Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 | /* SCTP kernel reference Implementation * Copyright (c) 1999-2000 Cisco, Inc. * Copyright (c) 1999-2001 Motorola, Inc. * Copyright (c) 2001-2003 International Business Machines, Corp. * Copyright (c) 2001 Intel Corp. * Copyright (c) 2001 Nokia, Inc. * Copyright (c) 2001 La Monte H.P. Yarroll * * This file is part of the SCTP kernel reference Implementation * * These functions handle all input from the IP layer into SCTP. * * The SCTP reference implementation is free software; * you can redistribute it and/or modify it under the terms of * the GNU General Public License as published by * the Free Software Foundation; either version 2, or (at your option) * any later version. * * The SCTP reference implementation is distributed in the hope that it * will be useful, but WITHOUT ANY WARRANTY; without even the implied * ************************ * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. * See the GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with GNU CC; see the file COPYING. If not, write to * the Free Software Foundation, 59 Temple Place - Suite 330, * Boston, MA 02111-1307, USA. * * Please send any bug reports or fixes you make to the * email address(es): * lksctp developers <lksctp-developers@lists.sourceforge.net> * * Or submit a bug report through the following website: * http://www.sf.net/projects/lksctp * * Written or modified by: * La Monte H.P. Yarroll <piggy@acm.org> * Karl Knutson <karl@athena.chicago.il.us> * Xingang Guo <xingang.guo@intel.com> * Jon Grimm <jgrimm@us.ibm.com> * Hui Huang <hui.huang@nokia.com> * Daisy Chang <daisyc@us.ibm.com> * Sridhar Samudrala <sri@us.ibm.com> * Ardelle Fan <ardelle.fan@intel.com> * * Any bugs reported given to us we will try to fix... any fixes shared will * be incorporated into the next SCTP release. */ #include <linux/types.h> #include <linux/list.h> /* For struct list_head */ #include <linux/socket.h> #include <linux/ip.h> #include <linux/time.h> /* For struct timeval */ #include <net/ip.h> #include <net/icmp.h> #include <net/snmp.h> #include <net/sock.h> #include <net/xfrm.h> #include <net/sctp/sctp.h> #include <net/sctp/sm.h> /* Forward declarations for internal helpers. */ static int sctp_rcv_ootb(struct sk_buff *); static struct sctp_association *__sctp_rcv_lookup(struct sk_buff *skb, const union sctp_addr *laddr, const union sctp_addr *paddr, struct sctp_transport **transportp); static struct sctp_endpoint *__sctp_rcv_lookup_endpoint(const union sctp_addr *laddr); static struct sctp_association *__sctp_lookup_association( const union sctp_addr *local, const union sctp_addr *peer, struct sctp_transport **pt); /* Calculate the SCTP checksum of an SCTP packet. */ static inline int sctp_rcv_checksum(struct sk_buff *skb) { struct sctphdr *sh; __u32 cmp, val; struct sk_buff *list = skb_shinfo(skb)->frag_list; sh = (struct sctphdr *) skb->h.raw; cmp = ntohl(sh->checksum); val = sctp_start_cksum((__u8 *)sh, skb_headlen(skb)); for (; list; list = list->next) val = sctp_update_cksum((__u8 *)list->data, skb_headlen(list), val); val = sctp_end_cksum(val); if (val != cmp) { /* CRC failure, dump it. */ SCTP_INC_STATS_BH(SCTP_MIB_CHECKSUMERRORS); return -1; } return 0; } struct sctp_input_cb { union { struct inet_skb_parm h4; #if defined(CONFIG_IPV6) || defined (CONFIG_IPV6_MODULE) struct inet6_skb_parm h6; #endif } header; struct sctp_chunk *chunk; }; #define SCTP_INPUT_CB(__skb) ((struct sctp_input_cb *)&((__skb)->cb[0])) /* * This is the routine which IP calls when receiving an SCTP packet. */ int sctp_rcv(struct sk_buff *skb) { struct sock *sk; struct sctp_association *asoc; struct sctp_endpoint *ep = NULL; struct sctp_ep_common *rcvr; struct sctp_transport *transport = NULL; struct sctp_chunk *chunk; struct sctphdr *sh; union sctp_addr src; union sctp_addr dest; int family; struct sctp_af *af; int ret = 0; if (skb->pkt_type!=PACKET_HOST) goto discard_it; SCTP_INC_STATS_BH(SCTP_MIB_INSCTPPACKS); sh = (struct sctphdr *) skb->h.raw; /* Pull up the IP and SCTP headers. */ __skb_pull(skb, skb->h.raw - skb->data); if (skb->len < sizeof(struct sctphdr)) goto discard_it; if (sctp_rcv_checksum(skb) < 0) goto discard_it; skb_pull(skb, sizeof(struct sctphdr)); /* Make sure we at least have chunk headers worth of data left. */ if (skb->len < sizeof(struct sctp_chunkhdr)) goto discard_it; family = ipver2af(skb->nh.iph->version); af = sctp_get_af_specific(family); if (unlikely(!af)) goto discard_it; /* Initialize local addresses for lookups. */ af->from_skb(&src, skb, 1); af->from_skb(&dest, skb, 0); /* If the packet is to or from a non-unicast address, * silently discard the packet. * * This is not clearly defined in the RFC except in section * 8.4 - OOTB handling. However, based on the book "Stream Control * Transmission Protocol" 2.1, "It is important to note that the * IP address of an SCTP transport address must be a routable * unicast address. In other words, IP multicast addresses and * IP broadcast addresses cannot be used in an SCTP transport * address." */ if (!af->addr_valid(&src, NULL) || !af->addr_valid(&dest, NULL)) goto discard_it; asoc = __sctp_rcv_lookup(skb, &src, &dest, &transport); if (!asoc) ep = __sctp_rcv_lookup_endpoint(&dest); /* Retrieve the common input handling substructure. */ rcvr = asoc ? &asoc->base : &ep->base; sk = rcvr->sk; /* * If a frame arrives on an interface and the receiving socket is * bound to another interface, via SO_BINDTODEVICE, treat it as OOTB */ if (sk->sk_bound_dev_if && (sk->sk_bound_dev_if != af->skb_iif(skb))) { sock_put(sk); if (asoc) { sctp_association_put(asoc); asoc = NULL; } else { sctp_endpoint_put(ep); ep = NULL; } sk = sctp_get_ctl_sock(); ep = sctp_sk(sk)->ep; sctp_endpoint_hold(ep); sock_hold(sk); rcvr = &ep->base; } /* * RFC 2960, 8.4 - Handle "Out of the blue" Packets. * An SCTP packet is called an "out of the blue" (OOTB) * packet if it is correctly formed, i.e., passed the * receiver's checksum check, but the receiver is not * able to identify the association to which this * packet belongs. */ if (!asoc) { if (sctp_rcv_ootb(skb)) { SCTP_INC_STATS_BH(SCTP_MIB_OUTOFBLUES); goto discard_release; } } /* SCTP seems to always need a timestamp right now (FIXME) */ if (skb->tstamp.off_sec == 0) { __net_timestamp(skb); sock_enable_timestamp(sk); } if (!xfrm_policy_check(sk, XFRM_POLICY_IN, skb, family)) goto discard_release; nf_reset(skb); ret = sk_filter(sk, skb, 1); if (ret) goto discard_release; /* Create an SCTP packet structure. */ chunk = sctp_chunkify(skb, asoc, sk); if (!chunk) { ret = -ENOMEM; goto discard_release; } SCTP_INPUT_CB(skb)->chunk = chunk; /* Remember what endpoint is to handle this packet. */ chunk->rcvr = rcvr; /* Remember the SCTP header. */ chunk->sctp_hdr = sh; /* Set the source and destination addresses of the incoming chunk. */ sctp_init_addrs(chunk, &src, &dest); /* Remember where we came from. */ chunk->transport = transport; /* Acquire access to the sock lock. Note: We are safe from other * bottom halves on this lock, but a user may be in the lock too, * so check if it is busy. */ sctp_bh_lock_sock(sk); /* It is possible that the association could have moved to a different * socket if it is peeled off. If so, update the sk. */ if (sk != rcvr->sk) { sctp_bh_lock_sock(rcvr->sk); sctp_bh_unlock_sock(sk); sk = rcvr->sk; } if (sock_owned_by_user(sk)) sk_add_backlog(sk, skb); else sctp_backlog_rcv(sk, skb); /* Release the sock and the sock ref we took in the lookup calls. * The asoc/ep ref will be released in sctp_backlog_rcv. */ sctp_bh_unlock_sock(sk); sock_put(sk); return ret; discard_it: kfree_skb(skb); return ret; discard_release: /* Release any structures we may be holding. */ sock_put(sk); if (asoc) sctp_association_put(asoc); else sctp_endpoint_put(ep); goto discard_it; } /* Handle second half of inbound skb processing. If the sock was busy, * we may have need to delay processing until later when the sock is * released (on the backlog). If not busy, we call this routine * directly from the bottom half. */ int sctp_backlog_rcv(struct sock *sk, struct sk_buff *skb) { struct sctp_chunk *chunk = SCTP_INPUT_CB(skb)->chunk; struct sctp_inq *inqueue = NULL; struct sctp_ep_common *rcvr = NULL; rcvr = chunk->rcvr; BUG_TRAP(rcvr->sk == sk); if (rcvr->dead) { sctp_chunk_free(chunk); } else { inqueue = &chunk->rcvr->inqueue; sctp_inq_push(inqueue, chunk); } /* Release the asoc/ep ref we took in the lookup calls in sctp_rcv. */ if (SCTP_EP_TYPE_ASSOCIATION == rcvr->type) sctp_association_put(sctp_assoc(rcvr)); else sctp_endpoint_put(sctp_ep(rcvr)); return 0; } void sctp_backlog_migrate(struct sctp_association *assoc, struct sock *oldsk, struct sock *newsk) { struct sk_buff *skb; struct sctp_chunk *chunk; skb = oldsk->sk_backlog.head; oldsk->sk_backlog.head = oldsk->sk_backlog.tail = NULL; while (skb != NULL) { struct sk_buff *next = skb->next; chunk = SCTP_INPUT_CB(skb)->chunk; skb->next = NULL; if (&assoc->base == chunk->rcvr) sk_add_backlog(newsk, skb); else sk_add_backlog(oldsk, skb); skb = next; } } /* Handle icmp frag needed error. */ void sctp_icmp_frag_needed(struct sock *sk, struct sctp_association *asoc, struct sctp_transport *t, __u32 pmtu) { if (sock_owned_by_user(sk) || !t || (t->pathmtu == pmtu)) return; if (t->param_flags & SPP_PMTUD_ENABLE) { if (unlikely(pmtu < SCTP_DEFAULT_MINSEGMENT)) { printk(KERN_WARNING "%s: Reported pmtu %d too low, " "using default minimum of %d\n", __FUNCTION__, pmtu, SCTP_DEFAULT_MINSEGMENT); /* Use default minimum segment size and disable * pmtu discovery on this transport. */ t->pathmtu = SCTP_DEFAULT_MINSEGMENT; t->param_flags = (t->param_flags & ~SPP_HB) | SPP_PMTUD_DISABLE; } else { t->pathmtu = pmtu; } /* Update association pmtu. */ sctp_assoc_sync_pmtu(asoc); } /* Retransmit with the new pmtu setting. * Normally, if PMTU discovery is disabled, an ICMP Fragmentation * Needed will never be sent, but if a message was sent before * PMTU discovery was disabled that was larger than the PMTU, it * would not be fragmented, so it must be re-transmitted fragmented. */ sctp_retransmit(&asoc->outqueue, t, SCTP_RTXR_PMTUD); } /* * SCTP Implementer's Guide, 2.37 ICMP handling procedures * * ICMP8) If the ICMP code is a "Unrecognized next header type encountered" * or a "Protocol Unreachable" treat this message as an abort * with the T bit set. * * This function sends an event to the state machine, which will abort the * association. * */ void sctp_icmp_proto_unreachable(struct sock *sk, struct sctp_association *asoc, struct sctp_transport *t) { SCTP_DEBUG_PRINTK("%s\n", __FUNCTION__); sctp_do_sm(SCTP_EVENT_T_OTHER, SCTP_ST_OTHER(SCTP_EVENT_ICMP_PROTO_UNREACH), asoc->state, asoc->ep, asoc, t, GFP_ATOMIC); } /* Common lookup code for icmp/icmpv6 error handler. */ struct sock *sctp_err_lookup(int family, struct sk_buff *skb, struct sctphdr *sctphdr, struct sctp_association **app, struct sctp_transport **tpp) { union sctp_addr saddr; union sctp_addr daddr; struct sctp_af *af; struct sock *sk = NULL; struct sctp_association *asoc = NULL; struct sctp_transport *transport = NULL; *app = NULL; *tpp = NULL; af = sctp_get_af_specific(family); if (unlikely(!af)) { return NULL; } /* Initialize local addresses for lookups. */ af->from_skb(&saddr, skb, 1); af->from_skb(&daddr, skb, 0); /* Look for an association that matches the incoming ICMP error * packet. */ asoc = __sctp_lookup_association(&saddr, &daddr, &transport); if (!asoc) return NULL; sk = asoc->base.sk; if (ntohl(sctphdr->vtag) != asoc->c.peer_vtag) { ICMP_INC_STATS_BH(ICMP_MIB_INERRORS); goto out; } sctp_bh_lock_sock(sk); /* If too many ICMPs get dropped on busy * servers this needs to be solved differently. */ if (sock_owned_by_user(sk)) NET_INC_STATS_BH(LINUX_MIB_LOCKDROPPEDICMPS); *app = asoc; *tpp = transport; return sk; out: sock_put(sk); if (asoc) sctp_association_put(asoc); return NULL; } /* Common cleanup code for icmp/icmpv6 error handler. */ void sctp_err_finish(struct sock *sk, struct sctp_association *asoc) { sctp_bh_unlock_sock(sk); sock_put(sk); if (asoc) sctp_association_put(asoc); } /* * This routine is called by the ICMP module when it gets some * sort of error condition. If err < 0 then the socket should * be closed and the error returned to the user. If err > 0 * it's just the icmp type << 8 | icmp code. After adjustment * header points to the first 8 bytes of the sctp header. We need * to find the appropriate port. * * The locking strategy used here is very "optimistic". When * someone else accesses the socket the ICMP is just dropped * and for some paths there is no check at all. * A more general error queue to queue errors for later handling * is probably better. * */ void sctp_v4_err(struct sk_buff *skb, __u32 info) { struct iphdr *iph = (struct iphdr *)skb->data; struct sctphdr *sh = (struct sctphdr *)(skb->data + (iph->ihl <<2)); int type = skb->h.icmph->type; int code = skb->h.icmph->code; struct sock *sk; struct sctp_association *asoc; struct sctp_transport *transport; struct inet_sock *inet; char *saveip, *savesctp; int err; if (skb->len < ((iph->ihl << 2) + 8)) { ICMP_INC_STATS_BH(ICMP_MIB_INERRORS); return; } /* Fix up skb to look at the embedded net header. */ saveip = skb->nh.raw; savesctp = skb->h.raw; skb->nh.iph = iph; skb->h.raw = (char *)sh; sk = sctp_err_lookup(AF_INET, skb, sh, &asoc, &transport); /* Put back, the original pointers. */ skb->nh.raw = saveip; skb->h.raw = savesctp; if (!sk) { ICMP_INC_STATS_BH(ICMP_MIB_INERRORS); return; } /* Warning: The sock lock is held. Remember to call * sctp_err_finish! */ switch (type) { case ICMP_PARAMETERPROB: err = EPROTO; break; case ICMP_DEST_UNREACH: if (code > NR_ICMP_UNREACH) goto out_unlock; /* PMTU discovery (RFC1191) */ if (ICMP_FRAG_NEEDED == code) { sctp_icmp_frag_needed(sk, asoc, transport, info); goto out_unlock; } else { if (ICMP_PROT_UNREACH == code) { sctp_icmp_proto_unreachable(sk, asoc, transport); goto out_unlock; } } err = icmp_err_convert[code].errno; break; case ICMP_TIME_EXCEEDED: /* Ignore any time exceeded errors due to fragment reassembly * timeouts. */ if (ICMP_EXC_FRAGTIME == code) goto out_unlock; err = EHOSTUNREACH; break; default: goto out_unlock; } inet = inet_sk(sk); if (!sock_owned_by_user(sk) && inet->recverr) { sk->sk_err = err; sk->sk_error_report(sk); } else { /* Only an error on timeout */ sk->sk_err_soft = err; } out_unlock: sctp_err_finish(sk, asoc); } /* * RFC 2960, 8.4 - Handle "Out of the blue" Packets. * * This function scans all the chunks in the OOTB packet to determine if * the packet should be discarded right away. If a response might be needed * for this packet, or, if further processing is possible, the packet will * be queued to a proper inqueue for the next phase of handling. * * Output: * Return 0 - If further processing is needed. * Return 1 - If the packet can be discarded right away. */ int sctp_rcv_ootb(struct sk_buff *skb) { sctp_chunkhdr_t *ch; __u8 *ch_end; sctp_errhdr_t *err; ch = (sctp_chunkhdr_t *) skb->data; /* Scan through all the chunks in the packet. */ do { /* Break out if chunk length is less then minimal. */ if (ntohs(ch->length) < sizeof(sctp_chunkhdr_t)) break; ch_end = ((__u8 *)ch) + WORD_ROUND(ntohs(ch->length)); if (ch_end > skb->tail) break; /* RFC 8.4, 2) If the OOTB packet contains an ABORT chunk, the * receiver MUST silently discard the OOTB packet and take no * further action. */ if (SCTP_CID_ABORT == ch->type) goto discard; /* RFC 8.4, 6) If the packet contains a SHUTDOWN COMPLETE * chunk, the receiver should silently discard the packet * and take no further action. */ if (SCTP_CID_SHUTDOWN_COMPLETE == ch->type) goto discard; /* RFC 8.4, 7) If the packet contains a "Stale cookie" ERROR * or a COOKIE ACK the SCTP Packet should be silently * discarded. */ if (SCTP_CID_COOKIE_ACK == ch->type) goto discard; if (SCTP_CID_ERROR == ch->type) { sctp_walk_errors(err, ch) { if (SCTP_ERROR_STALE_COOKIE == err->cause) goto discard; } } ch = (sctp_chunkhdr_t *) ch_end; } while (ch_end < skb->tail); return 0; discard: return 1; } /* Insert endpoint into the hash table. */ static void __sctp_hash_endpoint(struct sctp_endpoint *ep) { struct sctp_ep_common **epp; struct sctp_ep_common *epb; struct sctp_hashbucket *head; epb = &ep->base; epb->hashent = sctp_ep_hashfn(epb->bind_addr.port); head = &sctp_ep_hashtable[epb->hashent]; sctp_write_lock(&head->lock); epp = &head->chain; epb->next = *epp; if (epb->next) (*epp)->pprev = &epb->next; *epp = epb; epb->pprev = epp; sctp_write_unlock(&head->lock); } /* Add an endpoint to the hash. Local BH-safe. */ void sctp_hash_endpoint(struct sctp_endpoint *ep) { sctp_local_bh_disable(); __sctp_hash_endpoint(ep); sctp_local_bh_enable(); } /* Remove endpoint from the hash table. */ static void __sctp_unhash_endpoint(struct sctp_endpoint *ep) { struct sctp_hashbucket *head; struct sctp_ep_common *epb; epb = &ep->base; epb->hashent = sctp_ep_hashfn(epb->bind_addr.port); head = &sctp_ep_hashtable[epb->hashent]; sctp_write_lock(&head->lock); if (epb->pprev) { if (epb->next) epb->next->pprev = epb->pprev; *epb->pprev = epb->next; epb->pprev = NULL; } sctp_write_unlock(&head->lock); } /* Remove endpoint from the hash. Local BH-safe. */ void sctp_unhash_endpoint(struct sctp_endpoint *ep) { sctp_local_bh_disable(); __sctp_unhash_endpoint(ep); sctp_local_bh_enable(); } /* Look up an endpoint. */ static struct sctp_endpoint *__sctp_rcv_lookup_endpoint(const union sctp_addr *laddr) { struct sctp_hashbucket *head; struct sctp_ep_common *epb; struct sctp_endpoint *ep; int hash; hash = sctp_ep_hashfn(laddr->v4.sin_port); head = &sctp_ep_hashtable[hash]; read_lock(&head->lock); for (epb = head->chain; epb; epb = epb->next) { ep = sctp_ep(epb); if (sctp_endpoint_is_match(ep, laddr)) goto hit; } ep = sctp_sk((sctp_get_ctl_sock()))->ep; epb = &ep->base; hit: sctp_endpoint_hold(ep); sock_hold(epb->sk); read_unlock(&head->lock); return ep; } /* Insert association into the hash table. */ static void __sctp_hash_established(struct sctp_association *asoc) { struct sctp_ep_common **epp; struct sctp_ep_common *epb; struct sctp_hashbucket *head; epb = &asoc->base; /* Calculate which chain this entry will belong to. */ epb->hashent = sctp_assoc_hashfn(epb->bind_addr.port, asoc->peer.port); head = &sctp_assoc_hashtable[epb->hashent]; sctp_write_lock(&head->lock); epp = &head->chain; epb->next = *epp; if (epb->next) (*epp)->pprev = &epb->next; *epp = epb; epb->pprev = epp; sctp_write_unlock(&head->lock); } /* Add an association to the hash. Local BH-safe. */ void sctp_hash_established(struct sctp_association *asoc) { sctp_local_bh_disable(); __sctp_hash_established(asoc); sctp_local_bh_enable(); } /* Remove association from the hash table. */ static void __sctp_unhash_established(struct sctp_association *asoc) { struct sctp_hashbucket *head; struct sctp_ep_common *epb; epb = &asoc->base; epb->hashent = sctp_assoc_hashfn(epb->bind_addr.port, asoc->peer.port); head = &sctp_assoc_hashtable[epb->hashent]; sctp_write_lock(&head->lock); if (epb->pprev) { if (epb->next) epb->next->pprev = epb->pprev; *epb->pprev = epb->next; epb->pprev = NULL; } sctp_write_unlock(&head->lock); } /* Remove association from the hash table. Local BH-safe. */ void sctp_unhash_established(struct sctp_association *asoc) { sctp_local_bh_disable(); __sctp_unhash_established(asoc); sctp_local_bh_enable(); } /* Look up an association. */ static struct sctp_association *__sctp_lookup_association( const union sctp_addr *local, const union sctp_addr *peer, struct sctp_transport **pt) { struct sctp_hashbucket *head; struct sctp_ep_common *epb; struct sctp_association *asoc; struct sctp_transport *transport; int hash; /* Optimize here for direct hit, only listening connections can * have wildcards anyways. */ hash = sctp_assoc_hashfn(local->v4.sin_port, peer->v4.sin_port); head = &sctp_assoc_hashtable[hash]; read_lock(&head->lock); for (epb = head->chain; epb; epb = epb->next) { asoc = sctp_assoc(epb); transport = sctp_assoc_is_match(asoc, local, peer); if (transport) goto hit; } read_unlock(&head->lock); return NULL; hit: *pt = transport; sctp_association_hold(asoc); sock_hold(epb->sk); read_unlock(&head->lock); return asoc; } /* Look up an association. BH-safe. */ SCTP_STATIC struct sctp_association *sctp_lookup_association(const union sctp_addr *laddr, const union sctp_addr *paddr, struct sctp_transport **transportp) { struct sctp_association *asoc; sctp_local_bh_disable(); asoc = __sctp_lookup_association(laddr, paddr, transportp); sctp_local_bh_enable(); return asoc; } /* Is there an association matching the given local and peer addresses? */ int sctp_has_association(const union sctp_addr *laddr, const union sctp_addr *paddr) { struct sctp_association *asoc; struct sctp_transport *transport; if ((asoc = sctp_lookup_association(laddr, paddr, &transport))) { sock_put(asoc->base.sk); sctp_association_put(asoc); return 1; } return 0; } /* * SCTP Implementors Guide, 2.18 Handling of address * parameters within the INIT or INIT-ACK. * * D) When searching for a matching TCB upon reception of an INIT * or INIT-ACK chunk the receiver SHOULD use not only the * source address of the packet (containing the INIT or * INIT-ACK) but the receiver SHOULD also use all valid * address parameters contained within the chunk. * * 2.18.3 Solution description * * This new text clearly specifies to an implementor the need * to look within the INIT or INIT-ACK. Any implementation that * does not do this, may not be able to establish associations * in certain circumstances. * */ static struct sctp_association *__sctp_rcv_init_lookup(struct sk_buff *skb, const union sctp_addr *laddr, struct sctp_transport **transportp) { struct sctp_association *asoc; union sctp_addr addr; union sctp_addr *paddr = &addr; struct sctphdr *sh = (struct sctphdr *) skb->h.raw; sctp_chunkhdr_t *ch; union sctp_params params; sctp_init_chunk_t *init; struct sctp_transport *transport; struct sctp_af *af; ch = (sctp_chunkhdr_t *) skb->data; /* If this is INIT/INIT-ACK look inside the chunk too. */ switch (ch->type) { case SCTP_CID_INIT: case SCTP_CID_INIT_ACK: break; default: return NULL; } /* The code below will attempt to walk the chunk and extract * parameter information. Before we do that, we need to verify * that the chunk length doesn't cause overflow. Otherwise, we'll * walk off the end. */ if (WORD_ROUND(ntohs(ch->length)) > skb->len) return NULL; /* * This code will NOT touch anything inside the chunk--it is * strictly READ-ONLY. * * RFC 2960 3 SCTP packet Format * * Multiple chunks can be bundled into one SCTP packet up to * the MTU size, except for the INIT, INIT ACK, and SHUTDOWN * COMPLETE chunks. These chunks MUST NOT be bundled with any * other chunk in a packet. See Section 6.10 for more details * on chunk bundling. */ /* Find the start of the TLVs and the end of the chunk. This is * the region we search for address parameters. */ init = (sctp_init_chunk_t *)skb->data; /* Walk the parameters looking for embedded addresses. */ sctp_walk_params(params, init, init_hdr.params) { /* Note: Ignoring hostname addresses. */ af = sctp_get_af_specific(param_type2af(params.p->type)); if (!af) continue; af->from_addr_param(paddr, params.addr, ntohs(sh->source), 0); asoc = __sctp_lookup_association(laddr, paddr, &transport); if (asoc) return asoc; } return NULL; } /* Lookup an association for an inbound skb. */ static struct sctp_association *__sctp_rcv_lookup(struct sk_buff *skb, const union sctp_addr *paddr, const union sctp_addr *laddr, struct sctp_transport **transportp) { struct sctp_association *asoc; asoc = __sctp_lookup_association(laddr, paddr, transportp); /* Further lookup for INIT/INIT-ACK packets. * SCTP Implementors Guide, 2.18 Handling of address * parameters within the INIT or INIT-ACK. */ if (!asoc) asoc = __sctp_rcv_init_lookup(skb, laddr, transportp); return asoc; } |