Linux Audio

Check our new training course

Embedded Linux Audio

Check our new training course
with Creative Commons CC-BY-SA
lecture materials

Bootlin logo

Elixir Cross Referencer

Loading...
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
/*
 *  linux/include/asm-arm/pgtable.h
 *
 *  Copyright (C) 1995-2002 Russell King
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 */
#ifndef _ASMARM_PGTABLE_H
#define _ASMARM_PGTABLE_H

#include <asm-generic/4level-fixup.h>

#include <asm/memory.h>
#include <asm/proc-fns.h>
#include <asm/arch/vmalloc.h>

/*
 * Just any arbitrary offset to the start of the vmalloc VM area: the
 * current 8MB value just means that there will be a 8MB "hole" after the
 * physical memory until the kernel virtual memory starts.  That means that
 * any out-of-bounds memory accesses will hopefully be caught.
 * The vmalloc() routines leaves a hole of 4kB between each vmalloced
 * area for the same reason. ;)
 *
 * Note that platforms may override VMALLOC_START, but they must provide
 * VMALLOC_END.  VMALLOC_END defines the (exclusive) limit of this space,
 * which may not overlap IO space.
 */
#ifndef VMALLOC_START
#define VMALLOC_OFFSET		(8*1024*1024)
#define VMALLOC_START		(((unsigned long)high_memory + VMALLOC_OFFSET) & ~(VMALLOC_OFFSET-1))
#endif

/*
 * Hardware-wise, we have a two level page table structure, where the first
 * level has 4096 entries, and the second level has 256 entries.  Each entry
 * is one 32-bit word.  Most of the bits in the second level entry are used
 * by hardware, and there aren't any "accessed" and "dirty" bits.
 *
 * Linux on the other hand has a three level page table structure, which can
 * be wrapped to fit a two level page table structure easily - using the PGD
 * and PTE only.  However, Linux also expects one "PTE" table per page, and
 * at least a "dirty" bit.
 *
 * Therefore, we tweak the implementation slightly - we tell Linux that we
 * have 2048 entries in the first level, each of which is 8 bytes (iow, two
 * hardware pointers to the second level.)  The second level contains two
 * hardware PTE tables arranged contiguously, followed by Linux versions
 * which contain the state information Linux needs.  We, therefore, end up
 * with 512 entries in the "PTE" level.
 *
 * This leads to the page tables having the following layout:
 *
 *    pgd             pte
 * |        |
 * +--------+ +0
 * |        |-----> +------------+ +0
 * +- - - - + +4    |  h/w pt 0  |
 * |        |-----> +------------+ +1024
 * +--------+ +8    |  h/w pt 1  |
 * |        |       +------------+ +2048
 * +- - - - +       | Linux pt 0 |
 * |        |       +------------+ +3072
 * +--------+       | Linux pt 1 |
 * |        |       +------------+ +4096
 *
 * See L_PTE_xxx below for definitions of bits in the "Linux pt", and
 * PTE_xxx for definitions of bits appearing in the "h/w pt".
 *
 * PMD_xxx definitions refer to bits in the first level page table.
 *
 * The "dirty" bit is emulated by only granting hardware write permission
 * iff the page is marked "writable" and "dirty" in the Linux PTE.  This
 * means that a write to a clean page will cause a permission fault, and
 * the Linux MM layer will mark the page dirty via handle_pte_fault().
 * For the hardware to notice the permission change, the TLB entry must
 * be flushed, and ptep_establish() does that for us.
 *
 * The "accessed" or "young" bit is emulated by a similar method; we only
 * allow accesses to the page if the "young" bit is set.  Accesses to the
 * page will cause a fault, and handle_pte_fault() will set the young bit
 * for us as long as the page is marked present in the corresponding Linux
 * PTE entry.  Again, ptep_establish() will ensure that the TLB is up to
 * date.
 *
 * However, when the "young" bit is cleared, we deny access to the page
 * by clearing the hardware PTE.  Currently Linux does not flush the TLB
 * for us in this case, which means the TLB will retain the transation
 * until either the TLB entry is evicted under pressure, or a context
 * switch which changes the user space mapping occurs.
 */
#define PTRS_PER_PTE		512
#define PTRS_PER_PMD		1
#define PTRS_PER_PGD		2048

/*
 * PMD_SHIFT determines the size of the area a second-level page table can map
 * PGDIR_SHIFT determines what a third-level page table entry can map
 */
#define PMD_SHIFT		21
#define PGDIR_SHIFT		21

#define LIBRARY_TEXT_START	0x0c000000

#ifndef __ASSEMBLY__
extern void __pte_error(const char *file, int line, unsigned long val);
extern void __pmd_error(const char *file, int line, unsigned long val);
extern void __pgd_error(const char *file, int line, unsigned long val);

#define pte_ERROR(pte)		__pte_error(__FILE__, __LINE__, pte_val(pte))
#define pmd_ERROR(pmd)		__pmd_error(__FILE__, __LINE__, pmd_val(pmd))
#define pgd_ERROR(pgd)		__pgd_error(__FILE__, __LINE__, pgd_val(pgd))
#endif /* !__ASSEMBLY__ */

#define PMD_SIZE		(1UL << PMD_SHIFT)
#define PMD_MASK		(~(PMD_SIZE-1))
#define PGDIR_SIZE		(1UL << PGDIR_SHIFT)
#define PGDIR_MASK		(~(PGDIR_SIZE-1))

/*
 * This is the lowest virtual address we can permit any user space
 * mapping to be mapped at.  This is particularly important for
 * non-high vector CPUs.
 */
#define FIRST_USER_ADDRESS	PAGE_SIZE

#define FIRST_USER_PGD_NR	1
#define USER_PTRS_PER_PGD	((TASK_SIZE/PGDIR_SIZE) - FIRST_USER_PGD_NR)

/*
 * ARMv6 supersection address mask and size definitions.
 */
#define SUPERSECTION_SHIFT	24
#define SUPERSECTION_SIZE	(1UL << SUPERSECTION_SHIFT)
#define SUPERSECTION_MASK	(~(SUPERSECTION_SIZE-1))

/*
 * Hardware page table definitions.
 *
 * + Level 1 descriptor (PMD)
 *   - common
 */
#define PMD_TYPE_MASK		(3 << 0)
#define PMD_TYPE_FAULT		(0 << 0)
#define PMD_TYPE_TABLE		(1 << 0)
#define PMD_TYPE_SECT		(2 << 0)
#define PMD_BIT4		(1 << 4)
#define PMD_DOMAIN(x)		((x) << 5)
#define PMD_PROTECTION		(1 << 9)	/* v5 */
/*
 *   - section
 */
#define PMD_SECT_BUFFERABLE	(1 << 2)
#define PMD_SECT_CACHEABLE	(1 << 3)
#define PMD_SECT_AP_WRITE	(1 << 10)
#define PMD_SECT_AP_READ	(1 << 11)
#define PMD_SECT_TEX(x)		((x) << 12)	/* v5 */
#define PMD_SECT_APX		(1 << 15)	/* v6 */
#define PMD_SECT_S		(1 << 16)	/* v6 */
#define PMD_SECT_nG		(1 << 17)	/* v6 */
#define PMD_SECT_SUPER		(1 << 18)	/* v6 */

#define PMD_SECT_UNCACHED	(0)
#define PMD_SECT_BUFFERED	(PMD_SECT_BUFFERABLE)
#define PMD_SECT_WT		(PMD_SECT_CACHEABLE)
#define PMD_SECT_WB		(PMD_SECT_CACHEABLE | PMD_SECT_BUFFERABLE)
#define PMD_SECT_MINICACHE	(PMD_SECT_TEX(1) | PMD_SECT_CACHEABLE)
#define PMD_SECT_WBWA		(PMD_SECT_TEX(1) | PMD_SECT_CACHEABLE | PMD_SECT_BUFFERABLE)
#define PMD_SECT_NONSHARED_DEV	(PMD_SECT_TEX(2))

/*
 *   - coarse table (not used)
 */

/*
 * + Level 2 descriptor (PTE)
 *   - common
 */
#define PTE_TYPE_MASK		(3 << 0)
#define PTE_TYPE_FAULT		(0 << 0)
#define PTE_TYPE_LARGE		(1 << 0)
#define PTE_TYPE_SMALL		(2 << 0)
#define PTE_TYPE_EXT		(3 << 0)	/* v5 */
#define PTE_BUFFERABLE		(1 << 2)
#define PTE_CACHEABLE		(1 << 3)

/*
 *   - extended small page/tiny page
 */
#define PTE_EXT_XN		(1 << 0)	/* v6 */
#define PTE_EXT_AP_MASK		(3 << 4)
#define PTE_EXT_AP0		(1 << 4)
#define PTE_EXT_AP1		(2 << 4)
#define PTE_EXT_AP_UNO_SRO	(0 << 4)
#define PTE_EXT_AP_UNO_SRW	(PTE_EXT_AP0)
#define PTE_EXT_AP_URO_SRW	(PTE_EXT_AP1)
#define PTE_EXT_AP_URW_SRW	(PTE_EXT_AP1|PTE_EXT_AP0)
#define PTE_EXT_TEX(x)		((x) << 6)	/* v5 */
#define PTE_EXT_APX		(1 << 9)	/* v6 */
#define PTE_EXT_SHARED		(1 << 10)	/* v6 */
#define PTE_EXT_NG		(1 << 11)	/* v6 */

/*
 *   - small page
 */
#define PTE_SMALL_AP_MASK	(0xff << 4)
#define PTE_SMALL_AP_UNO_SRO	(0x00 << 4)
#define PTE_SMALL_AP_UNO_SRW	(0x55 << 4)
#define PTE_SMALL_AP_URO_SRW	(0xaa << 4)
#define PTE_SMALL_AP_URW_SRW	(0xff << 4)

/*
 * "Linux" PTE definitions.
 *
 * We keep two sets of PTEs - the hardware and the linux version.
 * This allows greater flexibility in the way we map the Linux bits
 * onto the hardware tables, and allows us to have YOUNG and DIRTY
 * bits.
 *
 * The PTE table pointer refers to the hardware entries; the "Linux"
 * entries are stored 1024 bytes below.
 */
#define L_PTE_PRESENT		(1 << 0)
#define L_PTE_FILE		(1 << 1)	/* only when !PRESENT */
#define L_PTE_YOUNG		(1 << 1)
#define L_PTE_BUFFERABLE	(1 << 2)	/* matches PTE */
#define L_PTE_CACHEABLE		(1 << 3)	/* matches PTE */
#define L_PTE_USER		(1 << 4)
#define L_PTE_WRITE		(1 << 5)
#define L_PTE_EXEC		(1 << 6)
#define L_PTE_DIRTY		(1 << 7)
#define L_PTE_SHARED		(1 << 10)	/* shared between CPUs (v6) */
#define L_PTE_ASID		(1 << 11)	/* non-global (use ASID, v6) */

#ifndef __ASSEMBLY__

#include <asm/domain.h>

#define _PAGE_USER_TABLE	(PMD_TYPE_TABLE | PMD_BIT4 | PMD_DOMAIN(DOMAIN_USER))
#define _PAGE_KERNEL_TABLE	(PMD_TYPE_TABLE | PMD_BIT4 | PMD_DOMAIN(DOMAIN_KERNEL))

/*
 * The following macros handle the cache and bufferable bits...
 */
#define _L_PTE_DEFAULT	L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_CACHEABLE | L_PTE_BUFFERABLE
#define _L_PTE_READ	L_PTE_USER | L_PTE_EXEC

extern pgprot_t		pgprot_kernel;

#define PAGE_NONE       __pgprot(_L_PTE_DEFAULT)
#define PAGE_COPY       __pgprot(_L_PTE_DEFAULT | _L_PTE_READ)
#define PAGE_SHARED     __pgprot(_L_PTE_DEFAULT | _L_PTE_READ | L_PTE_WRITE)
#define PAGE_READONLY   __pgprot(_L_PTE_DEFAULT | _L_PTE_READ)
#define PAGE_KERNEL	pgprot_kernel

#endif /* __ASSEMBLY__ */

/*
 * The table below defines the page protection levels that we insert into our
 * Linux page table version.  These get translated into the best that the
 * architecture can perform.  Note that on most ARM hardware:
 *  1) We cannot do execute protection
 *  2) If we could do execute protection, then read is implied
 *  3) write implies read permissions
 */
#define __P000  PAGE_NONE
#define __P001  PAGE_READONLY
#define __P010  PAGE_COPY
#define __P011  PAGE_COPY
#define __P100  PAGE_READONLY
#define __P101  PAGE_READONLY
#define __P110  PAGE_COPY
#define __P111  PAGE_COPY

#define __S000  PAGE_NONE
#define __S001  PAGE_READONLY
#define __S010  PAGE_SHARED
#define __S011  PAGE_SHARED
#define __S100  PAGE_READONLY
#define __S101  PAGE_READONLY
#define __S110  PAGE_SHARED
#define __S111  PAGE_SHARED

#ifndef __ASSEMBLY__
/*
 * ZERO_PAGE is a global shared page that is always zero: used
 * for zero-mapped memory areas etc..
 */
extern struct page *empty_zero_page;
#define ZERO_PAGE(vaddr)	(empty_zero_page)

#define pte_pfn(pte)		(pte_val(pte) >> PAGE_SHIFT)
#define pfn_pte(pfn,prot)	(__pte(((pfn) << PAGE_SHIFT) | pgprot_val(prot)))

#define pte_none(pte)		(!pte_val(pte))
#define pte_clear(mm,addr,ptep)	set_pte_at((mm),(addr),(ptep), __pte(0))
#define pte_page(pte)		(pfn_to_page(pte_pfn(pte)))
#define pte_offset_kernel(dir,addr)	(pmd_page_kernel(*(dir)) + __pte_index(addr))
#define pte_offset_map(dir,addr)	(pmd_page_kernel(*(dir)) + __pte_index(addr))
#define pte_offset_map_nested(dir,addr)	(pmd_page_kernel(*(dir)) + __pte_index(addr))
#define pte_unmap(pte)		do { } while (0)
#define pte_unmap_nested(pte)	do { } while (0)

#define set_pte(ptep, pte)	cpu_set_pte(ptep,pte)
#define set_pte_at(mm,addr,ptep,pteval) set_pte(ptep,pteval)

/*
 * The following only work if pte_present() is true.
 * Undefined behaviour if not..
 */
#define pte_present(pte)	(pte_val(pte) & L_PTE_PRESENT)
#define pte_read(pte)		(pte_val(pte) & L_PTE_USER)
#define pte_write(pte)		(pte_val(pte) & L_PTE_WRITE)
#define pte_exec(pte)		(pte_val(pte) & L_PTE_EXEC)
#define pte_dirty(pte)		(pte_val(pte) & L_PTE_DIRTY)
#define pte_young(pte)		(pte_val(pte) & L_PTE_YOUNG)

/*
 * The following only works if pte_present() is not true.
 */
#define pte_file(pte)		(pte_val(pte) & L_PTE_FILE)
#define pte_to_pgoff(x)		(pte_val(x) >> 2)
#define pgoff_to_pte(x)		__pte(((x) << 2) | L_PTE_FILE)

#define PTE_FILE_MAX_BITS	30

#define PTE_BIT_FUNC(fn,op) \
static inline pte_t pte_##fn(pte_t pte) { pte_val(pte) op; return pte; }

/*PTE_BIT_FUNC(rdprotect, &= ~L_PTE_USER);*/
/*PTE_BIT_FUNC(mkread,    |= L_PTE_USER);*/
PTE_BIT_FUNC(wrprotect, &= ~L_PTE_WRITE);
PTE_BIT_FUNC(mkwrite,   |= L_PTE_WRITE);
PTE_BIT_FUNC(exprotect, &= ~L_PTE_EXEC);
PTE_BIT_FUNC(mkexec,    |= L_PTE_EXEC);
PTE_BIT_FUNC(mkclean,   &= ~L_PTE_DIRTY);
PTE_BIT_FUNC(mkdirty,   |= L_PTE_DIRTY);
PTE_BIT_FUNC(mkold,     &= ~L_PTE_YOUNG);
PTE_BIT_FUNC(mkyoung,   |= L_PTE_YOUNG);

/*
 * Mark the prot value as uncacheable and unbufferable.
 */
#define pgprot_noncached(prot)	__pgprot(pgprot_val(prot) & ~(L_PTE_CACHEABLE | L_PTE_BUFFERABLE))
#define pgprot_writecombine(prot) __pgprot(pgprot_val(prot) & ~L_PTE_CACHEABLE)

#define pmd_none(pmd)		(!pmd_val(pmd))
#define pmd_present(pmd)	(pmd_val(pmd))
#define pmd_bad(pmd)		(pmd_val(pmd) & 2)

#define copy_pmd(pmdpd,pmdps)		\
	do {				\
		pmdpd[0] = pmdps[0];	\
		pmdpd[1] = pmdps[1];	\
		flush_pmd_entry(pmdpd);	\
	} while (0)

#define pmd_clear(pmdp)			\
	do {				\
		pmdp[0] = __pmd(0);	\
		pmdp[1] = __pmd(0);	\
		clean_pmd_entry(pmdp);	\
	} while (0)

static inline pte_t *pmd_page_kernel(pmd_t pmd)
{
	unsigned long ptr;

	ptr = pmd_val(pmd) & ~(PTRS_PER_PTE * sizeof(void *) - 1);
	ptr += PTRS_PER_PTE * sizeof(void *);

	return __va(ptr);
}

#define pmd_page(pmd) virt_to_page(__va(pmd_val(pmd)))

/*
 * Permanent address of a page. We never have highmem, so this is trivial.
 */
#define pages_to_mb(x)		((x) >> (20 - PAGE_SHIFT))

/*
 * Conversion functions: convert a page and protection to a page entry,
 * and a page entry and page directory to the page they refer to.
 */
#define mk_pte(page,prot)	pfn_pte(page_to_pfn(page),prot)

/*
 * The "pgd_xxx()" functions here are trivial for a folded two-level
 * setup: the pgd is never bad, and a pmd always exists (as it's folded
 * into the pgd entry)
 */
#define pgd_none(pgd)		(0)
#define pgd_bad(pgd)		(0)
#define pgd_present(pgd)	(1)
#define pgd_clear(pgdp)		do { } while (0)
#define set_pgd(pgd,pgdp)	do { } while (0)

/* to find an entry in a page-table-directory */
#define pgd_index(addr)		((addr) >> PGDIR_SHIFT)

#define pgd_offset(mm, addr)	((mm)->pgd+pgd_index(addr))

/* to find an entry in a kernel page-table-directory */
#define pgd_offset_k(addr)	pgd_offset(&init_mm, addr)

/* Find an entry in the second-level page table.. */
#define pmd_offset(dir, addr)	((pmd_t *)(dir))

/* Find an entry in the third-level page table.. */
#define __pte_index(addr)	(((addr) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1))

static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
{
	const unsigned long mask = L_PTE_EXEC | L_PTE_WRITE | L_PTE_USER;
	pte_val(pte) = (pte_val(pte) & ~mask) | (pgprot_val(newprot) & mask);
	return pte;
}

extern pgd_t swapper_pg_dir[PTRS_PER_PGD];

/* Encode and decode a swap entry.
 *
 * We support up to 32GB of swap on 4k machines
 */
#define __swp_type(x)		(((x).val >> 2) & 0x7f)
#define __swp_offset(x)		((x).val >> 9)
#define __swp_entry(type,offset) ((swp_entry_t) { ((type) << 2) | ((offset) << 9) })
#define __pte_to_swp_entry(pte)	((swp_entry_t) { pte_val(pte) })
#define __swp_entry_to_pte(swp)	((pte_t) { (swp).val })

/* Needs to be defined here and not in linux/mm.h, as it is arch dependent */
/* FIXME: this is not correct */
#define kern_addr_valid(addr)	(1)

#include <asm-generic/pgtable.h>

/*
 * We provide our own arch_get_unmapped_area to cope with VIPT caches.
 */
#define HAVE_ARCH_UNMAPPED_AREA

/*
 * remap a physical page `pfn' of size `size' with page protection `prot'
 * into virtual address `from'
 */
#define io_remap_pfn_range(vma,from,pfn,size,prot) \
		remap_pfn_range(vma, from, pfn, size, prot)

#define MK_IOSPACE_PFN(space, pfn)	(pfn)
#define GET_IOSPACE(pfn)		0
#define GET_PFN(pfn)			(pfn)

#define pgtable_cache_init() do { } while (0)

#endif /* !__ASSEMBLY__ */

#endif /* _ASMARM_PGTABLE_H */