Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 | #ifndef _ASM_IO_H #define _ASM_IO_H #include <linux/config.h> /* * This file contains the definitions for the x86 IO instructions * inb/inw/inl/outb/outw/outl and the "string versions" of the same * (insb/insw/insl/outsb/outsw/outsl). You can also use "pausing" * versions of the single-IO instructions (inb_p/inw_p/..). * * This file is not meant to be obfuscating: it's just complicated * to (a) handle it all in a way that makes gcc able to optimize it * as well as possible and (b) trying to avoid writing the same thing * over and over again with slight variations and possibly making a * mistake somewhere. */ /* * Thanks to James van Artsdalen for a better timing-fix than * the two short jumps: using outb's to a nonexistent port seems * to guarantee better timings even on fast machines. * * On the other hand, I'd like to be sure of a non-existent port: * I feel a bit unsafe about using 0x80 (should be safe, though) * * Linus */ /* * Bit simplified and optimized by Jan Hubicka * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999. * * isa_memset_io, isa_memcpy_fromio, isa_memcpy_toio added, * isa_read[wl] and isa_write[wl] fixed * - Arnaldo Carvalho de Melo <acme@conectiva.com.br> */ #define __SLOW_DOWN_IO "\noutb %%al,$0x80" #ifdef REALLY_SLOW_IO #define __FULL_SLOW_DOWN_IO __SLOW_DOWN_IO __SLOW_DOWN_IO __SLOW_DOWN_IO __SLOW_DOWN_IO #else #define __FULL_SLOW_DOWN_IO __SLOW_DOWN_IO #endif /* * Talk about misusing macros.. */ #define __OUT1(s,x) \ static inline void out##s(unsigned x value, unsigned short port) { #define __OUT2(s,s1,s2) \ __asm__ __volatile__ ("out" #s " %" s1 "0,%" s2 "1" #define __OUT(s,s1,x) \ __OUT1(s,x) __OUT2(s,s1,"w") : : "a" (value), "Nd" (port)); } \ __OUT1(s##_p,x) __OUT2(s,s1,"w") __FULL_SLOW_DOWN_IO : : "a" (value), "Nd" (port));} \ #define __IN1(s) \ static inline RETURN_TYPE in##s(unsigned short port) { RETURN_TYPE _v; #define __IN2(s,s1,s2) \ __asm__ __volatile__ ("in" #s " %" s2 "1,%" s1 "0" #define __IN(s,s1,i...) \ __IN1(s) __IN2(s,s1,"w") : "=a" (_v) : "Nd" (port) ,##i ); return _v; } \ __IN1(s##_p) __IN2(s,s1,"w") __FULL_SLOW_DOWN_IO : "=a" (_v) : "Nd" (port) ,##i ); return _v; } \ #define __INS(s) \ static inline void ins##s(unsigned short port, void * addr, unsigned long count) \ { __asm__ __volatile__ ("rep ; ins" #s \ : "=D" (addr), "=c" (count) : "d" (port),"0" (addr),"1" (count)); } #define __OUTS(s) \ static inline void outs##s(unsigned short port, const void * addr, unsigned long count) \ { __asm__ __volatile__ ("rep ; outs" #s \ : "=S" (addr), "=c" (count) : "d" (port),"0" (addr),"1" (count)); } #define RETURN_TYPE unsigned char __IN(b,"") #undef RETURN_TYPE #define RETURN_TYPE unsigned short __IN(w,"") #undef RETURN_TYPE #define RETURN_TYPE unsigned int __IN(l,"") #undef RETURN_TYPE __OUT(b,"b",char) __OUT(w,"w",short) __OUT(l,,int) __INS(b) __INS(w) __INS(l) __OUTS(b) __OUTS(w) __OUTS(l) #define IO_SPACE_LIMIT 0xffff #if defined(__KERNEL__) && __x86_64__ #include <linux/vmalloc.h> #ifndef __i386__ /* * Change virtual addresses to physical addresses and vv. * These are pretty trivial */ static inline unsigned long virt_to_phys(volatile void * address) { return __pa(address); } static inline void * phys_to_virt(unsigned long address) { return __va(address); } #endif /* * Change "struct page" to physical address. */ #define page_to_phys(page) ((dma_addr_t)page_to_pfn(page) << PAGE_SHIFT) #include <asm-generic/iomap.h> extern void __iomem *__ioremap(unsigned long offset, unsigned long size, unsigned long flags); static inline void __iomem * ioremap (unsigned long offset, unsigned long size) { return __ioremap(offset, size, 0); } /* * This one maps high address device memory and turns off caching for that area. * it's useful if some control registers are in such an area and write combining * or read caching is not desirable: */ extern void __iomem * ioremap_nocache (unsigned long offset, unsigned long size); extern void iounmap(volatile void __iomem *addr); /* Use normal IO mappings for DMI */ #define dmi_ioremap ioremap #define dmi_iounmap(x,l) iounmap(x) #define dmi_alloc(l) kmalloc(l, GFP_ATOMIC) /* * ISA I/O bus memory addresses are 1:1 with the physical address. */ #define isa_virt_to_bus virt_to_phys #define isa_page_to_bus page_to_phys #define isa_bus_to_virt phys_to_virt /* * However PCI ones are not necessarily 1:1 and therefore these interfaces * are forbidden in portable PCI drivers. * * Allow them on x86 for legacy drivers, though. */ #define virt_to_bus virt_to_phys #define bus_to_virt phys_to_virt /* * readX/writeX() are used to access memory mapped devices. On some * architectures the memory mapped IO stuff needs to be accessed * differently. On the x86 architecture, we just read/write the * memory location directly. */ static inline __u8 __readb(const volatile void __iomem *addr) { return *(__force volatile __u8 *)addr; } static inline __u16 __readw(const volatile void __iomem *addr) { return *(__force volatile __u16 *)addr; } static inline __u32 __readl(const volatile void __iomem *addr) { return *(__force volatile __u32 *)addr; } static inline __u64 __readq(const volatile void __iomem *addr) { return *(__force volatile __u64 *)addr; } #define readb(x) __readb(x) #define readw(x) __readw(x) #define readl(x) __readl(x) #define readq(x) __readq(x) #define readb_relaxed(a) readb(a) #define readw_relaxed(a) readw(a) #define readl_relaxed(a) readl(a) #define readq_relaxed(a) readq(a) #define __raw_readb readb #define __raw_readw readw #define __raw_readl readl #define __raw_readq readq #define mmiowb() #ifdef CONFIG_UNORDERED_IO static inline void __writel(__u32 val, volatile void __iomem *addr) { volatile __u32 __iomem *target = addr; asm volatile("movnti %1,%0" : "=m" (*target) : "r" (val) : "memory"); } static inline void __writeq(__u64 val, volatile void __iomem *addr) { volatile __u64 __iomem *target = addr; asm volatile("movnti %1,%0" : "=m" (*target) : "r" (val) : "memory"); } #else static inline void __writel(__u32 b, volatile void __iomem *addr) { *(__force volatile __u32 *)addr = b; } static inline void __writeq(__u64 b, volatile void __iomem *addr) { *(__force volatile __u64 *)addr = b; } #endif static inline void __writeb(__u8 b, volatile void __iomem *addr) { *(__force volatile __u8 *)addr = b; } static inline void __writew(__u16 b, volatile void __iomem *addr) { *(__force volatile __u16 *)addr = b; } #define writeq(val,addr) __writeq((val),(addr)) #define writel(val,addr) __writel((val),(addr)) #define writew(val,addr) __writew((val),(addr)) #define writeb(val,addr) __writeb((val),(addr)) #define __raw_writeb writeb #define __raw_writew writew #define __raw_writel writel #define __raw_writeq writeq void __memcpy_fromio(void*,unsigned long,unsigned); void __memcpy_toio(unsigned long,const void*,unsigned); static inline void memcpy_fromio(void *to, const volatile void __iomem *from, unsigned len) { __memcpy_fromio(to,(unsigned long)from,len); } static inline void memcpy_toio(volatile void __iomem *to, const void *from, unsigned len) { __memcpy_toio((unsigned long)to,from,len); } void memset_io(volatile void __iomem *a, int b, size_t c); /* * ISA space is 'always mapped' on a typical x86 system, no need to * explicitly ioremap() it. The fact that the ISA IO space is mapped * to PAGE_OFFSET is pure coincidence - it does not mean ISA values * are physical addresses. The following constant pointer can be * used as the IO-area pointer (it can be iounmapped as well, so the * analogy with PCI is quite large): */ #define __ISA_IO_base ((char __iomem *)(PAGE_OFFSET)) #define isa_readb(a) readb(__ISA_IO_base + (a)) #define isa_readw(a) readw(__ISA_IO_base + (a)) #define isa_readl(a) readl(__ISA_IO_base + (a)) #define isa_writeb(b,a) writeb(b,__ISA_IO_base + (a)) #define isa_writew(w,a) writew(w,__ISA_IO_base + (a)) #define isa_writel(l,a) writel(l,__ISA_IO_base + (a)) #define isa_memset_io(a,b,c) memset_io(__ISA_IO_base + (a),(b),(c)) #define isa_memcpy_fromio(a,b,c) memcpy_fromio((a),__ISA_IO_base + (b),(c)) #define isa_memcpy_toio(a,b,c) memcpy_toio(__ISA_IO_base + (a),(b),(c)) /* * Again, x86-64 does not require mem IO specific function. */ #define eth_io_copy_and_sum(a,b,c,d) eth_copy_and_sum((a),(void *)(b),(c),(d)) #define isa_eth_io_copy_and_sum(a,b,c,d) eth_copy_and_sum((a),(void *)(__ISA_IO_base + (b)),(c),(d)) /** * check_signature - find BIOS signatures * @io_addr: mmio address to check * @signature: signature block * @length: length of signature * * Perform a signature comparison with the mmio address io_addr. This * address should have been obtained by ioremap. * Returns 1 on a match. */ static inline int check_signature(void __iomem *io_addr, const unsigned char *signature, int length) { int retval = 0; do { if (readb(io_addr) != *signature) goto out; io_addr++; signature++; length--; } while (length); retval = 1; out: return retval; } /* Nothing to do */ #define dma_cache_inv(_start,_size) do { } while (0) #define dma_cache_wback(_start,_size) do { } while (0) #define dma_cache_wback_inv(_start,_size) do { } while (0) #define flush_write_buffers() extern int iommu_bio_merge; #define BIO_VMERGE_BOUNDARY iommu_bio_merge /* * Convert a physical pointer to a virtual kernel pointer for /dev/mem * access */ #define xlate_dev_mem_ptr(p) __va(p) /* * Convert a virtual cached pointer to an uncached pointer */ #define xlate_dev_kmem_ptr(p) p #endif /* __KERNEL__ */ #endif |