Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 | /* sundance.c: A Linux device driver for the Sundance ST201 "Alta". */ /* Written 1999-2000 by Donald Becker. This software may be used and distributed according to the terms of the GNU General Public License (GPL), incorporated herein by reference. Drivers based on or derived from this code fall under the GPL and must retain the authorship, copyright and license notice. This file is not a complete program and may only be used when the entire operating system is licensed under the GPL. The author may be reached as becker@scyld.com, or C/O Scyld Computing Corporation 410 Severn Ave., Suite 210 Annapolis MD 21403 Support and updates available at http://www.scyld.com/network/sundance.html Version LK1.01a (jgarzik): - Replace some MII-related magic numbers with constants Version LK1.02 (D-Link): - Add new board to PCI ID list - Fix multicast bug Version LK1.03 (D-Link): - New Rx scheme, reduce Rx congestion - Option to disable flow control Version LK1.04 (D-Link): - Tx timeout recovery - More support for ethtool. Version LK1.04a: - Remove unused/constant members from struct pci_id_info (which then allows removal of 'drv_flags' from private struct) (jgarzik) - If no phy is found, fail to load that board (jgarzik) - Always start phy id scan at id 1 to avoid problems (Donald Becker) - Autodetect where mii_preable_required is needed, default to not needed. (Donald Becker) Version LK1.04b: - Remove mii_preamble_required module parameter (Donald Becker) - Add per-interface mii_preamble_required (setting is autodetected) (Donald Becker) - Remove unnecessary cast from void pointer (jgarzik) - Re-align comments in private struct (jgarzik) Version LK1.04c (jgarzik): - Support bitmapped message levels (NETIF_MSG_xxx), and the two ethtool ioctls that get/set them - Don't hand-code MII ethtool support, use standard API/lib Version LK1.04d: - Merge from Donald Becker's sundance.c: (Jason Lunz) * proper support for variably-sized MTUs * default to PIO, to fix chip bugs - Add missing unregister_netdev (Jason Lunz) - Add CONFIG_SUNDANCE_MMIO config option (jgarzik) - Better rx buf size calculation (Donald Becker) Version LK1.05 (D-Link): - Fix DFE-580TX packet drop issue (for DL10050C) - Fix reset_tx logic Version LK1.06 (D-Link): - Fix crash while unloading driver Versin LK1.06b (D-Link): - New tx scheme, adaptive tx_coalesce Version LK1.07 (D-Link): - Fix tx bugs in big-endian machines - Remove unused max_interrupt_work module parameter, the new NAPI-like rx scheme doesn't need it. - Remove redundancy get_stats() in intr_handler(), those I/O access could affect performance in ARM-based system - Add Linux software VLAN support Version LK1.08 (Philippe De Muyter phdm@macqel.be): - Fix bug of custom mac address (StationAddr register only accept word write) Version LK1.09 (D-Link): - Fix the flowctrl bug. - Set Pause bit in MII ANAR if flow control enabled. Version LK1.09a (ICPlus): - Add the delay time in reading the contents of EEPROM Version LK1.10 (Philippe De Muyter phdm@macqel.be): - Make 'unblock interface after Tx underrun' work */ #define DRV_NAME "sundance" #define DRV_VERSION "1.01+LK1.10" #define DRV_RELDATE "28-Oct-2005" /* The user-configurable values. These may be modified when a driver module is loaded.*/ static int debug = 1; /* 1 normal messages, 0 quiet .. 7 verbose. */ /* Maximum number of multicast addresses to filter (vs. rx-all-multicast). Typical is a 64 element hash table based on the Ethernet CRC. */ static int multicast_filter_limit = 32; /* Set the copy breakpoint for the copy-only-tiny-frames scheme. Setting to > 1518 effectively disables this feature. This chip can receive into offset buffers, so the Alpha does not need a copy-align. */ static int rx_copybreak; static int flowctrl=1; /* media[] specifies the media type the NIC operates at. autosense Autosensing active media. 10mbps_hd 10Mbps half duplex. 10mbps_fd 10Mbps full duplex. 100mbps_hd 100Mbps half duplex. 100mbps_fd 100Mbps full duplex. 0 Autosensing active media. 1 10Mbps half duplex. 2 10Mbps full duplex. 3 100Mbps half duplex. 4 100Mbps full duplex. */ #define MAX_UNITS 8 static char *media[MAX_UNITS]; /* Operational parameters that are set at compile time. */ /* Keep the ring sizes a power of two for compile efficiency. The compiler will convert <unsigned>'%'<2^N> into a bit mask. Making the Tx ring too large decreases the effectiveness of channel bonding and packet priority, and more than 128 requires modifying the Tx error recovery. Large receive rings merely waste memory. */ #define TX_RING_SIZE 32 #define TX_QUEUE_LEN (TX_RING_SIZE - 1) /* Limit ring entries actually used. */ #define RX_RING_SIZE 64 #define RX_BUDGET 32 #define TX_TOTAL_SIZE TX_RING_SIZE*sizeof(struct netdev_desc) #define RX_TOTAL_SIZE RX_RING_SIZE*sizeof(struct netdev_desc) /* Operational parameters that usually are not changed. */ /* Time in jiffies before concluding the transmitter is hung. */ #define TX_TIMEOUT (4*HZ) #define PKT_BUF_SZ 1536 /* Size of each temporary Rx buffer.*/ /* Include files, designed to support most kernel versions 2.0.0 and later. */ #include <linux/module.h> #include <linux/kernel.h> #include <linux/string.h> #include <linux/timer.h> #include <linux/errno.h> #include <linux/ioport.h> #include <linux/slab.h> #include <linux/interrupt.h> #include <linux/pci.h> #include <linux/netdevice.h> #include <linux/etherdevice.h> #include <linux/skbuff.h> #include <linux/init.h> #include <linux/bitops.h> #include <asm/uaccess.h> #include <asm/processor.h> /* Processor type for cache alignment. */ #include <asm/io.h> #include <linux/delay.h> #include <linux/spinlock.h> #ifndef _COMPAT_WITH_OLD_KERNEL #include <linux/crc32.h> #include <linux/ethtool.h> #include <linux/mii.h> #else #include "crc32.h" #include "ethtool.h" #include "mii.h" #include "compat.h" #endif /* These identify the driver base version and may not be removed. */ static char version[] __devinitdata = KERN_INFO DRV_NAME ".c:v" DRV_VERSION " " DRV_RELDATE " Written by Donald Becker\n" KERN_INFO " http://www.scyld.com/network/sundance.html\n"; MODULE_AUTHOR("Donald Becker <becker@scyld.com>"); MODULE_DESCRIPTION("Sundance Alta Ethernet driver"); MODULE_LICENSE("GPL"); module_param(debug, int, 0); module_param(rx_copybreak, int, 0); module_param_array(media, charp, NULL, 0); module_param(flowctrl, int, 0); MODULE_PARM_DESC(debug, "Sundance Alta debug level (0-5)"); MODULE_PARM_DESC(rx_copybreak, "Sundance Alta copy breakpoint for copy-only-tiny-frames"); MODULE_PARM_DESC(flowctrl, "Sundance Alta flow control [0|1]"); /* Theory of Operation I. Board Compatibility This driver is designed for the Sundance Technologies "Alta" ST201 chip. II. Board-specific settings III. Driver operation IIIa. Ring buffers This driver uses two statically allocated fixed-size descriptor lists formed into rings by a branch from the final descriptor to the beginning of the list. The ring sizes are set at compile time by RX/TX_RING_SIZE. Some chips explicitly use only 2^N sized rings, while others use a 'next descriptor' pointer that the driver forms into rings. IIIb/c. Transmit/Receive Structure This driver uses a zero-copy receive and transmit scheme. The driver allocates full frame size skbuffs for the Rx ring buffers at open() time and passes the skb->data field to the chip as receive data buffers. When an incoming frame is less than RX_COPYBREAK bytes long, a fresh skbuff is allocated and the frame is copied to the new skbuff. When the incoming frame is larger, the skbuff is passed directly up the protocol stack. Buffers consumed this way are replaced by newly allocated skbuffs in a later phase of receives. The RX_COPYBREAK value is chosen to trade-off the memory wasted by using a full-sized skbuff for small frames vs. the copying costs of larger frames. New boards are typically used in generously configured machines and the underfilled buffers have negligible impact compared to the benefit of a single allocation size, so the default value of zero results in never copying packets. When copying is done, the cost is usually mitigated by using a combined copy/checksum routine. Copying also preloads the cache, which is most useful with small frames. A subtle aspect of the operation is that the IP header at offset 14 in an ethernet frame isn't longword aligned for further processing. Unaligned buffers are permitted by the Sundance hardware, so frames are received into the skbuff at an offset of "+2", 16-byte aligning the IP header. IIId. Synchronization The driver runs as two independent, single-threaded flows of control. One is the send-packet routine, which enforces single-threaded use by the dev->tbusy flag. The other thread is the interrupt handler, which is single threaded by the hardware and interrupt handling software. The send packet thread has partial control over the Tx ring and 'dev->tbusy' flag. It sets the tbusy flag whenever it's queuing a Tx packet. If the next queue slot is empty, it clears the tbusy flag when finished otherwise it sets the 'lp->tx_full' flag. The interrupt handler has exclusive control over the Rx ring and records stats from the Tx ring. After reaping the stats, it marks the Tx queue entry as empty by incrementing the dirty_tx mark. Iff the 'lp->tx_full' flag is set, it clears both the tx_full and tbusy flags. IV. Notes IVb. References The Sundance ST201 datasheet, preliminary version. The Kendin KS8723 datasheet, preliminary version. The ICplus IP100 datasheet, preliminary version. http://www.scyld.com/expert/100mbps.html http://www.scyld.com/expert/NWay.html IVc. Errata */ /* Work-around for Kendin chip bugs. */ #ifndef CONFIG_SUNDANCE_MMIO #define USE_IO_OPS 1 #endif static struct pci_device_id sundance_pci_tbl[] = { {0x1186, 0x1002, 0x1186, 0x1002, 0, 0, 0}, {0x1186, 0x1002, 0x1186, 0x1003, 0, 0, 1}, {0x1186, 0x1002, 0x1186, 0x1012, 0, 0, 2}, {0x1186, 0x1002, 0x1186, 0x1040, 0, 0, 3}, {0x1186, 0x1002, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 4}, {0x13F0, 0x0201, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 5}, {0,} }; MODULE_DEVICE_TABLE(pci, sundance_pci_tbl); enum { netdev_io_size = 128 }; struct pci_id_info { const char *name; }; static struct pci_id_info pci_id_tbl[] = { {"D-Link DFE-550TX FAST Ethernet Adapter"}, {"D-Link DFE-550FX 100Mbps Fiber-optics Adapter"}, {"D-Link DFE-580TX 4 port Server Adapter"}, {"D-Link DFE-530TXS FAST Ethernet Adapter"}, {"D-Link DL10050-based FAST Ethernet Adapter"}, {"Sundance Technology Alta"}, {NULL,}, /* 0 terminated list. */ }; /* This driver was written to use PCI memory space, however x86-oriented hardware often uses I/O space accesses. */ /* Offsets to the device registers. Unlike software-only systems, device drivers interact with complex hardware. It's not useful to define symbolic names for every register bit in the device. The name can only partially document the semantics and make the driver longer and more difficult to read. In general, only the important configuration values or bits changed multiple times should be defined symbolically. */ enum alta_offsets { DMACtrl = 0x00, TxListPtr = 0x04, TxDMABurstThresh = 0x08, TxDMAUrgentThresh = 0x09, TxDMAPollPeriod = 0x0a, RxDMAStatus = 0x0c, RxListPtr = 0x10, DebugCtrl0 = 0x1a, DebugCtrl1 = 0x1c, RxDMABurstThresh = 0x14, RxDMAUrgentThresh = 0x15, RxDMAPollPeriod = 0x16, LEDCtrl = 0x1a, ASICCtrl = 0x30, EEData = 0x34, EECtrl = 0x36, TxStartThresh = 0x3c, RxEarlyThresh = 0x3e, FlashAddr = 0x40, FlashData = 0x44, TxStatus = 0x46, TxFrameId = 0x47, DownCounter = 0x18, IntrClear = 0x4a, IntrEnable = 0x4c, IntrStatus = 0x4e, MACCtrl0 = 0x50, MACCtrl1 = 0x52, StationAddr = 0x54, MaxFrameSize = 0x5A, RxMode = 0x5c, MIICtrl = 0x5e, MulticastFilter0 = 0x60, MulticastFilter1 = 0x64, RxOctetsLow = 0x68, RxOctetsHigh = 0x6a, TxOctetsLow = 0x6c, TxOctetsHigh = 0x6e, TxFramesOK = 0x70, RxFramesOK = 0x72, StatsCarrierError = 0x74, StatsLateColl = 0x75, StatsMultiColl = 0x76, StatsOneColl = 0x77, StatsTxDefer = 0x78, RxMissed = 0x79, StatsTxXSDefer = 0x7a, StatsTxAbort = 0x7b, StatsBcastTx = 0x7c, StatsBcastRx = 0x7d, StatsMcastTx = 0x7e, StatsMcastRx = 0x7f, /* Aliased and bogus values! */ RxStatus = 0x0c, }; enum ASICCtrl_HiWord_bit { GlobalReset = 0x0001, RxReset = 0x0002, TxReset = 0x0004, DMAReset = 0x0008, FIFOReset = 0x0010, NetworkReset = 0x0020, HostReset = 0x0040, ResetBusy = 0x0400, }; /* Bits in the interrupt status/mask registers. */ enum intr_status_bits { IntrSummary=0x0001, IntrPCIErr=0x0002, IntrMACCtrl=0x0008, IntrTxDone=0x0004, IntrRxDone=0x0010, IntrRxStart=0x0020, IntrDrvRqst=0x0040, StatsMax=0x0080, LinkChange=0x0100, IntrTxDMADone=0x0200, IntrRxDMADone=0x0400, }; /* Bits in the RxMode register. */ enum rx_mode_bits { AcceptAllIPMulti=0x20, AcceptMultiHash=0x10, AcceptAll=0x08, AcceptBroadcast=0x04, AcceptMulticast=0x02, AcceptMyPhys=0x01, }; /* Bits in MACCtrl. */ enum mac_ctrl0_bits { EnbFullDuplex=0x20, EnbRcvLargeFrame=0x40, EnbFlowCtrl=0x100, EnbPassRxCRC=0x200, }; enum mac_ctrl1_bits { StatsEnable=0x0020, StatsDisable=0x0040, StatsEnabled=0x0080, TxEnable=0x0100, TxDisable=0x0200, TxEnabled=0x0400, RxEnable=0x0800, RxDisable=0x1000, RxEnabled=0x2000, }; /* The Rx and Tx buffer descriptors. */ /* Note that using only 32 bit fields simplifies conversion to big-endian architectures. */ struct netdev_desc { u32 next_desc; u32 status; struct desc_frag { u32 addr, length; } frag[1]; }; /* Bits in netdev_desc.status */ enum desc_status_bits { DescOwn=0x8000, DescEndPacket=0x4000, DescEndRing=0x2000, LastFrag=0x80000000, DescIntrOnTx=0x8000, DescIntrOnDMADone=0x80000000, DisableAlign = 0x00000001, }; #define PRIV_ALIGN 15 /* Required alignment mask */ /* Use __attribute__((aligned (L1_CACHE_BYTES))) to maintain alignment within the structure. */ #define MII_CNT 4 struct netdev_private { /* Descriptor rings first for alignment. */ struct netdev_desc *rx_ring; struct netdev_desc *tx_ring; struct sk_buff* rx_skbuff[RX_RING_SIZE]; struct sk_buff* tx_skbuff[TX_RING_SIZE]; dma_addr_t tx_ring_dma; dma_addr_t rx_ring_dma; struct net_device_stats stats; struct timer_list timer; /* Media monitoring timer. */ /* Frequently used values: keep some adjacent for cache effect. */ spinlock_t lock; spinlock_t rx_lock; /* Group with Tx control cache line. */ int msg_enable; int chip_id; unsigned int cur_rx, dirty_rx; /* Producer/consumer ring indices */ unsigned int rx_buf_sz; /* Based on MTU+slack. */ struct netdev_desc *last_tx; /* Last Tx descriptor used. */ unsigned int cur_tx, dirty_tx; /* These values are keep track of the transceiver/media in use. */ unsigned int flowctrl:1; unsigned int default_port:4; /* Last dev->if_port value. */ unsigned int an_enable:1; unsigned int speed; struct tasklet_struct rx_tasklet; struct tasklet_struct tx_tasklet; int budget; int cur_task; /* Multicast and receive mode. */ spinlock_t mcastlock; /* SMP lock multicast updates. */ u16 mcast_filter[4]; /* MII transceiver section. */ struct mii_if_info mii_if; int mii_preamble_required; unsigned char phys[MII_CNT]; /* MII device addresses, only first one used. */ struct pci_dev *pci_dev; void __iomem *base; unsigned char pci_rev_id; }; /* The station address location in the EEPROM. */ #define EEPROM_SA_OFFSET 0x10 #define DEFAULT_INTR (IntrRxDMADone | IntrPCIErr | \ IntrDrvRqst | IntrTxDone | StatsMax | \ LinkChange) static int change_mtu(struct net_device *dev, int new_mtu); static int eeprom_read(void __iomem *ioaddr, int location); static int mdio_read(struct net_device *dev, int phy_id, int location); static void mdio_write(struct net_device *dev, int phy_id, int location, int value); static int netdev_open(struct net_device *dev); static void check_duplex(struct net_device *dev); static void netdev_timer(unsigned long data); static void tx_timeout(struct net_device *dev); static void init_ring(struct net_device *dev); static int start_tx(struct sk_buff *skb, struct net_device *dev); static int reset_tx (struct net_device *dev); static irqreturn_t intr_handler(int irq, void *dev_instance, struct pt_regs *regs); static void rx_poll(unsigned long data); static void tx_poll(unsigned long data); static void refill_rx (struct net_device *dev); static void netdev_error(struct net_device *dev, int intr_status); static void netdev_error(struct net_device *dev, int intr_status); static void set_rx_mode(struct net_device *dev); static int __set_mac_addr(struct net_device *dev); static struct net_device_stats *get_stats(struct net_device *dev); static int netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd); static int netdev_close(struct net_device *dev); static struct ethtool_ops ethtool_ops; static void sundance_reset(struct net_device *dev, unsigned long reset_cmd) { struct netdev_private *np = netdev_priv(dev); void __iomem *ioaddr = np->base + ASICCtrl; int countdown; /* ST201 documentation states ASICCtrl is a 32bit register */ iowrite32 (reset_cmd | ioread32 (ioaddr), ioaddr); /* ST201 documentation states reset can take up to 1 ms */ countdown = 10 + 1; while (ioread32 (ioaddr) & (ResetBusy << 16)) { if (--countdown == 0) { printk(KERN_WARNING "%s : reset not completed !!\n", dev->name); break; } udelay(100); } } static int __devinit sundance_probe1 (struct pci_dev *pdev, const struct pci_device_id *ent) { struct net_device *dev; struct netdev_private *np; static int card_idx; int chip_idx = ent->driver_data; int irq; int i; void __iomem *ioaddr; u16 mii_ctl; void *ring_space; dma_addr_t ring_dma; #ifdef USE_IO_OPS int bar = 0; #else int bar = 1; #endif int phy, phy_idx = 0; /* when built into the kernel, we only print version if device is found */ #ifndef MODULE static int printed_version; if (!printed_version++) printk(version); #endif if (pci_enable_device(pdev)) return -EIO; pci_set_master(pdev); irq = pdev->irq; dev = alloc_etherdev(sizeof(*np)); if (!dev) return -ENOMEM; SET_MODULE_OWNER(dev); SET_NETDEV_DEV(dev, &pdev->dev); if (pci_request_regions(pdev, DRV_NAME)) goto err_out_netdev; ioaddr = pci_iomap(pdev, bar, netdev_io_size); if (!ioaddr) goto err_out_res; for (i = 0; i < 3; i++) ((u16 *)dev->dev_addr)[i] = le16_to_cpu(eeprom_read(ioaddr, i + EEPROM_SA_OFFSET)); memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len); dev->base_addr = (unsigned long)ioaddr; dev->irq = irq; np = netdev_priv(dev); np->base = ioaddr; np->pci_dev = pdev; np->chip_id = chip_idx; np->msg_enable = (1 << debug) - 1; spin_lock_init(&np->lock); tasklet_init(&np->rx_tasklet, rx_poll, (unsigned long)dev); tasklet_init(&np->tx_tasklet, tx_poll, (unsigned long)dev); ring_space = pci_alloc_consistent(pdev, TX_TOTAL_SIZE, &ring_dma); if (!ring_space) goto err_out_cleardev; np->tx_ring = (struct netdev_desc *)ring_space; np->tx_ring_dma = ring_dma; ring_space = pci_alloc_consistent(pdev, RX_TOTAL_SIZE, &ring_dma); if (!ring_space) goto err_out_unmap_tx; np->rx_ring = (struct netdev_desc *)ring_space; np->rx_ring_dma = ring_dma; np->mii_if.dev = dev; np->mii_if.mdio_read = mdio_read; np->mii_if.mdio_write = mdio_write; np->mii_if.phy_id_mask = 0x1f; np->mii_if.reg_num_mask = 0x1f; /* The chip-specific entries in the device structure. */ dev->open = &netdev_open; dev->hard_start_xmit = &start_tx; dev->stop = &netdev_close; dev->get_stats = &get_stats; dev->set_multicast_list = &set_rx_mode; dev->do_ioctl = &netdev_ioctl; SET_ETHTOOL_OPS(dev, ðtool_ops); dev->tx_timeout = &tx_timeout; dev->watchdog_timeo = TX_TIMEOUT; dev->change_mtu = &change_mtu; pci_set_drvdata(pdev, dev); pci_read_config_byte(pdev, PCI_REVISION_ID, &np->pci_rev_id); i = register_netdev(dev); if (i) goto err_out_unmap_rx; printk(KERN_INFO "%s: %s at %p, ", dev->name, pci_id_tbl[chip_idx].name, ioaddr); for (i = 0; i < 5; i++) printk("%2.2x:", dev->dev_addr[i]); printk("%2.2x, IRQ %d.\n", dev->dev_addr[i], irq); np->phys[0] = 1; /* Default setting */ np->mii_preamble_required++; for (phy = 1; phy <= 32 && phy_idx < MII_CNT; phy++) { int mii_status = mdio_read(dev, phy, MII_BMSR); int phyx = phy & 0x1f; if (mii_status != 0xffff && mii_status != 0x0000) { np->phys[phy_idx++] = phyx; np->mii_if.advertising = mdio_read(dev, phyx, MII_ADVERTISE); if ((mii_status & 0x0040) == 0) np->mii_preamble_required++; printk(KERN_INFO "%s: MII PHY found at address %d, status " "0x%4.4x advertising %4.4x.\n", dev->name, phyx, mii_status, np->mii_if.advertising); } } np->mii_preamble_required--; if (phy_idx == 0) { printk(KERN_INFO "%s: No MII transceiver found, aborting. ASIC status %x\n", dev->name, ioread32(ioaddr + ASICCtrl)); goto err_out_unregister; } np->mii_if.phy_id = np->phys[0]; /* Parse override configuration */ np->an_enable = 1; if (card_idx < MAX_UNITS) { if (media[card_idx] != NULL) { np->an_enable = 0; if (strcmp (media[card_idx], "100mbps_fd") == 0 || strcmp (media[card_idx], "4") == 0) { np->speed = 100; np->mii_if.full_duplex = 1; } else if (strcmp (media[card_idx], "100mbps_hd") == 0 || strcmp (media[card_idx], "3") == 0) { np->speed = 100; np->mii_if.full_duplex = 0; } else if (strcmp (media[card_idx], "10mbps_fd") == 0 || strcmp (media[card_idx], "2") == 0) { np->speed = 10; np->mii_if.full_duplex = 1; } else if (strcmp (media[card_idx], "10mbps_hd") == 0 || strcmp (media[card_idx], "1") == 0) { np->speed = 10; np->mii_if.full_duplex = 0; } else { np->an_enable = 1; } } if (flowctrl == 1) np->flowctrl = 1; } /* Fibre PHY? */ if (ioread32 (ioaddr + ASICCtrl) & 0x80) { /* Default 100Mbps Full */ if (np->an_enable) { np->speed = 100; np->mii_if.full_duplex = 1; np->an_enable = 0; } } /* Reset PHY */ mdio_write (dev, np->phys[0], MII_BMCR, BMCR_RESET); mdelay (300); /* If flow control enabled, we need to advertise it.*/ if (np->flowctrl) mdio_write (dev, np->phys[0], MII_ADVERTISE, np->mii_if.advertising | 0x0400); mdio_write (dev, np->phys[0], MII_BMCR, BMCR_ANENABLE|BMCR_ANRESTART); /* Force media type */ if (!np->an_enable) { mii_ctl = 0; mii_ctl |= (np->speed == 100) ? BMCR_SPEED100 : 0; mii_ctl |= (np->mii_if.full_duplex) ? BMCR_FULLDPLX : 0; mdio_write (dev, np->phys[0], MII_BMCR, mii_ctl); printk (KERN_INFO "Override speed=%d, %s duplex\n", np->speed, np->mii_if.full_duplex ? "Full" : "Half"); } /* Perhaps move the reset here? */ /* Reset the chip to erase previous misconfiguration. */ if (netif_msg_hw(np)) printk("ASIC Control is %x.\n", ioread32(ioaddr + ASICCtrl)); iowrite16(0x00ff, ioaddr + ASICCtrl + 2); if (netif_msg_hw(np)) printk("ASIC Control is now %x.\n", ioread32(ioaddr + ASICCtrl)); card_idx++; return 0; err_out_unregister: unregister_netdev(dev); err_out_unmap_rx: pci_free_consistent(pdev, RX_TOTAL_SIZE, np->rx_ring, np->rx_ring_dma); err_out_unmap_tx: pci_free_consistent(pdev, TX_TOTAL_SIZE, np->tx_ring, np->tx_ring_dma); err_out_cleardev: pci_set_drvdata(pdev, NULL); pci_iounmap(pdev, ioaddr); err_out_res: pci_release_regions(pdev); err_out_netdev: free_netdev (dev); return -ENODEV; } static int change_mtu(struct net_device *dev, int new_mtu) { if ((new_mtu < 68) || (new_mtu > 8191)) /* Set by RxDMAFrameLen */ return -EINVAL; if (netif_running(dev)) return -EBUSY; dev->mtu = new_mtu; return 0; } #define eeprom_delay(ee_addr) ioread32(ee_addr) /* Read the EEPROM and MII Management Data I/O (MDIO) interfaces. */ static int __devinit eeprom_read(void __iomem *ioaddr, int location) { int boguscnt = 10000; /* Typical 1900 ticks. */ iowrite16(0x0200 | (location & 0xff), ioaddr + EECtrl); do { eeprom_delay(ioaddr + EECtrl); if (! (ioread16(ioaddr + EECtrl) & 0x8000)) { return ioread16(ioaddr + EEData); } } while (--boguscnt > 0); return 0; } /* MII transceiver control section. Read and write the MII registers using software-generated serial MDIO protocol. See the MII specifications or DP83840A data sheet for details. The maximum data clock rate is 2.5 Mhz. The minimum timing is usually met by back-to-back 33Mhz PCI cycles. */ #define mdio_delay() ioread8(mdio_addr) enum mii_reg_bits { MDIO_ShiftClk=0x0001, MDIO_Data=0x0002, MDIO_EnbOutput=0x0004, }; #define MDIO_EnbIn (0) #define MDIO_WRITE0 (MDIO_EnbOutput) #define MDIO_WRITE1 (MDIO_Data | MDIO_EnbOutput) /* Generate the preamble required for initial synchronization and a few older transceivers. */ static void mdio_sync(void __iomem *mdio_addr) { int bits = 32; /* Establish sync by sending at least 32 logic ones. */ while (--bits >= 0) { iowrite8(MDIO_WRITE1, mdio_addr); mdio_delay(); iowrite8(MDIO_WRITE1 | MDIO_ShiftClk, mdio_addr); mdio_delay(); } } static int mdio_read(struct net_device *dev, int phy_id, int location) { struct netdev_private *np = netdev_priv(dev); void __iomem *mdio_addr = np->base + MIICtrl; int mii_cmd = (0xf6 << 10) | (phy_id << 5) | location; int i, retval = 0; if (np->mii_preamble_required) mdio_sync(mdio_addr); /* Shift the read command bits out. */ for (i = 15; i >= 0; i--) { int dataval = (mii_cmd & (1 << i)) ? MDIO_WRITE1 : MDIO_WRITE0; iowrite8(dataval, mdio_addr); mdio_delay(); iowrite8(dataval | MDIO_ShiftClk, mdio_addr); mdio_delay(); } /* Read the two transition, 16 data, and wire-idle bits. */ for (i = 19; i > 0; i--) { iowrite8(MDIO_EnbIn, mdio_addr); mdio_delay(); retval = (retval << 1) | ((ioread8(mdio_addr) & MDIO_Data) ? 1 : 0); iowrite8(MDIO_EnbIn | MDIO_ShiftClk, mdio_addr); mdio_delay(); } return (retval>>1) & 0xffff; } static void mdio_write(struct net_device *dev, int phy_id, int location, int value) { struct netdev_private *np = netdev_priv(dev); void __iomem *mdio_addr = np->base + MIICtrl; int mii_cmd = (0x5002 << 16) | (phy_id << 23) | (location<<18) | value; int i; if (np->mii_preamble_required) mdio_sync(mdio_addr); /* Shift the command bits out. */ for (i = 31; i >= 0; i--) { int dataval = (mii_cmd & (1 << i)) ? MDIO_WRITE1 : MDIO_WRITE0; iowrite8(dataval, mdio_addr); mdio_delay(); iowrite8(dataval | MDIO_ShiftClk, mdio_addr); mdio_delay(); } /* Clear out extra bits. */ for (i = 2; i > 0; i--) { iowrite8(MDIO_EnbIn, mdio_addr); mdio_delay(); iowrite8(MDIO_EnbIn | MDIO_ShiftClk, mdio_addr); mdio_delay(); } return; } static int netdev_open(struct net_device *dev) { struct netdev_private *np = netdev_priv(dev); void __iomem *ioaddr = np->base; int i; /* Do we need to reset the chip??? */ i = request_irq(dev->irq, &intr_handler, SA_SHIRQ, dev->name, dev); if (i) return i; if (netif_msg_ifup(np)) printk(KERN_DEBUG "%s: netdev_open() irq %d.\n", dev->name, dev->irq); init_ring(dev); iowrite32(np->rx_ring_dma, ioaddr + RxListPtr); /* The Tx list pointer is written as packets are queued. */ /* Initialize other registers. */ __set_mac_addr(dev); #if defined(CONFIG_VLAN_8021Q) || defined(CONFIG_VLAN_8021Q_MODULE) iowrite16(dev->mtu + 18, ioaddr + MaxFrameSize); #else iowrite16(dev->mtu + 14, ioaddr + MaxFrameSize); #endif if (dev->mtu > 2047) iowrite32(ioread32(ioaddr + ASICCtrl) | 0x0C, ioaddr + ASICCtrl); /* Configure the PCI bus bursts and FIFO thresholds. */ if (dev->if_port == 0) dev->if_port = np->default_port; spin_lock_init(&np->mcastlock); set_rx_mode(dev); iowrite16(0, ioaddr + IntrEnable); iowrite16(0, ioaddr + DownCounter); /* Set the chip to poll every N*320nsec. */ iowrite8(100, ioaddr + RxDMAPollPeriod); iowrite8(127, ioaddr + TxDMAPollPeriod); /* Fix DFE-580TX packet drop issue */ if (np->pci_rev_id >= 0x14) iowrite8(0x01, ioaddr + DebugCtrl1); netif_start_queue(dev); iowrite16 (StatsEnable | RxEnable | TxEnable, ioaddr + MACCtrl1); if (netif_msg_ifup(np)) printk(KERN_DEBUG "%s: Done netdev_open(), status: Rx %x Tx %x " "MAC Control %x, %4.4x %4.4x.\n", dev->name, ioread32(ioaddr + RxStatus), ioread8(ioaddr + TxStatus), ioread32(ioaddr + MACCtrl0), ioread16(ioaddr + MACCtrl1), ioread16(ioaddr + MACCtrl0)); /* Set the timer to check for link beat. */ init_timer(&np->timer); np->timer.expires = jiffies + 3*HZ; np->timer.data = (unsigned long)dev; np->timer.function = &netdev_timer; /* timer handler */ add_timer(&np->timer); /* Enable interrupts by setting the interrupt mask. */ iowrite16(DEFAULT_INTR, ioaddr + IntrEnable); return 0; } static void check_duplex(struct net_device *dev) { struct netdev_private *np = netdev_priv(dev); void __iomem *ioaddr = np->base; int mii_lpa = mdio_read(dev, np->phys[0], MII_LPA); int negotiated = mii_lpa & np->mii_if.advertising; int duplex; /* Force media */ if (!np->an_enable || mii_lpa == 0xffff) { if (np->mii_if.full_duplex) iowrite16 (ioread16 (ioaddr + MACCtrl0) | EnbFullDuplex, ioaddr + MACCtrl0); return; } /* Autonegotiation */ duplex = (negotiated & 0x0100) || (negotiated & 0x01C0) == 0x0040; if (np->mii_if.full_duplex != duplex) { np->mii_if.full_duplex = duplex; if (netif_msg_link(np)) printk(KERN_INFO "%s: Setting %s-duplex based on MII #%d " "negotiated capability %4.4x.\n", dev->name, duplex ? "full" : "half", np->phys[0], negotiated); iowrite16(ioread16(ioaddr + MACCtrl0) | duplex ? 0x20 : 0, ioaddr + MACCtrl0); } } static void netdev_timer(unsigned long data) { struct net_device *dev = (struct net_device *)data; struct netdev_private *np = netdev_priv(dev); void __iomem *ioaddr = np->base; int next_tick = 10*HZ; if (netif_msg_timer(np)) { printk(KERN_DEBUG "%s: Media selection timer tick, intr status %4.4x, " "Tx %x Rx %x.\n", dev->name, ioread16(ioaddr + IntrEnable), ioread8(ioaddr + TxStatus), ioread32(ioaddr + RxStatus)); } check_duplex(dev); np->timer.expires = jiffies + next_tick; add_timer(&np->timer); } static void tx_timeout(struct net_device *dev) { struct netdev_private *np = netdev_priv(dev); void __iomem *ioaddr = np->base; unsigned long flag; netif_stop_queue(dev); tasklet_disable(&np->tx_tasklet); iowrite16(0, ioaddr + IntrEnable); printk(KERN_WARNING "%s: Transmit timed out, TxStatus %2.2x " "TxFrameId %2.2x," " resetting...\n", dev->name, ioread8(ioaddr + TxStatus), ioread8(ioaddr + TxFrameId)); { int i; for (i=0; i<TX_RING_SIZE; i++) { printk(KERN_DEBUG "%02x %08llx %08x %08x(%02x) %08x %08x\n", i, (unsigned long long)(np->tx_ring_dma + i*sizeof(*np->tx_ring)), le32_to_cpu(np->tx_ring[i].next_desc), le32_to_cpu(np->tx_ring[i].status), (le32_to_cpu(np->tx_ring[i].status) >> 2) & 0xff, le32_to_cpu(np->tx_ring[i].frag[0].addr), le32_to_cpu(np->tx_ring[i].frag[0].length)); } printk(KERN_DEBUG "TxListPtr=%08x netif_queue_stopped=%d\n", ioread32(np->base + TxListPtr), netif_queue_stopped(dev)); printk(KERN_DEBUG "cur_tx=%d(%02x) dirty_tx=%d(%02x)\n", np->cur_tx, np->cur_tx % TX_RING_SIZE, np->dirty_tx, np->dirty_tx % TX_RING_SIZE); printk(KERN_DEBUG "cur_rx=%d dirty_rx=%d\n", np->cur_rx, np->dirty_rx); printk(KERN_DEBUG "cur_task=%d\n", np->cur_task); } spin_lock_irqsave(&np->lock, flag); /* Stop and restart the chip's Tx processes . */ reset_tx(dev); spin_unlock_irqrestore(&np->lock, flag); dev->if_port = 0; dev->trans_start = jiffies; np->stats.tx_errors++; if (np->cur_tx - np->dirty_tx < TX_QUEUE_LEN - 4) { netif_wake_queue(dev); } iowrite16(DEFAULT_INTR, ioaddr + IntrEnable); tasklet_enable(&np->tx_tasklet); } /* Initialize the Rx and Tx rings, along with various 'dev' bits. */ static void init_ring(struct net_device *dev) { struct netdev_private *np = netdev_priv(dev); int i; np->cur_rx = np->cur_tx = 0; np->dirty_rx = np->dirty_tx = 0; np->cur_task = 0; np->rx_buf_sz = (dev->mtu <= 1520 ? PKT_BUF_SZ : dev->mtu + 16); /* Initialize all Rx descriptors. */ for (i = 0; i < RX_RING_SIZE; i++) { np->rx_ring[i].next_desc = cpu_to_le32(np->rx_ring_dma + ((i+1)%RX_RING_SIZE)*sizeof(*np->rx_ring)); np->rx_ring[i].status = 0; np->rx_ring[i].frag[0].length = 0; np->rx_skbuff[i] = NULL; } /* Fill in the Rx buffers. Handle allocation failure gracefully. */ for (i = 0; i < RX_RING_SIZE; i++) { struct sk_buff *skb = dev_alloc_skb(np->rx_buf_sz); np->rx_skbuff[i] = skb; if (skb == NULL) break; skb->dev = dev; /* Mark as being used by this device. */ skb_reserve(skb, 2); /* 16 byte align the IP header. */ np->rx_ring[i].frag[0].addr = cpu_to_le32( pci_map_single(np->pci_dev, skb->data, np->rx_buf_sz, PCI_DMA_FROMDEVICE)); np->rx_ring[i].frag[0].length = cpu_to_le32(np->rx_buf_sz | LastFrag); } np->dirty_rx = (unsigned int)(i - RX_RING_SIZE); for (i = 0; i < TX_RING_SIZE; i++) { np->tx_skbuff[i] = NULL; np->tx_ring[i].status = 0; } return; } static void tx_poll (unsigned long data) { struct net_device *dev = (struct net_device *)data; struct netdev_private *np = netdev_priv(dev); unsigned head = np->cur_task % TX_RING_SIZE; struct netdev_desc *txdesc = &np->tx_ring[(np->cur_tx - 1) % TX_RING_SIZE]; /* Chain the next pointer */ for (; np->cur_tx - np->cur_task > 0; np->cur_task++) { int entry = np->cur_task % TX_RING_SIZE; txdesc = &np->tx_ring[entry]; if (np->last_tx) { np->last_tx->next_desc = cpu_to_le32(np->tx_ring_dma + entry*sizeof(struct netdev_desc)); } np->last_tx = txdesc; } /* Indicate the latest descriptor of tx ring */ txdesc->status |= cpu_to_le32(DescIntrOnTx); if (ioread32 (np->base + TxListPtr) == 0) iowrite32 (np->tx_ring_dma + head * sizeof(struct netdev_desc), np->base + TxListPtr); return; } static int start_tx (struct sk_buff *skb, struct net_device *dev) { struct netdev_private *np = netdev_priv(dev); struct netdev_desc *txdesc; unsigned entry; /* Calculate the next Tx descriptor entry. */ entry = np->cur_tx % TX_RING_SIZE; np->tx_skbuff[entry] = skb; txdesc = &np->tx_ring[entry]; txdesc->next_desc = 0; txdesc->status = cpu_to_le32 ((entry << 2) | DisableAlign); txdesc->frag[0].addr = cpu_to_le32 (pci_map_single (np->pci_dev, skb->data, skb->len, PCI_DMA_TODEVICE)); txdesc->frag[0].length = cpu_to_le32 (skb->len | LastFrag); /* Increment cur_tx before tasklet_schedule() */ np->cur_tx++; mb(); /* Schedule a tx_poll() task */ tasklet_schedule(&np->tx_tasklet); /* On some architectures: explicitly flush cache lines here. */ if (np->cur_tx - np->dirty_tx < TX_QUEUE_LEN - 1 && !netif_queue_stopped(dev)) { /* do nothing */ } else { netif_stop_queue (dev); } dev->trans_start = jiffies; if (netif_msg_tx_queued(np)) { printk (KERN_DEBUG "%s: Transmit frame #%d queued in slot %d.\n", dev->name, np->cur_tx, entry); } return 0; } /* Reset hardware tx and free all of tx buffers */ static int reset_tx (struct net_device *dev) { struct netdev_private *np = netdev_priv(dev); void __iomem *ioaddr = np->base; struct sk_buff *skb; int i; int irq = in_interrupt(); /* Reset tx logic, TxListPtr will be cleaned */ iowrite16 (TxDisable, ioaddr + MACCtrl1); iowrite16 (TxReset | DMAReset | FIFOReset | NetworkReset, ioaddr + ASICCtrl + 2); for (i=50; i > 0; i--) { if ((ioread16(ioaddr + ASICCtrl + 2) & ResetBusy) == 0) break; mdelay(1); } /* free all tx skbuff */ for (i = 0; i < TX_RING_SIZE; i++) { skb = np->tx_skbuff[i]; if (skb) { pci_unmap_single(np->pci_dev, np->tx_ring[i].frag[0].addr, skb->len, PCI_DMA_TODEVICE); if (irq) dev_kfree_skb_irq (skb); else dev_kfree_skb (skb); np->tx_skbuff[i] = NULL; np->stats.tx_dropped++; } } np->cur_tx = np->dirty_tx = 0; np->cur_task = 0; iowrite16 (StatsEnable | RxEnable | TxEnable, ioaddr + MACCtrl1); return 0; } /* The interrupt handler cleans up after the Tx thread, and schedule a Rx thread work */ static irqreturn_t intr_handler(int irq, void *dev_instance, struct pt_regs *rgs) { struct net_device *dev = (struct net_device *)dev_instance; struct netdev_private *np = netdev_priv(dev); void __iomem *ioaddr = np->base; int hw_frame_id; int tx_cnt; int tx_status; int handled = 0; do { int intr_status = ioread16(ioaddr + IntrStatus); iowrite16(intr_status, ioaddr + IntrStatus); if (netif_msg_intr(np)) printk(KERN_DEBUG "%s: Interrupt, status %4.4x.\n", dev->name, intr_status); if (!(intr_status & DEFAULT_INTR)) break; handled = 1; if (intr_status & (IntrRxDMADone)) { iowrite16(DEFAULT_INTR & ~(IntrRxDone|IntrRxDMADone), ioaddr + IntrEnable); if (np->budget < 0) np->budget = RX_BUDGET; tasklet_schedule(&np->rx_tasklet); } if (intr_status & (IntrTxDone | IntrDrvRqst)) { tx_status = ioread16 (ioaddr + TxStatus); for (tx_cnt=32; tx_status & 0x80; --tx_cnt) { if (netif_msg_tx_done(np)) printk ("%s: Transmit status is %2.2x.\n", dev->name, tx_status); if (tx_status & 0x1e) { if (netif_msg_tx_err(np)) printk("%s: Transmit error status %4.4x.\n", dev->name, tx_status); np->stats.tx_errors++; if (tx_status & 0x10) np->stats.tx_fifo_errors++; if (tx_status & 0x08) np->stats.collisions++; if (tx_status & 0x04) np->stats.tx_fifo_errors++; if (tx_status & 0x02) np->stats.tx_window_errors++; /* ** This reset has been verified on ** DFE-580TX boards ! phdm@macqel.be. */ if (tx_status & 0x10) { /* TxUnderrun */ unsigned short txthreshold; txthreshold = ioread16 (ioaddr + TxStartThresh); /* Restart Tx FIFO and transmitter */ sundance_reset(dev, (NetworkReset|FIFOReset|TxReset) << 16); iowrite16 (txthreshold, ioaddr + TxStartThresh); /* No need to reset the Tx pointer here */ } /* Restart the Tx. */ iowrite16 (TxEnable, ioaddr + MACCtrl1); } /* Yup, this is a documentation bug. It cost me *hours*. */ iowrite16 (0, ioaddr + TxStatus); if (tx_cnt < 0) { iowrite32(5000, ioaddr + DownCounter); break; } tx_status = ioread16 (ioaddr + TxStatus); } hw_frame_id = (tx_status >> 8) & 0xff; } else { hw_frame_id = ioread8(ioaddr + TxFrameId); } if (np->pci_rev_id >= 0x14) { spin_lock(&np->lock); for (; np->cur_tx - np->dirty_tx > 0; np->dirty_tx++) { int entry = np->dirty_tx % TX_RING_SIZE; struct sk_buff *skb; int sw_frame_id; sw_frame_id = (le32_to_cpu( np->tx_ring[entry].status) >> 2) & 0xff; if (sw_frame_id == hw_frame_id && !(le32_to_cpu(np->tx_ring[entry].status) & 0x00010000)) break; if (sw_frame_id == (hw_frame_id + 1) % TX_RING_SIZE) break; skb = np->tx_skbuff[entry]; /* Free the original skb. */ pci_unmap_single(np->pci_dev, np->tx_ring[entry].frag[0].addr, skb->len, PCI_DMA_TODEVICE); dev_kfree_skb_irq (np->tx_skbuff[entry]); np->tx_skbuff[entry] = NULL; np->tx_ring[entry].frag[0].addr = 0; np->tx_ring[entry].frag[0].length = 0; } spin_unlock(&np->lock); } else { spin_lock(&np->lock); for (; np->cur_tx - np->dirty_tx > 0; np->dirty_tx++) { int entry = np->dirty_tx % TX_RING_SIZE; struct sk_buff *skb; if (!(le32_to_cpu(np->tx_ring[entry].status) & 0x00010000)) break; skb = np->tx_skbuff[entry]; /* Free the original skb. */ pci_unmap_single(np->pci_dev, np->tx_ring[entry].frag[0].addr, skb->len, PCI_DMA_TODEVICE); dev_kfree_skb_irq (np->tx_skbuff[entry]); np->tx_skbuff[entry] = NULL; np->tx_ring[entry].frag[0].addr = 0; np->tx_ring[entry].frag[0].length = 0; } spin_unlock(&np->lock); } if (netif_queue_stopped(dev) && np->cur_tx - np->dirty_tx < TX_QUEUE_LEN - 4) { /* The ring is no longer full, clear busy flag. */ netif_wake_queue (dev); } /* Abnormal error summary/uncommon events handlers. */ if (intr_status & (IntrPCIErr | LinkChange | StatsMax)) netdev_error(dev, intr_status); } while (0); if (netif_msg_intr(np)) printk(KERN_DEBUG "%s: exiting interrupt, status=%#4.4x.\n", dev->name, ioread16(ioaddr + IntrStatus)); return IRQ_RETVAL(handled); } static void rx_poll(unsigned long data) { struct net_device *dev = (struct net_device *)data; struct netdev_private *np = netdev_priv(dev); int entry = np->cur_rx % RX_RING_SIZE; int boguscnt = np->budget; void __iomem *ioaddr = np->base; int received = 0; /* If EOP is set on the next entry, it's a new packet. Send it up. */ while (1) { struct netdev_desc *desc = &(np->rx_ring[entry]); u32 frame_status = le32_to_cpu(desc->status); int pkt_len; if (--boguscnt < 0) { goto not_done; } if (!(frame_status & DescOwn)) break; pkt_len = frame_status & 0x1fff; /* Chip omits the CRC. */ if (netif_msg_rx_status(np)) printk(KERN_DEBUG " netdev_rx() status was %8.8x.\n", frame_status); if (frame_status & 0x001f4000) { /* There was a error. */ if (netif_msg_rx_err(np)) printk(KERN_DEBUG " netdev_rx() Rx error was %8.8x.\n", frame_status); np->stats.rx_errors++; if (frame_status & 0x00100000) np->stats.rx_length_errors++; if (frame_status & 0x00010000) np->stats.rx_fifo_errors++; if (frame_status & 0x00060000) np->stats.rx_frame_errors++; if (frame_status & 0x00080000) np->stats.rx_crc_errors++; if (frame_status & 0x00100000) { printk(KERN_WARNING "%s: Oversized Ethernet frame," " status %8.8x.\n", dev->name, frame_status); } } else { struct sk_buff *skb; #ifndef final_version if (netif_msg_rx_status(np)) printk(KERN_DEBUG " netdev_rx() normal Rx pkt length %d" ", bogus_cnt %d.\n", pkt_len, boguscnt); #endif /* Check if the packet is long enough to accept without copying to a minimally-sized skbuff. */ if (pkt_len < rx_copybreak && (skb = dev_alloc_skb(pkt_len + 2)) != NULL) { skb->dev = dev; skb_reserve(skb, 2); /* 16 byte align the IP header */ pci_dma_sync_single_for_cpu(np->pci_dev, desc->frag[0].addr, np->rx_buf_sz, PCI_DMA_FROMDEVICE); eth_copy_and_sum(skb, np->rx_skbuff[entry]->data, pkt_len, 0); pci_dma_sync_single_for_device(np->pci_dev, desc->frag[0].addr, np->rx_buf_sz, PCI_DMA_FROMDEVICE); skb_put(skb, pkt_len); } else { pci_unmap_single(np->pci_dev, desc->frag[0].addr, np->rx_buf_sz, PCI_DMA_FROMDEVICE); skb_put(skb = np->rx_skbuff[entry], pkt_len); np->rx_skbuff[entry] = NULL; } skb->protocol = eth_type_trans(skb, dev); /* Note: checksum -> skb->ip_summed = CHECKSUM_UNNECESSARY; */ netif_rx(skb); dev->last_rx = jiffies; } entry = (entry + 1) % RX_RING_SIZE; received++; } np->cur_rx = entry; refill_rx (dev); np->budget -= received; iowrite16(DEFAULT_INTR, ioaddr + IntrEnable); return; not_done: np->cur_rx = entry; refill_rx (dev); if (!received) received = 1; np->budget -= received; if (np->budget <= 0) np->budget = RX_BUDGET; tasklet_schedule(&np->rx_tasklet); return; } static void refill_rx (struct net_device *dev) { struct netdev_private *np = netdev_priv(dev); int entry; int cnt = 0; /* Refill the Rx ring buffers. */ for (;(np->cur_rx - np->dirty_rx + RX_RING_SIZE) % RX_RING_SIZE > 0; np->dirty_rx = (np->dirty_rx + 1) % RX_RING_SIZE) { struct sk_buff *skb; entry = np->dirty_rx % RX_RING_SIZE; if (np->rx_skbuff[entry] == NULL) { skb = dev_alloc_skb(np->rx_buf_sz); np->rx_skbuff[entry] = skb; if (skb == NULL) break; /* Better luck next round. */ skb->dev = dev; /* Mark as being used by this device. */ skb_reserve(skb, 2); /* Align IP on 16 byte boundaries */ np->rx_ring[entry].frag[0].addr = cpu_to_le32( pci_map_single(np->pci_dev, skb->data, np->rx_buf_sz, PCI_DMA_FROMDEVICE)); } /* Perhaps we need not reset this field. */ np->rx_ring[entry].frag[0].length = cpu_to_le32(np->rx_buf_sz | LastFrag); np->rx_ring[entry].status = 0; cnt++; } return; } static void netdev_error(struct net_device *dev, int intr_status) { struct netdev_private *np = netdev_priv(dev); void __iomem *ioaddr = np->base; u16 mii_ctl, mii_advertise, mii_lpa; int speed; if (intr_status & LinkChange) { if (np->an_enable) { mii_advertise = mdio_read (dev, np->phys[0], MII_ADVERTISE); mii_lpa= mdio_read (dev, np->phys[0], MII_LPA); mii_advertise &= mii_lpa; printk (KERN_INFO "%s: Link changed: ", dev->name); if (mii_advertise & ADVERTISE_100FULL) { np->speed = 100; printk ("100Mbps, full duplex\n"); } else if (mii_advertise & ADVERTISE_100HALF) { np->speed = 100; printk ("100Mbps, half duplex\n"); } else if (mii_advertise & ADVERTISE_10FULL) { np->speed = 10; printk ("10Mbps, full duplex\n"); } else if (mii_advertise & ADVERTISE_10HALF) { np->speed = 10; printk ("10Mbps, half duplex\n"); } else printk ("\n"); } else { mii_ctl = mdio_read (dev, np->phys[0], MII_BMCR); speed = (mii_ctl & BMCR_SPEED100) ? 100 : 10; np->speed = speed; printk (KERN_INFO "%s: Link changed: %dMbps ,", dev->name, speed); printk ("%s duplex.\n", (mii_ctl & BMCR_FULLDPLX) ? "full" : "half"); } check_duplex (dev); if (np->flowctrl && np->mii_if.full_duplex) { iowrite16(ioread16(ioaddr + MulticastFilter1+2) | 0x0200, ioaddr + MulticastFilter1+2); iowrite16(ioread16(ioaddr + MACCtrl0) | EnbFlowCtrl, ioaddr + MACCtrl0); } } if (intr_status & StatsMax) { get_stats(dev); } if (intr_status & IntrPCIErr) { printk(KERN_ERR "%s: Something Wicked happened! %4.4x.\n", dev->name, intr_status); /* We must do a global reset of DMA to continue. */ } } static struct net_device_stats *get_stats(struct net_device *dev) { struct netdev_private *np = netdev_priv(dev); void __iomem *ioaddr = np->base; int i; /* We should lock this segment of code for SMP eventually, although the vulnerability window is very small and statistics are non-critical. */ /* The chip only need report frame silently dropped. */ np->stats.rx_missed_errors += ioread8(ioaddr + RxMissed); np->stats.tx_packets += ioread16(ioaddr + TxFramesOK); np->stats.rx_packets += ioread16(ioaddr + RxFramesOK); np->stats.collisions += ioread8(ioaddr + StatsLateColl); np->stats.collisions += ioread8(ioaddr + StatsMultiColl); np->stats.collisions += ioread8(ioaddr + StatsOneColl); np->stats.tx_carrier_errors += ioread8(ioaddr + StatsCarrierError); ioread8(ioaddr + StatsTxDefer); for (i = StatsTxDefer; i <= StatsMcastRx; i++) ioread8(ioaddr + i); np->stats.tx_bytes += ioread16(ioaddr + TxOctetsLow); np->stats.tx_bytes += ioread16(ioaddr + TxOctetsHigh) << 16; np->stats.rx_bytes += ioread16(ioaddr + RxOctetsLow); np->stats.rx_bytes += ioread16(ioaddr + RxOctetsHigh) << 16; return &np->stats; } static void set_rx_mode(struct net_device *dev) { struct netdev_private *np = netdev_priv(dev); void __iomem *ioaddr = np->base; u16 mc_filter[4]; /* Multicast hash filter */ u32 rx_mode; int i; if (dev->flags & IFF_PROMISC) { /* Set promiscuous. */ /* Unconditionally log net taps. */ printk(KERN_NOTICE "%s: Promiscuous mode enabled.\n", dev->name); memset(mc_filter, 0xff, sizeof(mc_filter)); rx_mode = AcceptBroadcast | AcceptMulticast | AcceptAll | AcceptMyPhys; } else if ((dev->mc_count > multicast_filter_limit) || (dev->flags & IFF_ALLMULTI)) { /* Too many to match, or accept all multicasts. */ memset(mc_filter, 0xff, sizeof(mc_filter)); rx_mode = AcceptBroadcast | AcceptMulticast | AcceptMyPhys; } else if (dev->mc_count) { struct dev_mc_list *mclist; int bit; int index; int crc; memset (mc_filter, 0, sizeof (mc_filter)); for (i = 0, mclist = dev->mc_list; mclist && i < dev->mc_count; i++, mclist = mclist->next) { crc = ether_crc_le (ETH_ALEN, mclist->dmi_addr); for (index=0, bit=0; bit < 6; bit++, crc <<= 1) if (crc & 0x80000000) index |= 1 << bit; mc_filter[index/16] |= (1 << (index % 16)); } rx_mode = AcceptBroadcast | AcceptMultiHash | AcceptMyPhys; } else { iowrite8(AcceptBroadcast | AcceptMyPhys, ioaddr + RxMode); return; } if (np->mii_if.full_duplex && np->flowctrl) mc_filter[3] |= 0x0200; for (i = 0; i < 4; i++) iowrite16(mc_filter[i], ioaddr + MulticastFilter0 + i*2); iowrite8(rx_mode, ioaddr + RxMode); } static int __set_mac_addr(struct net_device *dev) { struct netdev_private *np = netdev_priv(dev); u16 addr16; addr16 = (dev->dev_addr[0] | (dev->dev_addr[1] << 8)); iowrite16(addr16, np->base + StationAddr); addr16 = (dev->dev_addr[2] | (dev->dev_addr[3] << 8)); iowrite16(addr16, np->base + StationAddr+2); addr16 = (dev->dev_addr[4] | (dev->dev_addr[5] << 8)); iowrite16(addr16, np->base + StationAddr+4); return 0; } static int check_if_running(struct net_device *dev) { if (!netif_running(dev)) return -EINVAL; return 0; } static void get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info) { struct netdev_private *np = netdev_priv(dev); strcpy(info->driver, DRV_NAME); strcpy(info->version, DRV_VERSION); strcpy(info->bus_info, pci_name(np->pci_dev)); } static int get_settings(struct net_device *dev, struct ethtool_cmd *ecmd) { struct netdev_private *np = netdev_priv(dev); spin_lock_irq(&np->lock); mii_ethtool_gset(&np->mii_if, ecmd); spin_unlock_irq(&np->lock); return 0; } static int set_settings(struct net_device *dev, struct ethtool_cmd *ecmd) { struct netdev_private *np = netdev_priv(dev); int res; spin_lock_irq(&np->lock); res = mii_ethtool_sset(&np->mii_if, ecmd); spin_unlock_irq(&np->lock); return res; } static int nway_reset(struct net_device *dev) { struct netdev_private *np = netdev_priv(dev); return mii_nway_restart(&np->mii_if); } static u32 get_link(struct net_device *dev) { struct netdev_private *np = netdev_priv(dev); return mii_link_ok(&np->mii_if); } static u32 get_msglevel(struct net_device *dev) { struct netdev_private *np = netdev_priv(dev); return np->msg_enable; } static void set_msglevel(struct net_device *dev, u32 val) { struct netdev_private *np = netdev_priv(dev); np->msg_enable = val; } static struct ethtool_ops ethtool_ops = { .begin = check_if_running, .get_drvinfo = get_drvinfo, .get_settings = get_settings, .set_settings = set_settings, .nway_reset = nway_reset, .get_link = get_link, .get_msglevel = get_msglevel, .set_msglevel = set_msglevel, .get_perm_addr = ethtool_op_get_perm_addr, }; static int netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd) { struct netdev_private *np = netdev_priv(dev); void __iomem *ioaddr = np->base; int rc; int i; if (!netif_running(dev)) return -EINVAL; spin_lock_irq(&np->lock); rc = generic_mii_ioctl(&np->mii_if, if_mii(rq), cmd, NULL); spin_unlock_irq(&np->lock); switch (cmd) { case SIOCDEVPRIVATE: for (i=0; i<TX_RING_SIZE; i++) { printk(KERN_DEBUG "%02x %08llx %08x %08x(%02x) %08x %08x\n", i, (unsigned long long)(np->tx_ring_dma + i*sizeof(*np->tx_ring)), le32_to_cpu(np->tx_ring[i].next_desc), le32_to_cpu(np->tx_ring[i].status), (le32_to_cpu(np->tx_ring[i].status) >> 2) & 0xff, le32_to_cpu(np->tx_ring[i].frag[0].addr), le32_to_cpu(np->tx_ring[i].frag[0].length)); } printk(KERN_DEBUG "TxListPtr=%08x netif_queue_stopped=%d\n", ioread32(np->base + TxListPtr), netif_queue_stopped(dev)); printk(KERN_DEBUG "cur_tx=%d(%02x) dirty_tx=%d(%02x)\n", np->cur_tx, np->cur_tx % TX_RING_SIZE, np->dirty_tx, np->dirty_tx % TX_RING_SIZE); printk(KERN_DEBUG "cur_rx=%d dirty_rx=%d\n", np->cur_rx, np->dirty_rx); printk(KERN_DEBUG "cur_task=%d\n", np->cur_task); printk(KERN_DEBUG "TxStatus=%04x\n", ioread16(ioaddr + TxStatus)); return 0; } return rc; } static int netdev_close(struct net_device *dev) { struct netdev_private *np = netdev_priv(dev); void __iomem *ioaddr = np->base; struct sk_buff *skb; int i; netif_stop_queue(dev); if (netif_msg_ifdown(np)) { printk(KERN_DEBUG "%s: Shutting down ethercard, status was Tx %2.2x " "Rx %4.4x Int %2.2x.\n", dev->name, ioread8(ioaddr + TxStatus), ioread32(ioaddr + RxStatus), ioread16(ioaddr + IntrStatus)); printk(KERN_DEBUG "%s: Queue pointers were Tx %d / %d, Rx %d / %d.\n", dev->name, np->cur_tx, np->dirty_tx, np->cur_rx, np->dirty_rx); } /* Disable interrupts by clearing the interrupt mask. */ iowrite16(0x0000, ioaddr + IntrEnable); /* Stop the chip's Tx and Rx processes. */ iowrite16(TxDisable | RxDisable | StatsDisable, ioaddr + MACCtrl1); /* Wait and kill tasklet */ tasklet_kill(&np->rx_tasklet); tasklet_kill(&np->tx_tasklet); #ifdef __i386__ if (netif_msg_hw(np)) { printk("\n"KERN_DEBUG" Tx ring at %8.8x:\n", (int)(np->tx_ring_dma)); for (i = 0; i < TX_RING_SIZE; i++) printk(" #%d desc. %4.4x %8.8x %8.8x.\n", i, np->tx_ring[i].status, np->tx_ring[i].frag[0].addr, np->tx_ring[i].frag[0].length); printk("\n"KERN_DEBUG " Rx ring %8.8x:\n", (int)(np->rx_ring_dma)); for (i = 0; i < /*RX_RING_SIZE*/4 ; i++) { printk(KERN_DEBUG " #%d desc. %4.4x %4.4x %8.8x\n", i, np->rx_ring[i].status, np->rx_ring[i].frag[0].addr, np->rx_ring[i].frag[0].length); } } #endif /* __i386__ debugging only */ free_irq(dev->irq, dev); del_timer_sync(&np->timer); /* Free all the skbuffs in the Rx queue. */ for (i = 0; i < RX_RING_SIZE; i++) { np->rx_ring[i].status = 0; np->rx_ring[i].frag[0].addr = 0xBADF00D0; /* An invalid address. */ skb = np->rx_skbuff[i]; if (skb) { pci_unmap_single(np->pci_dev, np->rx_ring[i].frag[0].addr, np->rx_buf_sz, PCI_DMA_FROMDEVICE); dev_kfree_skb(skb); np->rx_skbuff[i] = NULL; } } for (i = 0; i < TX_RING_SIZE; i++) { skb = np->tx_skbuff[i]; if (skb) { pci_unmap_single(np->pci_dev, np->tx_ring[i].frag[0].addr, skb->len, PCI_DMA_TODEVICE); dev_kfree_skb(skb); np->tx_skbuff[i] = NULL; } } return 0; } static void __devexit sundance_remove1 (struct pci_dev *pdev) { struct net_device *dev = pci_get_drvdata(pdev); if (dev) { struct netdev_private *np = netdev_priv(dev); unregister_netdev(dev); pci_free_consistent(pdev, RX_TOTAL_SIZE, np->rx_ring, np->rx_ring_dma); pci_free_consistent(pdev, TX_TOTAL_SIZE, np->tx_ring, np->tx_ring_dma); pci_iounmap(pdev, np->base); pci_release_regions(pdev); free_netdev(dev); pci_set_drvdata(pdev, NULL); } } static struct pci_driver sundance_driver = { .name = DRV_NAME, .id_table = sundance_pci_tbl, .probe = sundance_probe1, .remove = __devexit_p(sundance_remove1), }; static int __init sundance_init(void) { /* when a module, this is printed whether or not devices are found in probe */ #ifdef MODULE printk(version); #endif return pci_module_init(&sundance_driver); } static void __exit sundance_exit(void) { pci_unregister_driver(&sundance_driver); } module_init(sundance_init); module_exit(sundance_exit); |