Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 | /******************************************************************************* * * Module Name: utmath - Integer math support routines * ******************************************************************************/ /* * Copyright (C) 2000 - 2006, R. Byron Moore * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions, and the following disclaimer, * without modification. * 2. Redistributions in binary form must reproduce at minimum a disclaimer * substantially similar to the "NO WARRANTY" disclaimer below * ("Disclaimer") and any redistribution must be conditioned upon * including a substantially similar Disclaimer requirement for further * binary redistribution. * 3. Neither the names of the above-listed copyright holders nor the names * of any contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * Alternatively, this software may be distributed under the terms of the * GNU General Public License ("GPL") version 2 as published by the Free * Software Foundation. * * NO WARRANTY * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGES. */ #include <acpi/acpi.h> #define _COMPONENT ACPI_UTILITIES ACPI_MODULE_NAME("utmath") /* * Support for double-precision integer divide. This code is included here * in order to support kernel environments where the double-precision math * library is not available. */ #ifndef ACPI_USE_NATIVE_DIVIDE /******************************************************************************* * * FUNCTION: acpi_ut_short_divide * * PARAMETERS: Dividend - 64-bit dividend * Divisor - 32-bit divisor * out_quotient - Pointer to where the quotient is returned * out_remainder - Pointer to where the remainder is returned * * RETURN: Status (Checks for divide-by-zero) * * DESCRIPTION: Perform a short (maximum 64 bits divided by 32 bits) * divide and modulo. The result is a 64-bit quotient and a * 32-bit remainder. * ******************************************************************************/ acpi_status acpi_ut_short_divide(acpi_integer dividend, u32 divisor, acpi_integer * out_quotient, u32 * out_remainder) { union uint64_overlay dividend_ovl; union uint64_overlay quotient; u32 remainder32; ACPI_FUNCTION_TRACE("ut_short_divide"); /* Always check for a zero divisor */ if (divisor == 0) { ACPI_ERROR((AE_INFO, "Divide by zero")); return_ACPI_STATUS(AE_AML_DIVIDE_BY_ZERO); } dividend_ovl.full = dividend; /* * The quotient is 64 bits, the remainder is always 32 bits, * and is generated by the second divide. */ ACPI_DIV_64_BY_32(0, dividend_ovl.part.hi, divisor, quotient.part.hi, remainder32); ACPI_DIV_64_BY_32(remainder32, dividend_ovl.part.lo, divisor, quotient.part.lo, remainder32); /* Return only what was requested */ if (out_quotient) { *out_quotient = quotient.full; } if (out_remainder) { *out_remainder = remainder32; } return_ACPI_STATUS(AE_OK); } /******************************************************************************* * * FUNCTION: acpi_ut_divide * * PARAMETERS: in_dividend - Dividend * in_divisor - Divisor * out_quotient - Pointer to where the quotient is returned * out_remainder - Pointer to where the remainder is returned * * RETURN: Status (Checks for divide-by-zero) * * DESCRIPTION: Perform a divide and modulo. * ******************************************************************************/ acpi_status acpi_ut_divide(acpi_integer in_dividend, acpi_integer in_divisor, acpi_integer * out_quotient, acpi_integer * out_remainder) { union uint64_overlay dividend; union uint64_overlay divisor; union uint64_overlay quotient; union uint64_overlay remainder; union uint64_overlay normalized_dividend; union uint64_overlay normalized_divisor; u32 partial1; union uint64_overlay partial2; union uint64_overlay partial3; ACPI_FUNCTION_TRACE("ut_divide"); /* Always check for a zero divisor */ if (in_divisor == 0) { ACPI_ERROR((AE_INFO, "Divide by zero")); return_ACPI_STATUS(AE_AML_DIVIDE_BY_ZERO); } divisor.full = in_divisor; dividend.full = in_dividend; if (divisor.part.hi == 0) { /* * 1) Simplest case is where the divisor is 32 bits, we can * just do two divides */ remainder.part.hi = 0; /* * The quotient is 64 bits, the remainder is always 32 bits, * and is generated by the second divide. */ ACPI_DIV_64_BY_32(0, dividend.part.hi, divisor.part.lo, quotient.part.hi, partial1); ACPI_DIV_64_BY_32(partial1, dividend.part.lo, divisor.part.lo, quotient.part.lo, remainder.part.lo); } else { /* * 2) The general case where the divisor is a full 64 bits * is more difficult */ quotient.part.hi = 0; normalized_dividend = dividend; normalized_divisor = divisor; /* Normalize the operands (shift until the divisor is < 32 bits) */ do { ACPI_SHIFT_RIGHT_64(normalized_divisor.part.hi, normalized_divisor.part.lo); ACPI_SHIFT_RIGHT_64(normalized_dividend.part.hi, normalized_dividend.part.lo); } while (normalized_divisor.part.hi != 0); /* Partial divide */ ACPI_DIV_64_BY_32(normalized_dividend.part.hi, normalized_dividend.part.lo, normalized_divisor.part.lo, quotient.part.lo, partial1); /* * The quotient is always 32 bits, and simply requires adjustment. * The 64-bit remainder must be generated. */ partial1 = quotient.part.lo * divisor.part.hi; partial2.full = (acpi_integer) quotient.part.lo * divisor.part.lo; partial3.full = (acpi_integer) partial2.part.hi + partial1; remainder.part.hi = partial3.part.lo; remainder.part.lo = partial2.part.lo; if (partial3.part.hi == 0) { if (partial3.part.lo >= dividend.part.hi) { if (partial3.part.lo == dividend.part.hi) { if (partial2.part.lo > dividend.part.lo) { quotient.part.lo--; remainder.full -= divisor.full; } } else { quotient.part.lo--; remainder.full -= divisor.full; } } remainder.full = remainder.full - dividend.full; remainder.part.hi = (u32) - ((s32) remainder.part.hi); remainder.part.lo = (u32) - ((s32) remainder.part.lo); if (remainder.part.lo) { remainder.part.hi--; } } } /* Return only what was requested */ if (out_quotient) { *out_quotient = quotient.full; } if (out_remainder) { *out_remainder = remainder.full; } return_ACPI_STATUS(AE_OK); } #else /******************************************************************************* * * FUNCTION: acpi_ut_short_divide, acpi_ut_divide * * PARAMETERS: See function headers above * * DESCRIPTION: Native versions of the ut_divide functions. Use these if either * 1) The target is a 64-bit platform and therefore 64-bit * integer math is supported directly by the machine. * 2) The target is a 32-bit or 16-bit platform, and the * double-precision integer math library is available to * perform the divide. * ******************************************************************************/ acpi_status acpi_ut_short_divide(acpi_integer in_dividend, u32 divisor, acpi_integer * out_quotient, u32 * out_remainder) { ACPI_FUNCTION_TRACE("ut_short_divide"); /* Always check for a zero divisor */ if (divisor == 0) { ACPI_ERROR((AE_INFO, "Divide by zero")); return_ACPI_STATUS(AE_AML_DIVIDE_BY_ZERO); } /* Return only what was requested */ if (out_quotient) { *out_quotient = in_dividend / divisor; } if (out_remainder) { *out_remainder = (u32) in_dividend % divisor; } return_ACPI_STATUS(AE_OK); } acpi_status acpi_ut_divide(acpi_integer in_dividend, acpi_integer in_divisor, acpi_integer * out_quotient, acpi_integer * out_remainder) { ACPI_FUNCTION_TRACE("ut_divide"); /* Always check for a zero divisor */ if (in_divisor == 0) { ACPI_ERROR((AE_INFO, "Divide by zero")); return_ACPI_STATUS(AE_AML_DIVIDE_BY_ZERO); } /* Return only what was requested */ if (out_quotient) { *out_quotient = in_dividend / in_divisor; } if (out_remainder) { *out_remainder = in_dividend % in_divisor; } return_ACPI_STATUS(AE_OK); } #endif |