Linux Audio

Check our new training course

Embedded Linux Audio

Check our new training course
with Creative Commons CC-BY-SA
lecture materials

Bootlin logo

Elixir Cross Referencer

Loading...
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
/*
 * Memory Migration functionality - linux/mm/migration.c
 *
 * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter
 *
 * Page migration was first developed in the context of the memory hotplug
 * project. The main authors of the migration code are:
 *
 * IWAMOTO Toshihiro <iwamoto@valinux.co.jp>
 * Hirokazu Takahashi <taka@valinux.co.jp>
 * Dave Hansen <haveblue@us.ibm.com>
 * Christoph Lameter <clameter@sgi.com>
 */

#include <linux/migrate.h>
#include <linux/module.h>
#include <linux/swap.h>
#include <linux/pagemap.h>
#include <linux/buffer_head.h>
#include <linux/mm_inline.h>
#include <linux/pagevec.h>
#include <linux/rmap.h>
#include <linux/topology.h>
#include <linux/cpu.h>
#include <linux/cpuset.h>
#include <linux/swapops.h>

#include "internal.h"

/* The maximum number of pages to take off the LRU for migration */
#define MIGRATE_CHUNK_SIZE 256

#define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))

/*
 * Isolate one page from the LRU lists. If successful put it onto
 * the indicated list with elevated page count.
 *
 * Result:
 *  -EBUSY: page not on LRU list
 *  0: page removed from LRU list and added to the specified list.
 */
int isolate_lru_page(struct page *page, struct list_head *pagelist)
{
	int ret = -EBUSY;

	if (PageLRU(page)) {
		struct zone *zone = page_zone(page);

		spin_lock_irq(&zone->lru_lock);
		if (PageLRU(page)) {
			ret = 0;
			get_page(page);
			ClearPageLRU(page);
			if (PageActive(page))
				del_page_from_active_list(zone, page);
			else
				del_page_from_inactive_list(zone, page);
			list_add_tail(&page->lru, pagelist);
		}
		spin_unlock_irq(&zone->lru_lock);
	}
	return ret;
}

/*
 * migrate_prep() needs to be called after we have compiled the list of pages
 * to be migrated using isolate_lru_page() but before we begin a series of calls
 * to migrate_pages().
 */
int migrate_prep(void)
{
	/* Must have swap device for migration */
	if (nr_swap_pages <= 0)
		return -ENODEV;

	/*
	 * Clear the LRU lists so pages can be isolated.
	 * Note that pages may be moved off the LRU after we have
	 * drained them. Those pages will fail to migrate like other
	 * pages that may be busy.
	 */
	lru_add_drain_all();

	return 0;
}

static inline void move_to_lru(struct page *page)
{
	list_del(&page->lru);
	if (PageActive(page)) {
		/*
		 * lru_cache_add_active checks that
		 * the PG_active bit is off.
		 */
		ClearPageActive(page);
		lru_cache_add_active(page);
	} else {
		lru_cache_add(page);
	}
	put_page(page);
}

/*
 * Add isolated pages on the list back to the LRU.
 *
 * returns the number of pages put back.
 */
int putback_lru_pages(struct list_head *l)
{
	struct page *page;
	struct page *page2;
	int count = 0;

	list_for_each_entry_safe(page, page2, l, lru) {
		move_to_lru(page);
		count++;
	}
	return count;
}

/*
 * Non migratable page
 */
int fail_migrate_page(struct page *newpage, struct page *page)
{
	return -EIO;
}
EXPORT_SYMBOL(fail_migrate_page);

/*
 * swapout a single page
 * page is locked upon entry, unlocked on exit
 */
static int swap_page(struct page *page)
{
	struct address_space *mapping = page_mapping(page);

	if (page_mapped(page) && mapping)
		if (try_to_unmap(page, 1) != SWAP_SUCCESS)
			goto unlock_retry;

	if (PageDirty(page)) {
		/* Page is dirty, try to write it out here */
		switch(pageout(page, mapping)) {
		case PAGE_KEEP:
		case PAGE_ACTIVATE:
			goto unlock_retry;

		case PAGE_SUCCESS:
			goto retry;

		case PAGE_CLEAN:
			; /* try to free the page below */
		}
	}

	if (PagePrivate(page)) {
		if (!try_to_release_page(page, GFP_KERNEL) ||
		    (!mapping && page_count(page) == 1))
			goto unlock_retry;
	}

	if (remove_mapping(mapping, page)) {
		/* Success */
		unlock_page(page);
		return 0;
	}

unlock_retry:
	unlock_page(page);

retry:
	return -EAGAIN;
}

/*
 * Remove references for a page and establish the new page with the correct
 * basic settings to be able to stop accesses to the page.
 */
int migrate_page_remove_references(struct page *newpage,
				struct page *page, int nr_refs)
{
	struct address_space *mapping = page_mapping(page);
	struct page **radix_pointer;

	/*
	 * Avoid doing any of the following work if the page count
	 * indicates that the page is in use or truncate has removed
	 * the page.
	 */
	if (!mapping || page_mapcount(page) + nr_refs != page_count(page))
		return -EAGAIN;

	/*
	 * Establish swap ptes for anonymous pages or destroy pte
	 * maps for files.
	 *
	 * In order to reestablish file backed mappings the fault handlers
	 * will take the radix tree_lock which may then be used to stop
  	 * processses from accessing this page until the new page is ready.
	 *
	 * A process accessing via a swap pte (an anonymous page) will take a
	 * page_lock on the old page which will block the process until the
	 * migration attempt is complete. At that time the PageSwapCache bit
	 * will be examined. If the page was migrated then the PageSwapCache
	 * bit will be clear and the operation to retrieve the page will be
	 * retried which will find the new page in the radix tree. Then a new
	 * direct mapping may be generated based on the radix tree contents.
	 *
	 * If the page was not migrated then the PageSwapCache bit
	 * is still set and the operation may continue.
	 */
	if (try_to_unmap(page, 1) == SWAP_FAIL)
		/* A vma has VM_LOCKED set -> permanent failure */
		return -EPERM;

	/*
	 * Give up if we were unable to remove all mappings.
	 */
	if (page_mapcount(page))
		return -EAGAIN;

	write_lock_irq(&mapping->tree_lock);

	radix_pointer = (struct page **)radix_tree_lookup_slot(
						&mapping->page_tree,
						page_index(page));

	if (!page_mapping(page) || page_count(page) != nr_refs ||
			*radix_pointer != page) {
		write_unlock_irq(&mapping->tree_lock);
		return -EAGAIN;
	}

	/*
	 * Now we know that no one else is looking at the page.
	 *
	 * Certain minimal information about a page must be available
	 * in order for other subsystems to properly handle the page if they
	 * find it through the radix tree update before we are finished
	 * copying the page.
	 */
	get_page(newpage);
	newpage->index = page->index;
	newpage->mapping = page->mapping;
	if (PageSwapCache(page)) {
		SetPageSwapCache(newpage);
		set_page_private(newpage, page_private(page));
	}

	*radix_pointer = newpage;
	__put_page(page);
	write_unlock_irq(&mapping->tree_lock);

	return 0;
}
EXPORT_SYMBOL(migrate_page_remove_references);

/*
 * Copy the page to its new location
 */
void migrate_page_copy(struct page *newpage, struct page *page)
{
	copy_highpage(newpage, page);

	if (PageError(page))
		SetPageError(newpage);
	if (PageReferenced(page))
		SetPageReferenced(newpage);
	if (PageUptodate(page))
		SetPageUptodate(newpage);
	if (PageActive(page))
		SetPageActive(newpage);
	if (PageChecked(page))
		SetPageChecked(newpage);
	if (PageMappedToDisk(page))
		SetPageMappedToDisk(newpage);

	if (PageDirty(page)) {
		clear_page_dirty_for_io(page);
		set_page_dirty(newpage);
 	}

	ClearPageSwapCache(page);
	ClearPageActive(page);
	ClearPagePrivate(page);
	set_page_private(page, 0);
	page->mapping = NULL;

	/*
	 * If any waiters have accumulated on the new page then
	 * wake them up.
	 */
	if (PageWriteback(newpage))
		end_page_writeback(newpage);
}
EXPORT_SYMBOL(migrate_page_copy);

/*
 * Common logic to directly migrate a single page suitable for
 * pages that do not use PagePrivate.
 *
 * Pages are locked upon entry and exit.
 */
int migrate_page(struct page *newpage, struct page *page)
{
	int rc;

	BUG_ON(PageWriteback(page));	/* Writeback must be complete */

	rc = migrate_page_remove_references(newpage, page, 2);

	if (rc)
		return rc;

	migrate_page_copy(newpage, page);

	/*
	 * Remove auxiliary swap entries and replace
	 * them with real ptes.
	 *
	 * Note that a real pte entry will allow processes that are not
	 * waiting on the page lock to use the new page via the page tables
	 * before the new page is unlocked.
	 */
	remove_from_swap(newpage);
	return 0;
}
EXPORT_SYMBOL(migrate_page);

/*
 * migrate_pages
 *
 * Two lists are passed to this function. The first list
 * contains the pages isolated from the LRU to be migrated.
 * The second list contains new pages that the pages isolated
 * can be moved to. If the second list is NULL then all
 * pages are swapped out.
 *
 * The function returns after 10 attempts or if no pages
 * are movable anymore because to has become empty
 * or no retryable pages exist anymore.
 *
 * Return: Number of pages not migrated when "to" ran empty.
 */
int migrate_pages(struct list_head *from, struct list_head *to,
		  struct list_head *moved, struct list_head *failed)
{
	int retry;
	int nr_failed = 0;
	int pass = 0;
	struct page *page;
	struct page *page2;
	int swapwrite = current->flags & PF_SWAPWRITE;
	int rc;

	if (!swapwrite)
		current->flags |= PF_SWAPWRITE;

redo:
	retry = 0;

	list_for_each_entry_safe(page, page2, from, lru) {
		struct page *newpage = NULL;
		struct address_space *mapping;

		cond_resched();

		rc = 0;
		if (page_count(page) == 1)
			/* page was freed from under us. So we are done. */
			goto next;

		if (to && list_empty(to))
			break;

		/*
		 * Skip locked pages during the first two passes to give the
		 * functions holding the lock time to release the page. Later we
		 * use lock_page() to have a higher chance of acquiring the
		 * lock.
		 */
		rc = -EAGAIN;
		if (pass > 2)
			lock_page(page);
		else
			if (TestSetPageLocked(page))
				goto next;

		/*
		 * Only wait on writeback if we have already done a pass where
		 * we we may have triggered writeouts for lots of pages.
		 */
		if (pass > 0) {
			wait_on_page_writeback(page);
		} else {
			if (PageWriteback(page))
				goto unlock_page;
		}

		/*
		 * Anonymous pages must have swap cache references otherwise
		 * the information contained in the page maps cannot be
		 * preserved.
		 */
		if (PageAnon(page) && !PageSwapCache(page)) {
			if (!add_to_swap(page, GFP_KERNEL)) {
				rc = -ENOMEM;
				goto unlock_page;
			}
		}

		if (!to) {
			rc = swap_page(page);
			goto next;
		}

		newpage = lru_to_page(to);
		lock_page(newpage);

		/*
		 * Pages are properly locked and writeback is complete.
		 * Try to migrate the page.
		 */
		mapping = page_mapping(page);
		if (!mapping)
			goto unlock_both;

		if (mapping->a_ops->migratepage) {
			/*
			 * Most pages have a mapping and most filesystems
			 * should provide a migration function. Anonymous
			 * pages are part of swap space which also has its
			 * own migration function. This is the most common
			 * path for page migration.
			 */
			rc = mapping->a_ops->migratepage(newpage, page);
			goto unlock_both;
                }

		/* Make sure the dirty bit is up to date */
		if (try_to_unmap(page, 1) == SWAP_FAIL) {
			rc = -EPERM;
			goto unlock_both;
		}

		if (page_mapcount(page)) {
			rc = -EAGAIN;
			goto unlock_both;
		}

		/*
		 * Default handling if a filesystem does not provide
		 * a migration function. We can only migrate clean
		 * pages so try to write out any dirty pages first.
		 */
		if (PageDirty(page)) {
			switch (pageout(page, mapping)) {
			case PAGE_KEEP:
			case PAGE_ACTIVATE:
				goto unlock_both;

			case PAGE_SUCCESS:
				unlock_page(newpage);
				goto next;

			case PAGE_CLEAN:
				; /* try to migrate the page below */
			}
                }

		/*
		 * Buffers are managed in a filesystem specific way.
		 * We must have no buffers or drop them.
		 */
		if (!page_has_buffers(page) ||
		    try_to_release_page(page, GFP_KERNEL)) {
			rc = migrate_page(newpage, page);
			goto unlock_both;
		}

		/*
		 * On early passes with mapped pages simply
		 * retry. There may be a lock held for some
		 * buffers that may go away. Later
		 * swap them out.
		 */
		if (pass > 4) {
			/*
			 * Persistently unable to drop buffers..... As a
			 * measure of last resort we fall back to
			 * swap_page().
			 */
			unlock_page(newpage);
			newpage = NULL;
			rc = swap_page(page);
			goto next;
		}

unlock_both:
		unlock_page(newpage);

unlock_page:
		unlock_page(page);

next:
		if (rc == -EAGAIN) {
			retry++;
		} else if (rc) {
			/* Permanent failure */
			list_move(&page->lru, failed);
			nr_failed++;
		} else {
			if (newpage) {
				/* Successful migration. Return page to LRU */
				move_to_lru(newpage);
			}
			list_move(&page->lru, moved);
		}
	}
	if (retry && pass++ < 10)
		goto redo;

	if (!swapwrite)
		current->flags &= ~PF_SWAPWRITE;

	return nr_failed + retry;
}

/*
 * Migration function for pages with buffers. This function can only be used
 * if the underlying filesystem guarantees that no other references to "page"
 * exist.
 */
int buffer_migrate_page(struct page *newpage, struct page *page)
{
	struct address_space *mapping = page->mapping;
	struct buffer_head *bh, *head;
	int rc;

	if (!mapping)
		return -EAGAIN;

	if (!page_has_buffers(page))
		return migrate_page(newpage, page);

	head = page_buffers(page);

	rc = migrate_page_remove_references(newpage, page, 3);

	if (rc)
		return rc;

	bh = head;
	do {
		get_bh(bh);
		lock_buffer(bh);
		bh = bh->b_this_page;

	} while (bh != head);

	ClearPagePrivate(page);
	set_page_private(newpage, page_private(page));
	set_page_private(page, 0);
	put_page(page);
	get_page(newpage);

	bh = head;
	do {
		set_bh_page(bh, newpage, bh_offset(bh));
		bh = bh->b_this_page;

	} while (bh != head);

	SetPagePrivate(newpage);

	migrate_page_copy(newpage, page);

	bh = head;
	do {
		unlock_buffer(bh);
 		put_bh(bh);
		bh = bh->b_this_page;

	} while (bh != head);

	return 0;
}
EXPORT_SYMBOL(buffer_migrate_page);

/*
 * Migrate the list 'pagelist' of pages to a certain destination.
 *
 * Specify destination with either non-NULL vma or dest_node >= 0
 * Return the number of pages not migrated or error code
 */
int migrate_pages_to(struct list_head *pagelist,
			struct vm_area_struct *vma, int dest)
{
	LIST_HEAD(newlist);
	LIST_HEAD(moved);
	LIST_HEAD(failed);
	int err = 0;
	unsigned long offset = 0;
	int nr_pages;
	struct page *page;
	struct list_head *p;

redo:
	nr_pages = 0;
	list_for_each(p, pagelist) {
		if (vma) {
			/*
			 * The address passed to alloc_page_vma is used to
			 * generate the proper interleave behavior. We fake
			 * the address here by an increasing offset in order
			 * to get the proper distribution of pages.
			 *
			 * No decision has been made as to which page
			 * a certain old page is moved to so we cannot
			 * specify the correct address.
			 */
			page = alloc_page_vma(GFP_HIGHUSER, vma,
					offset + vma->vm_start);
			offset += PAGE_SIZE;
		}
		else
			page = alloc_pages_node(dest, GFP_HIGHUSER, 0);

		if (!page) {
			err = -ENOMEM;
			goto out;
		}
		list_add_tail(&page->lru, &newlist);
		nr_pages++;
		if (nr_pages > MIGRATE_CHUNK_SIZE)
			break;
	}
	err = migrate_pages(pagelist, &newlist, &moved, &failed);

	putback_lru_pages(&moved);	/* Call release pages instead ?? */

	if (err >= 0 && list_empty(&newlist) && !list_empty(pagelist))
		goto redo;
out:
	/* Return leftover allocated pages */
	while (!list_empty(&newlist)) {
		page = list_entry(newlist.next, struct page, lru);
		list_del(&page->lru);
		__free_page(page);
	}
	list_splice(&failed, pagelist);
	if (err < 0)
		return err;

	/* Calculate number of leftover pages */
	nr_pages = 0;
	list_for_each(p, pagelist)
		nr_pages++;
	return nr_pages;
}