Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 | /* * linux/drivers/video/fbcvt.c - VESA(TM) Coordinated Video Timings * * Copyright (C) 2005 Antonino Daplas <adaplas@pol.net> * * Based from the VESA(TM) Coordinated Video Timing Generator by * Graham Loveridge April 9, 2003 available at * http://www.vesa.org/public/CVT/CVTd6r1.xls * * This file is subject to the terms and conditions of the GNU General Public * License. See the file COPYING in the main directory of this archive * for more details. * */ #include <linux/fb.h> #define FB_CVT_CELLSIZE 8 #define FB_CVT_GTF_C 40 #define FB_CVT_GTF_J 20 #define FB_CVT_GTF_K 128 #define FB_CVT_GTF_M 600 #define FB_CVT_MIN_VSYNC_BP 550 #define FB_CVT_MIN_VPORCH 3 #define FB_CVT_MIN_BPORCH 6 #define FB_CVT_RB_MIN_VBLANK 460 #define FB_CVT_RB_HBLANK 160 #define FB_CVT_RB_V_FPORCH 3 #define FB_CVT_FLAG_REDUCED_BLANK 1 #define FB_CVT_FLAG_MARGINS 2 #define FB_CVT_FLAG_INTERLACED 4 struct fb_cvt_data { u32 xres; u32 yres; u32 refresh; u32 f_refresh; u32 pixclock; u32 hperiod; u32 hblank; u32 hfreq; u32 htotal; u32 vtotal; u32 vsync; u32 hsync; u32 h_front_porch; u32 h_back_porch; u32 v_front_porch; u32 v_back_porch; u32 h_margin; u32 v_margin; u32 interlace; u32 aspect_ratio; u32 active_pixels; u32 flags; u32 status; }; static int fb_cvt_vbi_tab[] = { 4, /* 4:3 */ 5, /* 16:9 */ 6, /* 16:10 */ 7, /* 5:4 */ 7, /* 15:9 */ 8, /* reserved */ 9, /* reserved */ 10 /* custom */ }; /* returns hperiod * 1000 */ static u32 fb_cvt_hperiod(struct fb_cvt_data *cvt) { u32 num = 1000000000/cvt->f_refresh; u32 den; if (cvt->flags & FB_CVT_FLAG_REDUCED_BLANK) { num -= FB_CVT_RB_MIN_VBLANK * 1000; den = 2 * (cvt->yres/cvt->interlace + 2 * cvt->v_margin); } else { num -= FB_CVT_MIN_VSYNC_BP * 1000; den = 2 * (cvt->yres/cvt->interlace + cvt->v_margin * 2 + FB_CVT_MIN_VPORCH + cvt->interlace/2); } return 2 * (num/den); } /* returns ideal duty cycle * 1000 */ static u32 fb_cvt_ideal_duty_cycle(struct fb_cvt_data *cvt) { u32 c_prime = (FB_CVT_GTF_C - FB_CVT_GTF_J) * (FB_CVT_GTF_K) + 256 * FB_CVT_GTF_J; u32 m_prime = (FB_CVT_GTF_K * FB_CVT_GTF_M); u32 h_period_est = cvt->hperiod; return (1000 * c_prime - ((m_prime * h_period_est)/1000))/256; } static u32 fb_cvt_hblank(struct fb_cvt_data *cvt) { u32 hblank = 0; if (cvt->flags & FB_CVT_FLAG_REDUCED_BLANK) hblank = FB_CVT_RB_HBLANK; else { u32 ideal_duty_cycle = fb_cvt_ideal_duty_cycle(cvt); u32 active_pixels = cvt->active_pixels; if (ideal_duty_cycle < 20000) hblank = (active_pixels * 20000)/ (100000 - 20000); else { hblank = (active_pixels * ideal_duty_cycle)/ (100000 - ideal_duty_cycle); } } hblank &= ~((2 * FB_CVT_CELLSIZE) - 1); return hblank; } static u32 fb_cvt_hsync(struct fb_cvt_data *cvt) { u32 hsync; if (cvt->flags & FB_CVT_FLAG_REDUCED_BLANK) hsync = 32; else hsync = (FB_CVT_CELLSIZE * cvt->htotal)/100; hsync &= ~(FB_CVT_CELLSIZE - 1); return hsync; } static u32 fb_cvt_vbi_lines(struct fb_cvt_data *cvt) { u32 vbi_lines, min_vbi_lines, act_vbi_lines; if (cvt->flags & FB_CVT_FLAG_REDUCED_BLANK) { vbi_lines = (1000 * FB_CVT_RB_MIN_VBLANK)/cvt->hperiod + 1; min_vbi_lines = FB_CVT_RB_V_FPORCH + cvt->vsync + FB_CVT_MIN_BPORCH; } else { vbi_lines = (FB_CVT_MIN_VSYNC_BP * 1000)/cvt->hperiod + 1 + FB_CVT_MIN_VPORCH; min_vbi_lines = cvt->vsync + FB_CVT_MIN_BPORCH + FB_CVT_MIN_VPORCH; } if (vbi_lines < min_vbi_lines) act_vbi_lines = min_vbi_lines; else act_vbi_lines = vbi_lines; return act_vbi_lines; } static u32 fb_cvt_vtotal(struct fb_cvt_data *cvt) { u32 vtotal = cvt->yres/cvt->interlace; vtotal += 2 * cvt->v_margin + cvt->interlace/2 + fb_cvt_vbi_lines(cvt); vtotal |= cvt->interlace/2; return vtotal; } static u32 fb_cvt_pixclock(struct fb_cvt_data *cvt) { u32 pixclock; if (cvt->flags & FB_CVT_FLAG_REDUCED_BLANK) pixclock = (cvt->f_refresh * cvt->vtotal * cvt->htotal)/1000; else pixclock = (cvt->htotal * 1000000)/cvt->hperiod; pixclock /= 250; pixclock *= 250; pixclock *= 1000; return pixclock; } static u32 fb_cvt_aspect_ratio(struct fb_cvt_data *cvt) { u32 xres = cvt->xres; u32 yres = cvt->yres; u32 aspect = -1; if (xres == (yres * 4)/3 && !((yres * 4) % 3)) aspect = 0; else if (xres == (yres * 16)/9 && !((yres * 16) % 9)) aspect = 1; else if (xres == (yres * 16)/10 && !((yres * 16) % 10)) aspect = 2; else if (xres == (yres * 5)/4 && !((yres * 5) % 4)) aspect = 3; else if (xres == (yres * 15)/9 && !((yres * 15) % 9)) aspect = 4; else { printk(KERN_INFO "fbcvt: Aspect ratio not CVT " "standard\n"); aspect = 7; cvt->status = 1; } return aspect; } static void fb_cvt_print_name(struct fb_cvt_data *cvt) { u32 pixcount, pixcount_mod; int cnt = 255, offset = 0, read = 0; u8 *buf = kzalloc(256, GFP_KERNEL); if (!buf) return; pixcount = (cvt->xres * (cvt->yres/cvt->interlace))/1000000; pixcount_mod = (cvt->xres * (cvt->yres/cvt->interlace)) % 1000000; pixcount_mod /= 1000; read = snprintf(buf+offset, cnt, "fbcvt: %dx%d@%d: CVT Name - ", cvt->xres, cvt->yres, cvt->refresh); offset += read; cnt -= read; if (cvt->status) snprintf(buf+offset, cnt, "Not a CVT standard - %d.%03d Mega " "Pixel Image\n", pixcount, pixcount_mod); else { if (pixcount) { read = snprintf(buf+offset, cnt, "%d", pixcount); cnt -= read; offset += read; } read = snprintf(buf+offset, cnt, ".%03dM", pixcount_mod); cnt -= read; offset += read; if (cvt->aspect_ratio == 0) read = snprintf(buf+offset, cnt, "3"); else if (cvt->aspect_ratio == 3) read = snprintf(buf+offset, cnt, "4"); else if (cvt->aspect_ratio == 1 || cvt->aspect_ratio == 4) read = snprintf(buf+offset, cnt, "9"); else if (cvt->aspect_ratio == 2) read = snprintf(buf+offset, cnt, "A"); else read = 0; cnt -= read; offset += read; if (cvt->flags & FB_CVT_FLAG_REDUCED_BLANK) { read = snprintf(buf+offset, cnt, "-R"); cnt -= read; offset += read; } } printk(KERN_INFO "%s\n", buf); kfree(buf); } static void fb_cvt_convert_to_mode(struct fb_cvt_data *cvt, struct fb_videomode *mode) { mode->refresh = cvt->f_refresh; mode->pixclock = KHZ2PICOS(cvt->pixclock/1000); mode->left_margin = cvt->h_back_porch; mode->right_margin = cvt->h_front_porch; mode->hsync_len = cvt->hsync; mode->upper_margin = cvt->v_back_porch; mode->lower_margin = cvt->v_front_porch; mode->vsync_len = cvt->vsync; mode->sync &= ~(FB_SYNC_HOR_HIGH_ACT | FB_SYNC_VERT_HIGH_ACT); if (cvt->flags & FB_CVT_FLAG_REDUCED_BLANK) mode->sync |= FB_SYNC_HOR_HIGH_ACT; else mode->sync |= FB_SYNC_VERT_HIGH_ACT; } /* * fb_find_mode_cvt - calculate mode using VESA(TM) CVT * @mode: pointer to fb_videomode; xres, yres, refresh and vmode must be * pre-filled with the desired values * @margins: add margin to calculation (1.8% of xres and yres) * @rb: compute with reduced blanking (for flatpanels) * * RETURNS: * 0 for success * @mode is filled with computed values. If interlaced, the refresh field * will be filled with the field rate (2x the frame rate) * * DESCRIPTION: * Computes video timings using VESA(TM) Coordinated Video Timings */ int fb_find_mode_cvt(struct fb_videomode *mode, int margins, int rb) { struct fb_cvt_data cvt; memset(&cvt, 0, sizeof(cvt)); if (margins) cvt.flags |= FB_CVT_FLAG_MARGINS; if (rb) cvt.flags |= FB_CVT_FLAG_REDUCED_BLANK; if (mode->vmode & FB_VMODE_INTERLACED) cvt.flags |= FB_CVT_FLAG_INTERLACED; cvt.xres = mode->xres; cvt.yres = mode->yres; cvt.refresh = mode->refresh; cvt.f_refresh = cvt.refresh; cvt.interlace = 1; if (!cvt.xres || !cvt.yres || !cvt.refresh) { printk(KERN_INFO "fbcvt: Invalid input parameters\n"); return 1; } if (!(cvt.refresh == 50 || cvt.refresh == 60 || cvt.refresh == 70 || cvt.refresh == 85)) { printk(KERN_INFO "fbcvt: Refresh rate not CVT " "standard\n"); cvt.status = 1; } cvt.xres &= ~(FB_CVT_CELLSIZE - 1); if (cvt.flags & FB_CVT_FLAG_INTERLACED) { cvt.interlace = 2; cvt.f_refresh *= 2; } if (cvt.flags & FB_CVT_FLAG_REDUCED_BLANK) { if (cvt.refresh != 60) { printk(KERN_INFO "fbcvt: 60Hz refresh rate " "advised for reduced blanking\n"); cvt.status = 1; } } if (cvt.flags & FB_CVT_FLAG_MARGINS) { cvt.h_margin = (cvt.xres * 18)/1000; cvt.h_margin &= ~(FB_CVT_CELLSIZE - 1); cvt.v_margin = ((cvt.yres/cvt.interlace)* 18)/1000; } cvt.aspect_ratio = fb_cvt_aspect_ratio(&cvt); cvt.active_pixels = cvt.xres + 2 * cvt.h_margin; cvt.hperiod = fb_cvt_hperiod(&cvt); cvt.vsync = fb_cvt_vbi_tab[cvt.aspect_ratio]; cvt.vtotal = fb_cvt_vtotal(&cvt); cvt.hblank = fb_cvt_hblank(&cvt); cvt.htotal = cvt.active_pixels + cvt.hblank; cvt.hsync = fb_cvt_hsync(&cvt); cvt.pixclock = fb_cvt_pixclock(&cvt); cvt.hfreq = cvt.pixclock/cvt.htotal; cvt.h_back_porch = cvt.hblank/2 + cvt.h_margin; cvt.h_front_porch = cvt.hblank - cvt.hsync - cvt.h_back_porch + 2 * cvt.h_margin; cvt.v_back_porch = 3 + cvt.v_margin; cvt.v_front_porch = cvt.vtotal - cvt.yres/cvt.interlace - cvt.v_back_porch - cvt.vsync; fb_cvt_print_name(&cvt); fb_cvt_convert_to_mode(&cvt, mode); return 0; } EXPORT_SYMBOL(fb_find_mode_cvt); |