Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 | /* * * Copyright (c) 1993 Ning and David Mosberger. This is based on code originally written by Bas Laarhoven (bas@vimec.nl) and David L. Brown, Jr., and incorporates improvements suggested by Kai Harrekilde-Petersen. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; see the file COPYING. If not, write to the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. * * $Source: /homes/cvs/ftape-stacked/ftape/lowlevel/ftape-ecc.c,v $ * $Revision: 1.3 $ * $Date: 1997/10/05 19:18:10 $ * * This file contains the Reed-Solomon error correction code * for the QIC-40/80 floppy-tape driver for Linux. */ #include <linux/ftape.h> #include "../lowlevel/ftape-tracing.h" #include "../lowlevel/ftape-ecc.h" /* Machines that are big-endian should define macro BIG_ENDIAN. * Unfortunately, there doesn't appear to be a standard include file * that works for all OSs. */ #if defined(__sparc__) || defined(__hppa) #define BIG_ENDIAN #endif /* __sparc__ || __hppa */ #if defined(__mips__) #error Find a smart way to determine the Endianness of the MIPS CPU #endif /* Notice: to minimize the potential for confusion, we use r to * denote the independent variable of the polynomials in the * Galois Field GF(2^8). We reserve x for polynomials that * that have coefficients in GF(2^8). * * The Galois Field in which coefficient arithmetic is performed are * the polynomials over Z_2 (i.e., 0 and 1) modulo the irreducible * polynomial f(r), where f(r)=r^8 + r^7 + r^2 + r + 1. A polynomial * is represented as a byte with the MSB as the coefficient of r^7 and * the LSB as the coefficient of r^0. For example, the binary * representation of f(x) is 0x187 (of course, this doesn't fit into 8 * bits). In this field, the polynomial r is a primitive element. * That is, r^i with i in 0,...,255 enumerates all elements in the * field. * * The generator polynomial for the QIC-80 ECC is * * g(x) = x^3 + r^105*x^2 + r^105*x + 1 * * which can be factored into: * * g(x) = (x-r^-1)(x-r^0)(x-r^1) * * the byte representation of the coefficients are: * * r^105 = 0xc0 * r^-1 = 0xc3 * r^0 = 0x01 * r^1 = 0x02 * * Notice that r^-1 = r^254 as exponent arithmetic is performed * modulo 2^8-1 = 255. * * For more information on Galois Fields and Reed-Solomon codes, refer * to any good book. I found _An Introduction to Error Correcting * Codes with Applications_ by S. A. Vanstone and P. C. van Oorschot * to be a good introduction into the former. _CODING THEORY: The * Essentials_ I found very useful for its concise description of * Reed-Solomon encoding/decoding. * */ typedef __u8 Matrix[3][3]; /* * gfpow[] is defined such that gfpow[i] returns r^i if * i is in the range [0..255]. */ static const __u8 gfpow[] = { 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x87, 0x89, 0x95, 0xad, 0xdd, 0x3d, 0x7a, 0xf4, 0x6f, 0xde, 0x3b, 0x76, 0xec, 0x5f, 0xbe, 0xfb, 0x71, 0xe2, 0x43, 0x86, 0x8b, 0x91, 0xa5, 0xcd, 0x1d, 0x3a, 0x74, 0xe8, 0x57, 0xae, 0xdb, 0x31, 0x62, 0xc4, 0x0f, 0x1e, 0x3c, 0x78, 0xf0, 0x67, 0xce, 0x1b, 0x36, 0x6c, 0xd8, 0x37, 0x6e, 0xdc, 0x3f, 0x7e, 0xfc, 0x7f, 0xfe, 0x7b, 0xf6, 0x6b, 0xd6, 0x2b, 0x56, 0xac, 0xdf, 0x39, 0x72, 0xe4, 0x4f, 0x9e, 0xbb, 0xf1, 0x65, 0xca, 0x13, 0x26, 0x4c, 0x98, 0xb7, 0xe9, 0x55, 0xaa, 0xd3, 0x21, 0x42, 0x84, 0x8f, 0x99, 0xb5, 0xed, 0x5d, 0xba, 0xf3, 0x61, 0xc2, 0x03, 0x06, 0x0c, 0x18, 0x30, 0x60, 0xc0, 0x07, 0x0e, 0x1c, 0x38, 0x70, 0xe0, 0x47, 0x8e, 0x9b, 0xb1, 0xe5, 0x4d, 0x9a, 0xb3, 0xe1, 0x45, 0x8a, 0x93, 0xa1, 0xc5, 0x0d, 0x1a, 0x34, 0x68, 0xd0, 0x27, 0x4e, 0x9c, 0xbf, 0xf9, 0x75, 0xea, 0x53, 0xa6, 0xcb, 0x11, 0x22, 0x44, 0x88, 0x97, 0xa9, 0xd5, 0x2d, 0x5a, 0xb4, 0xef, 0x59, 0xb2, 0xe3, 0x41, 0x82, 0x83, 0x81, 0x85, 0x8d, 0x9d, 0xbd, 0xfd, 0x7d, 0xfa, 0x73, 0xe6, 0x4b, 0x96, 0xab, 0xd1, 0x25, 0x4a, 0x94, 0xaf, 0xd9, 0x35, 0x6a, 0xd4, 0x2f, 0x5e, 0xbc, 0xff, 0x79, 0xf2, 0x63, 0xc6, 0x0b, 0x16, 0x2c, 0x58, 0xb0, 0xe7, 0x49, 0x92, 0xa3, 0xc1, 0x05, 0x0a, 0x14, 0x28, 0x50, 0xa0, 0xc7, 0x09, 0x12, 0x24, 0x48, 0x90, 0xa7, 0xc9, 0x15, 0x2a, 0x54, 0xa8, 0xd7, 0x29, 0x52, 0xa4, 0xcf, 0x19, 0x32, 0x64, 0xc8, 0x17, 0x2e, 0x5c, 0xb8, 0xf7, 0x69, 0xd2, 0x23, 0x46, 0x8c, 0x9f, 0xb9, 0xf5, 0x6d, 0xda, 0x33, 0x66, 0xcc, 0x1f, 0x3e, 0x7c, 0xf8, 0x77, 0xee, 0x5b, 0xb6, 0xeb, 0x51, 0xa2, 0xc3, 0x01 }; /* * This is a log table. That is, gflog[r^i] returns i (modulo f(r)). * gflog[0] is undefined and the first element is therefore not valid. */ static const __u8 gflog[256] = { 0xff, 0x00, 0x01, 0x63, 0x02, 0xc6, 0x64, 0x6a, 0x03, 0xcd, 0xc7, 0xbc, 0x65, 0x7e, 0x6b, 0x2a, 0x04, 0x8d, 0xce, 0x4e, 0xc8, 0xd4, 0xbd, 0xe1, 0x66, 0xdd, 0x7f, 0x31, 0x6c, 0x20, 0x2b, 0xf3, 0x05, 0x57, 0x8e, 0xe8, 0xcf, 0xac, 0x4f, 0x83, 0xc9, 0xd9, 0xd5, 0x41, 0xbe, 0x94, 0xe2, 0xb4, 0x67, 0x27, 0xde, 0xf0, 0x80, 0xb1, 0x32, 0x35, 0x6d, 0x45, 0x21, 0x12, 0x2c, 0x0d, 0xf4, 0x38, 0x06, 0x9b, 0x58, 0x1a, 0x8f, 0x79, 0xe9, 0x70, 0xd0, 0xc2, 0xad, 0xa8, 0x50, 0x75, 0x84, 0x48, 0xca, 0xfc, 0xda, 0x8a, 0xd6, 0x54, 0x42, 0x24, 0xbf, 0x98, 0x95, 0xf9, 0xe3, 0x5e, 0xb5, 0x15, 0x68, 0x61, 0x28, 0xba, 0xdf, 0x4c, 0xf1, 0x2f, 0x81, 0xe6, 0xb2, 0x3f, 0x33, 0xee, 0x36, 0x10, 0x6e, 0x18, 0x46, 0xa6, 0x22, 0x88, 0x13, 0xf7, 0x2d, 0xb8, 0x0e, 0x3d, 0xf5, 0xa4, 0x39, 0x3b, 0x07, 0x9e, 0x9c, 0x9d, 0x59, 0x9f, 0x1b, 0x08, 0x90, 0x09, 0x7a, 0x1c, 0xea, 0xa0, 0x71, 0x5a, 0xd1, 0x1d, 0xc3, 0x7b, 0xae, 0x0a, 0xa9, 0x91, 0x51, 0x5b, 0x76, 0x72, 0x85, 0xa1, 0x49, 0xeb, 0xcb, 0x7c, 0xfd, 0xc4, 0xdb, 0x1e, 0x8b, 0xd2, 0xd7, 0x92, 0x55, 0xaa, 0x43, 0x0b, 0x25, 0xaf, 0xc0, 0x73, 0x99, 0x77, 0x96, 0x5c, 0xfa, 0x52, 0xe4, 0xec, 0x5f, 0x4a, 0xb6, 0xa2, 0x16, 0x86, 0x69, 0xc5, 0x62, 0xfe, 0x29, 0x7d, 0xbb, 0xcc, 0xe0, 0xd3, 0x4d, 0x8c, 0xf2, 0x1f, 0x30, 0xdc, 0x82, 0xab, 0xe7, 0x56, 0xb3, 0x93, 0x40, 0xd8, 0x34, 0xb0, 0xef, 0x26, 0x37, 0x0c, 0x11, 0x44, 0x6f, 0x78, 0x19, 0x9a, 0x47, 0x74, 0xa7, 0xc1, 0x23, 0x53, 0x89, 0xfb, 0x14, 0x5d, 0xf8, 0x97, 0x2e, 0x4b, 0xb9, 0x60, 0x0f, 0xed, 0x3e, 0xe5, 0xf6, 0x87, 0xa5, 0x17, 0x3a, 0xa3, 0x3c, 0xb7 }; /* This is a multiplication table for the factor 0xc0 (i.e., r^105 (mod f(r)). * gfmul_c0[f] returns r^105 * f(r) (modulo f(r)). */ static const __u8 gfmul_c0[256] = { 0x00, 0xc0, 0x07, 0xc7, 0x0e, 0xce, 0x09, 0xc9, 0x1c, 0xdc, 0x1b, 0xdb, 0x12, 0xd2, 0x15, 0xd5, 0x38, 0xf8, 0x3f, 0xff, 0x36, 0xf6, 0x31, 0xf1, 0x24, 0xe4, 0x23, 0xe3, 0x2a, 0xea, 0x2d, 0xed, 0x70, 0xb0, 0x77, 0xb7, 0x7e, 0xbe, 0x79, 0xb9, 0x6c, 0xac, 0x6b, 0xab, 0x62, 0xa2, 0x65, 0xa5, 0x48, 0x88, 0x4f, 0x8f, 0x46, 0x86, 0x41, 0x81, 0x54, 0x94, 0x53, 0x93, 0x5a, 0x9a, 0x5d, 0x9d, 0xe0, 0x20, 0xe7, 0x27, 0xee, 0x2e, 0xe9, 0x29, 0xfc, 0x3c, 0xfb, 0x3b, 0xf2, 0x32, 0xf5, 0x35, 0xd8, 0x18, 0xdf, 0x1f, 0xd6, 0x16, 0xd1, 0x11, 0xc4, 0x04, 0xc3, 0x03, 0xca, 0x0a, 0xcd, 0x0d, 0x90, 0x50, 0x97, 0x57, 0x9e, 0x5e, 0x99, 0x59, 0x8c, 0x4c, 0x8b, 0x4b, 0x82, 0x42, 0x85, 0x45, 0xa8, 0x68, 0xaf, 0x6f, 0xa6, 0x66, 0xa1, 0x61, 0xb4, 0x74, 0xb3, 0x73, 0xba, 0x7a, 0xbd, 0x7d, 0x47, 0x87, 0x40, 0x80, 0x49, 0x89, 0x4e, 0x8e, 0x5b, 0x9b, 0x5c, 0x9c, 0x55, 0x95, 0x52, 0x92, 0x7f, 0xbf, 0x78, 0xb8, 0x71, 0xb1, 0x76, 0xb6, 0x63, 0xa3, 0x64, 0xa4, 0x6d, 0xad, 0x6a, 0xaa, 0x37, 0xf7, 0x30, 0xf0, 0x39, 0xf9, 0x3e, 0xfe, 0x2b, 0xeb, 0x2c, 0xec, 0x25, 0xe5, 0x22, 0xe2, 0x0f, 0xcf, 0x08, 0xc8, 0x01, 0xc1, 0x06, 0xc6, 0x13, 0xd3, 0x14, 0xd4, 0x1d, 0xdd, 0x1a, 0xda, 0xa7, 0x67, 0xa0, 0x60, 0xa9, 0x69, 0xae, 0x6e, 0xbb, 0x7b, 0xbc, 0x7c, 0xb5, 0x75, 0xb2, 0x72, 0x9f, 0x5f, 0x98, 0x58, 0x91, 0x51, 0x96, 0x56, 0x83, 0x43, 0x84, 0x44, 0x8d, 0x4d, 0x8a, 0x4a, 0xd7, 0x17, 0xd0, 0x10, 0xd9, 0x19, 0xde, 0x1e, 0xcb, 0x0b, 0xcc, 0x0c, 0xc5, 0x05, 0xc2, 0x02, 0xef, 0x2f, 0xe8, 0x28, 0xe1, 0x21, 0xe6, 0x26, 0xf3, 0x33, 0xf4, 0x34, 0xfd, 0x3d, 0xfa, 0x3a }; /* Returns V modulo 255 provided V is in the range -255,-254,...,509. */ static inline __u8 mod255(int v) { if (v > 0) { if (v < 255) { return v; } else { return v - 255; } } else { return v + 255; } } /* Add two numbers in the field. Addition in this field is equivalent * to a bit-wise exclusive OR operation---subtraction is therefore * identical to addition. */ static inline __u8 gfadd(__u8 a, __u8 b) { return a ^ b; } /* Add two vectors of numbers in the field. Each byte in A and B gets * added individually. */ static inline unsigned long gfadd_long(unsigned long a, unsigned long b) { return a ^ b; } /* Multiply two numbers in the field: */ static inline __u8 gfmul(__u8 a, __u8 b) { if (a && b) { return gfpow[mod255(gflog[a] + gflog[b])]; } else { return 0; } } /* Just like gfmul, except we have already looked up the log of the * second number. */ static inline __u8 gfmul_exp(__u8 a, int b) { if (a) { return gfpow[mod255(gflog[a] + b)]; } else { return 0; } } /* Just like gfmul_exp, except that A is a vector of numbers. That * is, each byte in A gets multiplied by gfpow[mod255(B)]. */ static inline unsigned long gfmul_exp_long(unsigned long a, int b) { __u8 t; if (sizeof(long) == 4) { return ( ((t = (__u32)a >> 24 & 0xff) ? (((__u32) gfpow[mod255(gflog[t] + b)]) << 24) : 0) | ((t = (__u32)a >> 16 & 0xff) ? (((__u32) gfpow[mod255(gflog[t] + b)]) << 16) : 0) | ((t = (__u32)a >> 8 & 0xff) ? (((__u32) gfpow[mod255(gflog[t] + b)]) << 8) : 0) | ((t = (__u32)a >> 0 & 0xff) ? (((__u32) gfpow[mod255(gflog[t] + b)]) << 0) : 0)); } else if (sizeof(long) == 8) { return ( ((t = (__u64)a >> 56 & 0xff) ? (((__u64) gfpow[mod255(gflog[t] + b)]) << 56) : 0) | ((t = (__u64)a >> 48 & 0xff) ? (((__u64) gfpow[mod255(gflog[t] + b)]) << 48) : 0) | ((t = (__u64)a >> 40 & 0xff) ? (((__u64) gfpow[mod255(gflog[t] + b)]) << 40) : 0) | ((t = (__u64)a >> 32 & 0xff) ? (((__u64) gfpow[mod255(gflog[t] + b)]) << 32) : 0) | ((t = (__u64)a >> 24 & 0xff) ? (((__u64) gfpow[mod255(gflog[t] + b)]) << 24) : 0) | ((t = (__u64)a >> 16 & 0xff) ? (((__u64) gfpow[mod255(gflog[t] + b)]) << 16) : 0) | ((t = (__u64)a >> 8 & 0xff) ? (((__u64) gfpow[mod255(gflog[t] + b)]) << 8) : 0) | ((t = (__u64)a >> 0 & 0xff) ? (((__u64) gfpow[mod255(gflog[t] + b)]) << 0) : 0)); } else { TRACE_FUN(ft_t_any); TRACE_ABORT(-1, ft_t_err, "Error: size of long is %d bytes", (int)sizeof(long)); } } /* Divide two numbers in the field. Returns a/b (modulo f(x)). */ static inline __u8 gfdiv(__u8 a, __u8 b) { if (!b) { TRACE_FUN(ft_t_any); TRACE_ABORT(0xff, ft_t_bug, "Error: division by zero"); } else if (a == 0) { return 0; } else { return gfpow[mod255(gflog[a] - gflog[b])]; } } /* The following functions return the inverse of the matrix of the * linear system that needs to be solved to determine the error * magnitudes. The first deals with matrices of rank 3, while the * second deals with matrices of rank 2. The error indices are passed * in arguments L0,..,L2 (0=first sector, 31=last sector). The error * indices must be sorted in ascending order, i.e., L0<L1<L2. * * The linear system that needs to be solved for the error magnitudes * is A * b = s, where s is the known vector of syndromes, b is the * vector of error magnitudes and A in the ORDER=3 case: * * A_3 = {{1/r^L[0], 1/r^L[1], 1/r^L[2]}, * { 1, 1, 1}, * { r^L[0], r^L[1], r^L[2]}} */ static inline int gfinv3(__u8 l0, __u8 l1, __u8 l2, Matrix Ainv) { __u8 det; __u8 t20, t10, t21, t12, t01, t02; int log_det; /* compute some intermediate results: */ t20 = gfpow[l2 - l0]; /* t20 = r^l2/r^l0 */ t10 = gfpow[l1 - l0]; /* t10 = r^l1/r^l0 */ t21 = gfpow[l2 - l1]; /* t21 = r^l2/r^l1 */ t12 = gfpow[l1 - l2 + 255]; /* t12 = r^l1/r^l2 */ t01 = gfpow[l0 - l1 + 255]; /* t01 = r^l0/r^l1 */ t02 = gfpow[l0 - l2 + 255]; /* t02 = r^l0/r^l2 */ /* Calculate the determinant of matrix A_3^-1 (sometimes * called the Vandermonde determinant): */ det = gfadd(t20, gfadd(t10, gfadd(t21, gfadd(t12, gfadd(t01, t02))))); if (!det) { TRACE_FUN(ft_t_any); TRACE_ABORT(0, ft_t_err, "Inversion failed (3 CRC errors, >0 CRC failures)"); } log_det = 255 - gflog[det]; /* Now, calculate all of the coefficients: */ Ainv[0][0]= gfmul_exp(gfadd(gfpow[l1], gfpow[l2]), log_det); Ainv[0][1]= gfmul_exp(gfadd(t21, t12), log_det); Ainv[0][2]= gfmul_exp(gfadd(gfpow[255 - l1], gfpow[255 - l2]),log_det); Ainv[1][0]= gfmul_exp(gfadd(gfpow[l0], gfpow[l2]), log_det); Ainv[1][1]= gfmul_exp(gfadd(t20, t02), log_det); Ainv[1][2]= gfmul_exp(gfadd(gfpow[255 - l0], gfpow[255 - l2]),log_det); Ainv[2][0]= gfmul_exp(gfadd(gfpow[l0], gfpow[l1]), log_det); Ainv[2][1]= gfmul_exp(gfadd(t10, t01), log_det); Ainv[2][2]= gfmul_exp(gfadd(gfpow[255 - l0], gfpow[255 - l1]),log_det); return 1; } static inline int gfinv2(__u8 l0, __u8 l1, Matrix Ainv) { __u8 det; __u8 t1, t2; int log_det; t1 = gfpow[255 - l0]; t2 = gfpow[255 - l1]; det = gfadd(t1, t2); if (!det) { TRACE_FUN(ft_t_any); TRACE_ABORT(0, ft_t_err, "Inversion failed (2 CRC errors, >0 CRC failures)"); } log_det = 255 - gflog[det]; /* Now, calculate all of the coefficients: */ Ainv[0][0] = Ainv[1][0] = gfpow[log_det]; Ainv[0][1] = gfmul_exp(t2, log_det); Ainv[1][1] = gfmul_exp(t1, log_det); return 1; } /* Multiply matrix A by vector S and return result in vector B. M is * assumed to be of order NxN, S and B of order Nx1. */ static inline void gfmat_mul(int n, Matrix A, __u8 *s, __u8 *b) { int i, j; __u8 dot_prod; for (i = 0; i < n; ++i) { dot_prod = 0; for (j = 0; j < n; ++j) { dot_prod = gfadd(dot_prod, gfmul(A[i][j], s[j])); } b[i] = dot_prod; } } /* The Reed Solomon ECC codes are computed over the N-th byte of each * block, where N=SECTOR_SIZE. There are up to 29 blocks of data, and * 3 blocks of ECC. The blocks are stored contiguously in memory. A * segment, consequently, is assumed to have at least 4 blocks: one or * more data blocks plus three ECC blocks. * * Notice: In QIC-80 speak, a CRC error is a sector with an incorrect * CRC. A CRC failure is a sector with incorrect data, but * a valid CRC. In the error control literature, the former * is usually called "erasure", the latter "error." */ /* Compute the parity bytes for C columns of data, where C is the * number of bytes that fit into a long integer. We use a linear * feed-back register to do this. The parity bytes P[0], P[STRIDE], * P[2*STRIDE] are computed such that: * * x^k * p(x) + m(x) = 0 (modulo g(x)) * * where k = NBLOCKS, * p(x) = P[0] + P[STRIDE]*x + P[2*STRIDE]*x^2, and * m(x) = sum_{i=0}^k m_i*x^i. * m_i = DATA[i*SECTOR_SIZE] */ static inline void set_parity(unsigned long *data, int nblocks, unsigned long *p, int stride) { unsigned long p0, p1, p2, t1, t2, *end; end = data + nblocks * (FT_SECTOR_SIZE / sizeof(long)); p0 = p1 = p2 = 0; while (data < end) { /* The new parity bytes p0_i, p1_i, p2_i are computed * from the old values p0_{i-1}, p1_{i-1}, p2_{i-1} * recursively as: * * p0_i = p1_{i-1} + r^105 * (m_{i-1} - p0_{i-1}) * p1_i = p2_{i-1} + r^105 * (m_{i-1} - p0_{i-1}) * p2_i = (m_{i-1} - p0_{i-1}) * * With the initial condition: p0_0 = p1_0 = p2_0 = 0. */ t1 = gfadd_long(*data, p0); /* * Multiply each byte in t1 by 0xc0: */ if (sizeof(long) == 4) { t2= (((__u32) gfmul_c0[(__u32)t1 >> 24 & 0xff]) << 24 | ((__u32) gfmul_c0[(__u32)t1 >> 16 & 0xff]) << 16 | ((__u32) gfmul_c0[(__u32)t1 >> 8 & 0xff]) << 8 | ((__u32) gfmul_c0[(__u32)t1 >> 0 & 0xff]) << 0); } else if (sizeof(long) == 8) { t2= (((__u64) gfmul_c0[(__u64)t1 >> 56 & 0xff]) << 56 | ((__u64) gfmul_c0[(__u64)t1 >> 48 & 0xff]) << 48 | ((__u64) gfmul_c0[(__u64)t1 >> 40 & 0xff]) << 40 | ((__u64) gfmul_c0[(__u64)t1 >> 32 & 0xff]) << 32 | ((__u64) gfmul_c0[(__u64)t1 >> 24 & 0xff]) << 24 | ((__u64) gfmul_c0[(__u64)t1 >> 16 & 0xff]) << 16 | ((__u64) gfmul_c0[(__u64)t1 >> 8 & 0xff]) << 8 | ((__u64) gfmul_c0[(__u64)t1 >> 0 & 0xff]) << 0); } else { TRACE_FUN(ft_t_any); TRACE(ft_t_err, "Error: long is of size %d", (int) sizeof(long)); TRACE_EXIT; } p0 = gfadd_long(t2, p1); p1 = gfadd_long(t2, p2); p2 = t1; data += FT_SECTOR_SIZE / sizeof(long); } *p = p0; p += stride; *p = p1; p += stride; *p = p2; return; } /* Compute the 3 syndrome values. DATA should point to the first byte * of the column for which the syndromes are desired. The syndromes * are computed over the first NBLOCKS of rows. The three bytes will * be placed in S[0], S[1], and S[2]. * * S[i] is the value of the "message" polynomial m(x) evaluated at the * i-th root of the generator polynomial g(x). * * As g(x)=(x-r^-1)(x-1)(x-r^1) we evaluate the message polynomial at * x=r^-1 to get S[0], at x=r^0=1 to get S[1], and at x=r to get S[2]. * This could be done directly and efficiently via the Horner scheme. * However, it would require multiplication tables for the factors * r^-1 (0xc3) and r (0x02). The following scheme does not require * any multiplication tables beyond what's needed for set_parity() * anyway and is slightly faster if there are no errors and slightly * slower if there are errors. The latter is hopefully the infrequent * case. * * To understand the alternative algorithm, notice that set_parity(m, * k, p) computes parity bytes such that: * * x^k * p(x) = m(x) (modulo g(x)). * * That is, to evaluate m(r^m), where r^m is a root of g(x), we can * simply evaluate (r^m)^k*p(r^m). Also, notice that p is 0 if and * only if s is zero. That is, if all parity bytes are 0, we know * there is no error in the data and consequently there is no need to * compute s(x) at all! In all other cases, we compute s(x) from p(x) * by evaluating (r^m)^k*p(r^m) for m=-1, m=0, and m=1. The p(x) * polynomial is evaluated via the Horner scheme. */ static int compute_syndromes(unsigned long *data, int nblocks, unsigned long *s) { unsigned long p[3]; set_parity(data, nblocks, p, 1); if (p[0] | p[1] | p[2]) { /* Some of the checked columns do not have a zero * syndrome. For simplicity, we compute the syndromes * for all columns that we have computed the * remainders for. */ s[0] = gfmul_exp_long( gfadd_long(p[0], gfmul_exp_long( gfadd_long(p[1], gfmul_exp_long(p[2], -1)), -1)), -nblocks); s[1] = gfadd_long(gfadd_long(p[2], p[1]), p[0]); s[2] = gfmul_exp_long( gfadd_long(p[0], gfmul_exp_long( gfadd_long(p[1], gfmul_exp_long(p[2], 1)), 1)), nblocks); return 0; } else { return 1; } } /* Correct the block in the column pointed to by DATA. There are NBAD * CRC errors and their indices are in BAD_LOC[0], up to * BAD_LOC[NBAD-1]. If NBAD>1, Ainv holds the inverse of the matrix * of the linear system that needs to be solved to determine the error * magnitudes. S[0], S[1], and S[2] are the syndrome values. If row * j gets corrected, then bit j will be set in CORRECTION_MAP. */ static inline int correct_block(__u8 *data, int nblocks, int nbad, int *bad_loc, Matrix Ainv, __u8 *s, SectorMap * correction_map) { int ncorrected = 0; int i; __u8 t1, t2; __u8 c0, c1, c2; /* check bytes */ __u8 error_mag[3], log_error_mag; __u8 *dp, l, e; TRACE_FUN(ft_t_any); switch (nbad) { case 0: /* might have a CRC failure: */ if (s[0] == 0) { /* more than one error */ TRACE_ABORT(-1, ft_t_err, "ECC failed (0 CRC errors, >1 CRC failures)"); } t1 = gfdiv(s[1], s[0]); if ((bad_loc[nbad++] = gflog[t1]) >= nblocks) { TRACE(ft_t_err, "ECC failed (0 CRC errors, >1 CRC failures)"); TRACE_ABORT(-1, ft_t_err, "attempt to correct data at %d", bad_loc[0]); } error_mag[0] = s[1]; break; case 1: t1 = gfadd(gfmul_exp(s[1], bad_loc[0]), s[2]); t2 = gfadd(gfmul_exp(s[0], bad_loc[0]), s[1]); if (t1 == 0 && t2 == 0) { /* one erasure, no error: */ Ainv[0][0] = gfpow[bad_loc[0]]; } else if (t1 == 0 || t2 == 0) { /* one erasure and more than one error: */ TRACE_ABORT(-1, ft_t_err, "ECC failed (1 erasure, >1 error)"); } else { /* one erasure, one error: */ if ((bad_loc[nbad++] = gflog[gfdiv(t1, t2)]) >= nblocks) { TRACE(ft_t_err, "ECC failed " "(1 CRC errors, >1 CRC failures)"); TRACE_ABORT(-1, ft_t_err, "attempt to correct data at %d", bad_loc[1]); } if (!gfinv2(bad_loc[0], bad_loc[1], Ainv)) { /* inversion failed---must have more * than one error */ TRACE_EXIT -1; } } /* FALL THROUGH TO ERROR MAGNITUDE COMPUTATION: */ case 2: case 3: /* compute error magnitudes: */ gfmat_mul(nbad, Ainv, s, error_mag); break; default: TRACE_ABORT(-1, ft_t_err, "Internal Error: number of CRC errors > 3"); } /* Perform correction by adding ERROR_MAG[i] to the byte at * offset BAD_LOC[i]. Also add the value of the computed * error polynomial to the syndrome values. If the correction * was successful, the resulting check bytes should be zero * (i.e., the corrected data is a valid code word). */ c0 = s[0]; c1 = s[1]; c2 = s[2]; for (i = 0; i < nbad; ++i) { e = error_mag[i]; if (e) { /* correct the byte at offset L by magnitude E: */ l = bad_loc[i]; dp = &data[l * FT_SECTOR_SIZE]; *dp = gfadd(*dp, e); *correction_map |= 1 << l; ++ncorrected; log_error_mag = gflog[e]; c0 = gfadd(c0, gfpow[mod255(log_error_mag - l)]); c1 = gfadd(c1, e); c2 = gfadd(c2, gfpow[mod255(log_error_mag + l)]); } } if (c0 || c1 || c2) { TRACE_ABORT(-1, ft_t_err, "ECC self-check failed, too many errors"); } TRACE_EXIT ncorrected; } #if defined(ECC_SANITY_CHECK) || defined(ECC_PARANOID) /* Perform a sanity check on the computed parity bytes: */ static int sanity_check(unsigned long *data, int nblocks) { TRACE_FUN(ft_t_any); unsigned long s[3]; if (!compute_syndromes(data, nblocks, s)) { TRACE_ABORT(0, ft_bug, "Internal Error: syndrome self-check failed"); } TRACE_EXIT 1; } #endif /* defined(ECC_SANITY_CHECK) || defined(ECC_PARANOID) */ /* Compute the parity for an entire segment of data. */ int ftape_ecc_set_segment_parity(struct memory_segment *mseg) { int i; __u8 *parity_bytes; parity_bytes = &mseg->data[(mseg->blocks - 3) * FT_SECTOR_SIZE]; for (i = 0; i < FT_SECTOR_SIZE; i += sizeof(long)) { set_parity((unsigned long *) &mseg->data[i], mseg->blocks - 3, (unsigned long *) &parity_bytes[i], FT_SECTOR_SIZE / sizeof(long)); #ifdef ECC_PARANOID if (!sanity_check((unsigned long *) &mseg->data[i], mseg->blocks)) { return -1; } #endif /* ECC_PARANOID */ } return 0; } /* Checks and corrects (if possible) the segment MSEG. Returns one of * ECC_OK, ECC_CORRECTED, and ECC_FAILED. */ int ftape_ecc_correct_data(struct memory_segment *mseg) { int col, i, result; int ncorrected = 0; int nerasures = 0; /* # of erasures (CRC errors) */ int erasure_loc[3]; /* erasure locations */ unsigned long ss[3]; __u8 s[3]; Matrix Ainv; TRACE_FUN(ft_t_flow); mseg->corrected = 0; /* find first column that has non-zero syndromes: */ for (col = 0; col < FT_SECTOR_SIZE; col += sizeof(long)) { if (!compute_syndromes((unsigned long *) &mseg->data[col], mseg->blocks, ss)) { /* something is wrong---have to fix things */ break; } } if (col >= FT_SECTOR_SIZE) { /* all syndromes are ok, therefore nothing to correct */ TRACE_EXIT ECC_OK; } /* count the number of CRC errors if there were any: */ if (mseg->read_bad) { for (i = 0; i < mseg->blocks; i++) { if (BAD_CHECK(mseg->read_bad, i)) { if (nerasures >= 3) { /* this is too much for ECC */ TRACE_ABORT(ECC_FAILED, ft_t_err, "ECC failed (>3 CRC errors)"); } /* if */ erasure_loc[nerasures++] = i; } } } /* * If there are at least 2 CRC errors, determine inverse of matrix * of linear system to be solved: */ switch (nerasures) { case 2: if (!gfinv2(erasure_loc[0], erasure_loc[1], Ainv)) { TRACE_EXIT ECC_FAILED; } break; case 3: if (!gfinv3(erasure_loc[0], erasure_loc[1], erasure_loc[2], Ainv)) { TRACE_EXIT ECC_FAILED; } break; default: /* this is not an error condition... */ break; } do { for (i = 0; i < sizeof(long); ++i) { s[0] = ss[0]; s[1] = ss[1]; s[2] = ss[2]; if (s[0] | s[1] | s[2]) { #ifdef BIG_ENDIAN result = correct_block( &mseg->data[col + sizeof(long) - 1 - i], mseg->blocks, nerasures, erasure_loc, Ainv, s, &mseg->corrected); #else result = correct_block(&mseg->data[col + i], mseg->blocks, nerasures, erasure_loc, Ainv, s, &mseg->corrected); #endif if (result < 0) { TRACE_EXIT ECC_FAILED; } ncorrected += result; } ss[0] >>= 8; ss[1] >>= 8; ss[2] >>= 8; } #ifdef ECC_SANITY_CHECK if (!sanity_check((unsigned long *) &mseg->data[col], mseg->blocks)) { TRACE_EXIT ECC_FAILED; } #endif /* ECC_SANITY_CHECK */ /* find next column with non-zero syndromes: */ while ((col += sizeof(long)) < FT_SECTOR_SIZE) { if (!compute_syndromes((unsigned long *) &mseg->data[col], mseg->blocks, ss)) { /* something is wrong---have to fix things */ break; } } } while (col < FT_SECTOR_SIZE); if (ncorrected && nerasures == 0) { TRACE(ft_t_warn, "block contained error not caught by CRC"); } TRACE((ncorrected > 0) ? ft_t_noise : ft_t_any, "number of corrections: %d", ncorrected); TRACE_EXIT ncorrected ? ECC_CORRECTED : ECC_OK; } |