cfg &= ~HPET_TN_ENABLE; hpet_writel(cfg, HPET_T1_CFG); return; } if (PIE_on && (PIE_freq > DEFAULT_RTC_INT_FREQ)) hpet_rtc_int_freq = PIE_freq; else hpet_rtc_int_freq = DEFAULT_RTC_INT_FREQ; /* It is more accurate to use the comparator value than current count.*/ ticks_per_int = hpet_tick * HZ / hpet_rtc_int_freq; hpet_t1_cmp += ticks_per_int; hpet_writel(hpet_t1_cmp, HPET_T1_CMP); /* * If the interrupt handler was delayed too long, the write above tries * to schedule the next interrupt in the past and the hardware would * not interrupt until the counter had wrapped around. * So we have to check that the comparator wasn't set to a past time. */ cnt = hpet_readl(HPET_COUNTER); if (unlikely((int)(cnt - hpet_t1_cmp) > 0)) { lost_ints = (cnt - hpet_t1_cmp) / ticks_per_int + 1; /* Make sure that, even with the time needed to execute * this code, the next scheduled interrupt has been moved * back to the future: */ lost_ints++; hpet_t1_cmp += lost_ints * ticks_per_int; hpet_writel(hpet_t1_cmp, HPET_T1_CMP); if (PIE_on) PIE_count += lost_ints; printk(KERN_WARNING "rtc: lost some interrupts at %ldHz.\n", hpet_rtc_int_freq); } } /* * The functions below are called from rtc driver. * Return 0 if HPET is not being used. * Otherwise do the necessary changes and return 1. */ int hpet_mask_rtc_irq_bit(unsigned long bit_mask) { if (!is_hpet_enabled()) return 0; if (bit_mask & RTC_UIE) UIE_on = 0; if (bit_mask & RTC_PIE) PIE_on = 0; if (bit_mask & RTC_AIE) AIE_on = 0; return 1; } int hpet_set_rtc_irq_bit(unsigned long bit_mask) { int timer_init_reqd = 0; if (!is_hpet_enabled()) return 0; if (!(PIE_on | AIE_on | UIE_on)) timer_init_reqd = 1; if (bit_mask & RTC_UIE) { UIE_on = 1; } if (bit_mask & RTC_PIE) { PIE_on = 1; PIE_count = 0; } if (bit_mask & RTC_AIE) { AIE_on = 1; } if (timer_init_reqd) hpet_rtc_timer_init(); return 1; } int hpet_set_alarm_time(unsigned char hrs, unsigned char min, unsigned char sec) { if (!is_hpet_enabled()) return 0; alarm_time.tm_hour = hrs; alarm_time.tm_min = min; alarm_time.tm_sec = sec; return 1; } int hpet_set_periodic_freq(unsigned long freq) { if (!is_hpet_enabled()) return 0; PIE_freq = freq; PIE_count = 0; return 1; } int hpet_rtc_dropped_irq(void) { if (!is_hpet_enabled()) return 0; return 1; } irqreturn_t hpet_rtc_interrupt(int irq, void *dev_id, struct pt_regs *regs) { struct rtc_time curr_time; unsigned long rtc_int_flag = 0; int call_rtc_interrupt = 0; hpet_rtc_timer_reinit(); if (UIE_on | AIE_on) { rtc_get_rtc_time(&curr_time); } if (UIE_on) { if (curr_time.tm_sec != prev_update_sec) { /* Set update int info, call real rtc int routine */ call_rtc_interrupt = 1; rtc_int_flag = RTC_UF; prev_update_sec = curr_time.tm_sec; } } if (PIE_on) { PIE_count++; if (PIE_count >= hpet_rtc_int_freq/PIE_freq) { /* Set periodic int info, call real rtc int routine */ call_rtc_interrupt = 1; rtc_int_flag |= RTC_PF; PIE_count = 0; } } if (AIE_on) { if ((curr_time.tm_sec == alarm_time.tm_sec) && (curr_time.tm_min == alarm_time.tm_min) && (curr_time.tm_hour == alarm_time.tm_hour)) { /* Set alarm int info, call real rtc int routine */ call_rtc_interrupt = 1; rtc_int_flag |= RTC_AF; } } if (call_rtc_interrupt) { rtc_int_flag |= (RTC_IRQF | (RTC_NUM_INTS << 8)); rtc_interrupt(rtc_int_flag, dev_id); } return IRQ_HANDLED; } #endif static int __init nohpet_setup(char *s) { nohpet = 1; return 1; } __setup("nohpet", nohpet_setup); int __init notsc_setup(char *s) { notsc = 1; return 1; } __setup("notsc", notsc_setup); |