Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 | /****************************************************************************** * * Name: ski2c.c * Project: Gigabit Ethernet Adapters, TWSI-Module * Version: $Revision: 1.59 $ * Date: $Date: 2003/10/20 09:07:25 $ * Purpose: Functions to access Voltage and Temperature Sensor * ******************************************************************************/ /****************************************************************************** * * (C)Copyright 1998-2002 SysKonnect. * (C)Copyright 2002-2003 Marvell. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * The information in this file is provided "AS IS" without warranty. * ******************************************************************************/ /* * I2C Protocol */ #if (defined(DEBUG) || ((!defined(LINT)) && (!defined(SK_SLIM)))) static const char SysKonnectFileId[] = "@(#) $Id: ski2c.c,v 1.59 2003/10/20 09:07:25 rschmidt Exp $ (C) Marvell. "; #endif #include "h/skdrv1st.h" /* Driver Specific Definitions */ #include "h/lm80.h" #include "h/skdrv2nd.h" /* Adapter Control- and Driver specific Def. */ #ifdef __C2MAN__ /* I2C protocol implementation. General Description: The I2C protocol is used for the temperature sensors and for the serial EEPROM which hold the configuration. This file covers functions that allow to read write and do some bulk requests a specified I2C address. The Genesis has 2 I2C buses. One for the EEPROM which holds the VPD Data and one for temperature and voltage sensor. The following picture shows the I2C buses, I2C devices and their control registers. Note: The VPD functions are in skvpd.c . . PCI Config I2C Bus for VPD Data: . . +------------+ . | VPD EEPROM | . +------------+ . | . | <-- I2C . | . +-----------+-----------+ . | | . +-----------------+ +-----------------+ . | PCI_VPD_ADR_REG | | PCI_VPD_DAT_REG | . +-----------------+ +-----------------+ . . . I2C Bus for LM80 sensor: . . +-----------------+ . | Temperature and | . | Voltage Sensor | . | LM80 | . +-----------------+ . | . | . I2C --> | . | . +----+ . +-------------->| OR |<--+ . | +----+ | . +------+------+ | . | | | . +--------+ +--------+ +----------+ . | B2_I2C | | B2_I2C | | B2_I2C | . | _CTRL | | _DATA | | _SW | . +--------+ +--------+ +----------+ . The I2C bus may be driven by the B2_I2C_SW or by the B2_I2C_CTRL and B2_I2C_DATA registers. For driver software it is recommended to use the I2C control and data register, because I2C bus timing is done by the ASIC and an interrupt may be received when the I2C request is completed. Clock Rate Timing: MIN MAX generated by VPD EEPROM: 50 kHz 100 kHz HW LM80 over I2C Ctrl/Data reg. 50 kHz 100 kHz HW LM80 over B2_I2C_SW register 0 400 kHz SW Note: The clock generated by the hardware is dependend on the PCI clock. If the PCI bus clock is 33 MHz, the I2C/VPD clock is 50 kHz. */ intro() {} #endif #ifdef SK_DIAG /* * I2C Fast Mode timing values used by the LM80. * If new devices are added to the I2C bus the timing values have to be checked. */ #ifndef I2C_SLOW_TIMING #define T_CLK_LOW 1300L /* clock low time in ns */ #define T_CLK_HIGH 600L /* clock high time in ns */ #define T_DATA_IN_SETUP 100L /* data in Set-up Time */ #define T_START_HOLD 600L /* start condition hold time */ #define T_START_SETUP 600L /* start condition Set-up time */ #define T_STOP_SETUP 600L /* stop condition Set-up time */ #define T_BUS_IDLE 1300L /* time the bus must free after Tx */ #define T_CLK_2_DATA_OUT 900L /* max. clock low to data output valid */ #else /* I2C_SLOW_TIMING */ /* I2C Standard Mode Timing */ #define T_CLK_LOW 4700L /* clock low time in ns */ #define T_CLK_HIGH 4000L /* clock high time in ns */ #define T_DATA_IN_SETUP 250L /* data in Set-up Time */ #define T_START_HOLD 4000L /* start condition hold time */ #define T_START_SETUP 4700L /* start condition Set-up time */ #define T_STOP_SETUP 4000L /* stop condition Set-up time */ #define T_BUS_IDLE 4700L /* time the bus must free after Tx */ #endif /* !I2C_SLOW_TIMING */ #define NS2BCLK(x) (((x)*125)/10000) /* * I2C Wire Operations * * About I2C_CLK_LOW(): * * The Data Direction bit (I2C_DATA_DIR) has to be set to input when setting * clock to low, to prevent the ASIC and the I2C data client from driving the * serial data line simultaneously (ASIC: last bit of a byte = '1', I2C client * send an 'ACK'). See also Concentrator Bugreport No. 10192. */ #define I2C_DATA_HIGH(IoC) SK_I2C_SET_BIT(IoC, I2C_DATA) #define I2C_DATA_LOW(IoC) SK_I2C_CLR_BIT(IoC, I2C_DATA) #define I2C_DATA_OUT(IoC) SK_I2C_SET_BIT(IoC, I2C_DATA_DIR) #define I2C_DATA_IN(IoC) SK_I2C_CLR_BIT(IoC, I2C_DATA_DIR | I2C_DATA) #define I2C_CLK_HIGH(IoC) SK_I2C_SET_BIT(IoC, I2C_CLK) #define I2C_CLK_LOW(IoC) SK_I2C_CLR_BIT(IoC, I2C_CLK | I2C_DATA_DIR) #define I2C_START_COND(IoC) SK_I2C_CLR_BIT(IoC, I2C_CLK) #define NS2CLKT(x) ((x*125L)/10000) /*--------------- I2C Interface Register Functions --------------- */ /* * sending one bit */ void SkI2cSndBit( SK_IOC IoC, /* I/O Context */ SK_U8 Bit) /* Bit to send */ { I2C_DATA_OUT(IoC); if (Bit) { I2C_DATA_HIGH(IoC); } else { I2C_DATA_LOW(IoC); } SkDgWaitTime(IoC, NS2BCLK(T_DATA_IN_SETUP)); I2C_CLK_HIGH(IoC); SkDgWaitTime(IoC, NS2BCLK(T_CLK_HIGH)); I2C_CLK_LOW(IoC); } /* SkI2cSndBit*/ /* * Signal a start to the I2C Bus. * * A start is signaled when data goes to low in a high clock cycle. * * Ends with Clock Low. * * Status: not tested */ void SkI2cStart( SK_IOC IoC) /* I/O Context */ { /* Init data and Clock to output lines */ /* Set Data high */ I2C_DATA_OUT(IoC); I2C_DATA_HIGH(IoC); /* Set Clock high */ I2C_CLK_HIGH(IoC); SkDgWaitTime(IoC, NS2BCLK(T_START_SETUP)); /* Set Data Low */ I2C_DATA_LOW(IoC); SkDgWaitTime(IoC, NS2BCLK(T_START_HOLD)); /* Clock low without Data to Input */ I2C_START_COND(IoC); SkDgWaitTime(IoC, NS2BCLK(T_CLK_LOW)); } /* SkI2cStart */ void SkI2cStop( SK_IOC IoC) /* I/O Context */ { /* Init data and Clock to output lines */ /* Set Data low */ I2C_DATA_OUT(IoC); I2C_DATA_LOW(IoC); SkDgWaitTime(IoC, NS2BCLK(T_CLK_2_DATA_OUT)); /* Set Clock high */ I2C_CLK_HIGH(IoC); SkDgWaitTime(IoC, NS2BCLK(T_STOP_SETUP)); /* * Set Data High: Do it by setting the Data Line to Input. * Because of a pull up resistor the Data Line * floods to high. */ I2C_DATA_IN(IoC); /* * When I2C activity is stopped * o DATA should be set to input and * o CLOCK should be set to high! */ SkDgWaitTime(IoC, NS2BCLK(T_BUS_IDLE)); } /* SkI2cStop */ /* * Receive just one bit via the I2C bus. * * Note: Clock must be set to LOW before calling this function. * * Returns The received bit. */ int SkI2cRcvBit( SK_IOC IoC) /* I/O Context */ { int Bit; SK_U8 I2cSwCtrl; /* Init data as input line */ I2C_DATA_IN(IoC); SkDgWaitTime(IoC, NS2BCLK(T_CLK_2_DATA_OUT)); I2C_CLK_HIGH(IoC); SkDgWaitTime(IoC, NS2BCLK(T_CLK_HIGH)); SK_I2C_GET_SW(IoC, &I2cSwCtrl); Bit = (I2cSwCtrl & I2C_DATA) ? 1 : 0; I2C_CLK_LOW(IoC); SkDgWaitTime(IoC, NS2BCLK(T_CLK_LOW-T_CLK_2_DATA_OUT)); return(Bit); } /* SkI2cRcvBit */ /* * Receive an ACK. * * returns 0 If acknowledged * 1 in case of an error */ int SkI2cRcvAck( SK_IOC IoC) /* I/O Context */ { /* * Received bit must be zero. */ return(SkI2cRcvBit(IoC) != 0); } /* SkI2cRcvAck */ /* * Send an NACK. */ void SkI2cSndNAck( SK_IOC IoC) /* I/O Context */ { /* * Received bit must be zero. */ SkI2cSndBit(IoC, 1); } /* SkI2cSndNAck */ /* * Send an ACK. */ void SkI2cSndAck( SK_IOC IoC) /* I/O Context */ { /* * Received bit must be zero. */ SkI2cSndBit(IoC, 0); } /* SkI2cSndAck */ /* * Send one byte to the I2C device and wait for ACK. * * Return acknowleged status. */ int SkI2cSndByte( SK_IOC IoC, /* I/O Context */ int Byte) /* byte to send */ { int i; for (i = 0; i < 8; i++) { if (Byte & (1<<(7-i))) { SkI2cSndBit(IoC, 1); } else { SkI2cSndBit(IoC, 0); } } return(SkI2cRcvAck(IoC)); } /* SkI2cSndByte */ /* * Receive one byte and ack it. * * Return byte. */ int SkI2cRcvByte( SK_IOC IoC, /* I/O Context */ int Last) /* Last Byte Flag */ { int i; int Byte = 0; for (i = 0; i < 8; i++) { Byte <<= 1; Byte |= SkI2cRcvBit(IoC); } if (Last) { SkI2cSndNAck(IoC); } else { SkI2cSndAck(IoC); } return(Byte); } /* SkI2cRcvByte */ /* * Start dialog and send device address * * Return 0 if acknowleged, 1 in case of an error */ int SkI2cSndDev( SK_IOC IoC, /* I/O Context */ int Addr, /* Device Address */ int Rw) /* Read / Write Flag */ { SkI2cStart(IoC); Rw = ~Rw; Rw &= I2C_WRITE; return(SkI2cSndByte(IoC, (Addr<<1) | Rw)); } /* SkI2cSndDev */ #endif /* SK_DIAG */ /*----------------- I2C CTRL Register Functions ----------*/ /* * waits for a completion of an I2C transfer * * returns 0: success, transfer completes * 1: error, transfer does not complete, I2C transfer * killed, wait loop terminated. */ int SkI2cWait( SK_AC *pAC, /* Adapter Context */ SK_IOC IoC, /* I/O Context */ int Event) /* complete event to wait for (I2C_READ or I2C_WRITE) */ { SK_U64 StartTime; SK_U64 CurrentTime; SK_U32 I2cCtrl; StartTime = SkOsGetTime(pAC); do { CurrentTime = SkOsGetTime(pAC); if (CurrentTime - StartTime > SK_TICKS_PER_SEC / 8) { SK_I2C_STOP(IoC); #ifndef SK_DIAG SK_ERR_LOG(pAC, SK_ERRCL_SW, SKERR_I2C_E002, SKERR_I2C_E002MSG); #endif /* !SK_DIAG */ return(1); } SK_I2C_GET_CTL(IoC, &I2cCtrl); #ifdef xYUKON_DBG printf("StartTime=%lu, CurrentTime=%lu\n", StartTime, CurrentTime); if (kbhit()) { return(1); } #endif /* YUKON_DBG */ } while ((I2cCtrl & I2C_FLAG) == (SK_U32)Event << 31); return(0); } /* SkI2cWait */ /* * waits for a completion of an I2C transfer * * Returns * Nothing */ void SkI2cWaitIrq( SK_AC *pAC, /* Adapter Context */ SK_IOC IoC) /* I/O Context */ { SK_SENSOR *pSen; SK_U64 StartTime; SK_U32 IrqSrc; pSen = &pAC->I2c.SenTable[pAC->I2c.CurrSens]; if (pSen->SenState == SK_SEN_IDLE) { return; } StartTime = SkOsGetTime(pAC); do { if (SkOsGetTime(pAC) - StartTime > SK_TICKS_PER_SEC / 8) { SK_I2C_STOP(IoC); #ifndef SK_DIAG SK_ERR_LOG(pAC, SK_ERRCL_SW, SKERR_I2C_E016, SKERR_I2C_E016MSG); #endif /* !SK_DIAG */ return; } SK_IN32(IoC, B0_ISRC, &IrqSrc); } while ((IrqSrc & IS_I2C_READY) == 0); pSen->SenState = SK_SEN_IDLE; return; } /* SkI2cWaitIrq */ /* * writes a single byte or 4 bytes into the I2C device * * returns 0: success * 1: error */ int SkI2cWrite( SK_AC *pAC, /* Adapter Context */ SK_IOC IoC, /* I/O Context */ SK_U32 I2cData, /* I2C Data to write */ int I2cDev, /* I2C Device Address */ int I2cDevSize, /* I2C Device Size (e.g. I2C_025K_DEV or I2C_2K_DEV) */ int I2cReg, /* I2C Device Register Address */ int I2cBurst) /* I2C Burst Flag */ { SK_OUT32(IoC, B2_I2C_DATA, I2cData); SK_I2C_CTL(IoC, I2C_WRITE, I2cDev, I2cDevSize, I2cReg, I2cBurst); return(SkI2cWait(pAC, IoC, I2C_WRITE)); } /* SkI2cWrite*/ #ifdef SK_DIAG /* * reads a single byte or 4 bytes from the I2C device * * returns the word read */ SK_U32 SkI2cRead( SK_AC *pAC, /* Adapter Context */ SK_IOC IoC, /* I/O Context */ int I2cDev, /* I2C Device Address */ int I2cDevSize, /* I2C Device Size (e.g. I2C_025K_DEV or I2C_2K_DEV) */ int I2cReg, /* I2C Device Register Address */ int I2cBurst) /* I2C Burst Flag */ { SK_U32 Data; SK_OUT32(IoC, B2_I2C_DATA, 0); SK_I2C_CTL(IoC, I2C_READ, I2cDev, I2cDevSize, I2cReg, I2cBurst); if (SkI2cWait(pAC, IoC, I2C_READ) != 0) { w_print("%s\n", SKERR_I2C_E002MSG); } SK_IN32(IoC, B2_I2C_DATA, &Data); return(Data); } /* SkI2cRead */ #endif /* SK_DIAG */ /* * read a sensor's value * * This function reads a sensor's value from the I2C sensor chip. The sensor * is defined by its index into the sensors database in the struct pAC points * to. * Returns * 1 if the read is completed * 0 if the read must be continued (I2C Bus still allocated) */ int SkI2cReadSensor( SK_AC *pAC, /* Adapter Context */ SK_IOC IoC, /* I/O Context */ SK_SENSOR *pSen) /* Sensor to be read */ { if (pSen->SenRead != NULL) { return((*pSen->SenRead)(pAC, IoC, pSen)); } else { return(0); /* no success */ } } /* SkI2cReadSensor */ /* * Do the Init state 0 initialization */ static int SkI2cInit0( SK_AC *pAC) /* Adapter Context */ { int i; /* Begin with first sensor */ pAC->I2c.CurrSens = 0; /* Begin with timeout control for state machine */ pAC->I2c.TimerMode = SK_TIMER_WATCH_SM; /* Set sensor number to zero */ pAC->I2c.MaxSens = 0; #ifndef SK_DIAG /* Initialize Number of Dummy Reads */ pAC->I2c.DummyReads = SK_MAX_SENSORS; #endif for (i = 0; i < SK_MAX_SENSORS; i++) { pAC->I2c.SenTable[i].SenDesc = "unknown"; pAC->I2c.SenTable[i].SenType = SK_SEN_UNKNOWN; pAC->I2c.SenTable[i].SenThreErrHigh = 0; pAC->I2c.SenTable[i].SenThreErrLow = 0; pAC->I2c.SenTable[i].SenThreWarnHigh = 0; pAC->I2c.SenTable[i].SenThreWarnLow = 0; pAC->I2c.SenTable[i].SenReg = LM80_FAN2_IN; pAC->I2c.SenTable[i].SenInit = SK_SEN_DYN_INIT_NONE; pAC->I2c.SenTable[i].SenValue = 0; pAC->I2c.SenTable[i].SenErrFlag = SK_SEN_ERR_NOT_PRESENT; pAC->I2c.SenTable[i].SenErrCts = 0; pAC->I2c.SenTable[i].SenBegErrTS = 0; pAC->I2c.SenTable[i].SenState = SK_SEN_IDLE; pAC->I2c.SenTable[i].SenRead = NULL; pAC->I2c.SenTable[i].SenDev = 0; } /* Now we are "INIT data"ed */ pAC->I2c.InitLevel = SK_INIT_DATA; return(0); } /* SkI2cInit0*/ /* * Do the init state 1 initialization * * initialize the following register of the LM80: * Configuration register: * - START, noINT, activeLOW, noINT#Clear, noRESET, noCI, noGPO#, noINIT * * Interrupt Mask Register 1: * - all interrupts are Disabled (0xff) * * Interrupt Mask Register 2: * - all interrupts are Disabled (0xff) Interrupt modi doesn't matter. * * Fan Divisor/RST_OUT register: * - Divisors set to 1 (bits 00), all others 0s. * * OS# Configuration/Temperature resolution Register: * - all 0s * */ static int SkI2cInit1( SK_AC *pAC, /* Adapter Context */ SK_IOC IoC) /* I/O Context */ { int i; SK_U8 I2cSwCtrl; SK_GEPORT *pPrt; /* GIni Port struct pointer */ if (pAC->I2c.InitLevel != SK_INIT_DATA) { /* ReInit not needed in I2C module */ return(0); } /* Set the Direction of I2C-Data Pin to IN */ SK_I2C_CLR_BIT(IoC, I2C_DATA_DIR | I2C_DATA); /* Check for 32-Bit Yukon with Low at I2C-Data Pin */ SK_I2C_GET_SW(IoC, &I2cSwCtrl); if ((I2cSwCtrl & I2C_DATA) == 0) { /* this is a 32-Bit board */ pAC->GIni.GIYukon32Bit = SK_TRUE; return(0); } /* Check for 64 Bit Yukon without sensors */ if (SkI2cWrite(pAC, IoC, 0, LM80_ADDR, I2C_025K_DEV, LM80_CFG, 0) != 0) { return(0); } (void)SkI2cWrite(pAC, IoC, 0xffUL, LM80_ADDR, I2C_025K_DEV, LM80_IMSK_1, 0); (void)SkI2cWrite(pAC, IoC, 0xffUL, LM80_ADDR, I2C_025K_DEV, LM80_IMSK_2, 0); (void)SkI2cWrite(pAC, IoC, 0, LM80_ADDR, I2C_025K_DEV, LM80_FAN_CTRL, 0); (void)SkI2cWrite(pAC, IoC, 0, LM80_ADDR, I2C_025K_DEV, LM80_TEMP_CTRL, 0); (void)SkI2cWrite(pAC, IoC, (SK_U32)LM80_CFG_START, LM80_ADDR, I2C_025K_DEV, LM80_CFG, 0); /* * MaxSens has to be updated here, because PhyType is not * set when performing Init Level 0 */ pAC->I2c.MaxSens = 5; pPrt = &pAC->GIni.GP[0]; if (pAC->GIni.GIGenesis) { if (pPrt->PhyType == SK_PHY_BCOM) { if (pAC->GIni.GIMacsFound == 1) { pAC->I2c.MaxSens += 1; } else { pAC->I2c.MaxSens += 3; } } } else { pAC->I2c.MaxSens += 3; } for (i = 0; i < pAC->I2c.MaxSens; i++) { switch (i) { case 0: pAC->I2c.SenTable[i].SenDesc = "Temperature"; pAC->I2c.SenTable[i].SenType = SK_SEN_TEMP; pAC->I2c.SenTable[i].SenThreErrHigh = SK_SEN_TEMP_HIGH_ERR; pAC->I2c.SenTable[i].SenThreWarnHigh = SK_SEN_TEMP_HIGH_WARN; pAC->I2c.SenTable[i].SenThreWarnLow = SK_SEN_TEMP_LOW_WARN; pAC->I2c.SenTable[i].SenThreErrLow = SK_SEN_TEMP_LOW_ERR; pAC->I2c.SenTable[i].SenReg = LM80_TEMP_IN; break; case 1: pAC->I2c.SenTable[i].SenDesc = "Voltage PCI"; pAC->I2c.SenTable[i].SenType = SK_SEN_VOLT; pAC->I2c.SenTable[i].SenThreErrHigh = SK_SEN_PCI_5V_HIGH_ERR; pAC->I2c.SenTable[i].SenThreWarnHigh = SK_SEN_PCI_5V_HIGH_WARN; pAC->I2c.SenTable[i].SenThreWarnLow = SK_SEN_PCI_5V_LOW_WARN; pAC->I2c.SenTable[i].SenThreErrLow = SK_SEN_PCI_5V_LOW_ERR; pAC->I2c.SenTable[i].SenReg = LM80_VT0_IN; break; case 2: pAC->I2c.SenTable[i].SenDesc = "Voltage PCI-IO"; pAC->I2c.SenTable[i].SenType = SK_SEN_VOLT; pAC->I2c.SenTable[i].SenThreErrHigh = SK_SEN_PCI_IO_5V_HIGH_ERR; pAC->I2c.SenTable[i].SenThreWarnHigh = SK_SEN_PCI_IO_5V_HIGH_WARN; pAC->I2c.SenTable[i].SenThreWarnLow = SK_SEN_PCI_IO_3V3_LOW_WARN; pAC->I2c.SenTable[i].SenThreErrLow = SK_SEN_PCI_IO_3V3_LOW_ERR; pAC->I2c.SenTable[i].SenReg = LM80_VT1_IN; pAC->I2c.SenTable[i].SenInit = SK_SEN_DYN_INIT_PCI_IO; break; case 3: pAC->I2c.SenTable[i].SenDesc = "Voltage ASIC"; pAC->I2c.SenTable[i].SenType = SK_SEN_VOLT; pAC->I2c.SenTable[i].SenThreErrHigh = SK_SEN_VDD_HIGH_ERR; pAC->I2c.SenTable[i].SenThreWarnHigh = SK_SEN_VDD_HIGH_WARN; pAC->I2c.SenTable[i].SenThreWarnLow = SK_SEN_VDD_LOW_WARN; pAC->I2c.SenTable[i].SenThreErrLow = SK_SEN_VDD_LOW_ERR; pAC->I2c.SenTable[i].SenReg = LM80_VT2_IN; break; case 4: if (pAC->GIni.GIGenesis) { if (pPrt->PhyType == SK_PHY_BCOM) { pAC->I2c.SenTable[i].SenDesc = "Voltage PHY A PLL"; pAC->I2c.SenTable[i].SenThreErrHigh = SK_SEN_PLL_3V3_HIGH_ERR; pAC->I2c.SenTable[i].SenThreWarnHigh = SK_SEN_PLL_3V3_HIGH_WARN; pAC->I2c.SenTable[i].SenThreWarnLow = SK_SEN_PLL_3V3_LOW_WARN; pAC->I2c.SenTable[i].SenThreErrLow = SK_SEN_PLL_3V3_LOW_ERR; } else { pAC->I2c.SenTable[i].SenDesc = "Voltage PMA"; pAC->I2c.SenTable[i].SenThreErrHigh = SK_SEN_PLL_3V3_HIGH_ERR; pAC->I2c.SenTable[i].SenThreWarnHigh = SK_SEN_PLL_3V3_HIGH_WARN; pAC->I2c.SenTable[i].SenThreWarnLow = SK_SEN_PLL_3V3_LOW_WARN; pAC->I2c.SenTable[i].SenThreErrLow = SK_SEN_PLL_3V3_LOW_ERR; } } else { pAC->I2c.SenTable[i].SenDesc = "Voltage VAUX"; pAC->I2c.SenTable[i].SenThreErrHigh = SK_SEN_VAUX_3V3_HIGH_ERR; pAC->I2c.SenTable[i].SenThreWarnHigh = SK_SEN_VAUX_3V3_HIGH_WARN; if (pAC->GIni.GIVauxAvail) { pAC->I2c.SenTable[i].SenThreWarnLow = SK_SEN_VAUX_3V3_LOW_WARN; pAC->I2c.SenTable[i].SenThreErrLow = SK_SEN_VAUX_3V3_LOW_ERR; } else { pAC->I2c.SenTable[i].SenThreErrLow = SK_SEN_VAUX_0V_WARN_ERR; pAC->I2c.SenTable[i].SenThreWarnLow = SK_SEN_VAUX_0V_WARN_ERR; } } pAC->I2c.SenTable[i].SenType = SK_SEN_VOLT; pAC->I2c.SenTable[i].SenReg = LM80_VT3_IN; break; case 5: if (pAC->GIni.GIGenesis) { pAC->I2c.SenTable[i].SenDesc = "Voltage PHY 2V5"; pAC->I2c.SenTable[i].SenThreErrHigh = SK_SEN_PHY_2V5_HIGH_ERR; pAC->I2c.SenTable[i].SenThreWarnHigh = SK_SEN_PHY_2V5_HIGH_WARN; pAC->I2c.SenTable[i].SenThreWarnLow = SK_SEN_PHY_2V5_LOW_WARN; pAC->I2c.SenTable[i].SenThreErrLow = SK_SEN_PHY_2V5_LOW_ERR; } else { pAC->I2c.SenTable[i].SenDesc = "Voltage Core 1V5"; pAC->I2c.SenTable[i].SenThreErrHigh = SK_SEN_CORE_1V5_HIGH_ERR; pAC->I2c.SenTable[i].SenThreWarnHigh = SK_SEN_CORE_1V5_HIGH_WARN; pAC->I2c.SenTable[i].SenThreWarnLow = SK_SEN_CORE_1V5_LOW_WARN; pAC->I2c.SenTable[i].SenThreErrLow = SK_SEN_CORE_1V5_LOW_ERR; } pAC->I2c.SenTable[i].SenType = SK_SEN_VOLT; pAC->I2c.SenTable[i].SenReg = LM80_VT4_IN; break; case 6: if (pAC->GIni.GIGenesis) { pAC->I2c.SenTable[i].SenDesc = "Voltage PHY B PLL"; } else { pAC->I2c.SenTable[i].SenDesc = "Voltage PHY 3V3"; } pAC->I2c.SenTable[i].SenType = SK_SEN_VOLT; pAC->I2c.SenTable[i].SenThreErrHigh = SK_SEN_PLL_3V3_HIGH_ERR; pAC->I2c.SenTable[i].SenThreWarnHigh = SK_SEN_PLL_3V3_HIGH_WARN; pAC->I2c.SenTable[i].SenThreWarnLow = SK_SEN_PLL_3V3_LOW_WARN; pAC->I2c.SenTable[i].SenThreErrLow = SK_SEN_PLL_3V3_LOW_ERR; pAC->I2c.SenTable[i].SenReg = LM80_VT5_IN; break; case 7: if (pAC->GIni.GIGenesis) { pAC->I2c.SenTable[i].SenDesc = "Speed Fan"; pAC->I2c.SenTable[i].SenType = SK_SEN_FAN; pAC->I2c.SenTable[i].SenThreErrHigh = SK_SEN_FAN_HIGH_ERR; pAC->I2c.SenTable[i].SenThreWarnHigh = SK_SEN_FAN_HIGH_WARN; pAC->I2c.SenTable[i].SenThreWarnLow = SK_SEN_FAN_LOW_WARN; pAC->I2c.SenTable[i].SenThreErrLow = SK_SEN_FAN_LOW_ERR; pAC->I2c.SenTable[i].SenReg = LM80_FAN2_IN; } else { pAC->I2c.SenTable[i].SenDesc = "Voltage PHY 2V5"; pAC->I2c.SenTable[i].SenType = SK_SEN_VOLT; pAC->I2c.SenTable[i].SenThreErrHigh = SK_SEN_PHY_2V5_HIGH_ERR; pAC->I2c.SenTable[i].SenThreWarnHigh = SK_SEN_PHY_2V5_HIGH_WARN; pAC->I2c.SenTable[i].SenThreWarnLow = SK_SEN_PHY_2V5_LOW_WARN; pAC->I2c.SenTable[i].SenThreErrLow = SK_SEN_PHY_2V5_LOW_ERR; pAC->I2c.SenTable[i].SenReg = LM80_VT6_IN; } break; default: SK_ERR_LOG(pAC, SK_ERRCL_INIT | SK_ERRCL_SW, SKERR_I2C_E001, SKERR_I2C_E001MSG); break; } pAC->I2c.SenTable[i].SenValue = 0; pAC->I2c.SenTable[i].SenErrFlag = SK_SEN_ERR_OK; pAC->I2c.SenTable[i].SenErrCts = 0; pAC->I2c.SenTable[i].SenBegErrTS = 0; pAC->I2c.SenTable[i].SenState = SK_SEN_IDLE; pAC->I2c.SenTable[i].SenRead = SkLm80ReadSensor; pAC->I2c.SenTable[i].SenDev = LM80_ADDR; } #ifndef SK_DIAG pAC->I2c.DummyReads = pAC->I2c.MaxSens; #endif /* !SK_DIAG */ /* Clear I2C IRQ */ SK_OUT32(IoC, B2_I2C_IRQ, I2C_CLR_IRQ); /* Now we are I/O initialized */ pAC->I2c.InitLevel = SK_INIT_IO; return(0); } /* SkI2cInit1 */ /* * Init level 2: Start first sensor read. */ static int SkI2cInit2( SK_AC *pAC, /* Adapter Context */ SK_IOC IoC) /* I/O Context */ { int ReadComplete; SK_SENSOR *pSen; if (pAC->I2c.InitLevel != SK_INIT_IO) { /* ReInit not needed in I2C module */ /* Init0 and Init2 not permitted */ return(0); } pSen = &pAC->I2c.SenTable[pAC->I2c.CurrSens]; ReadComplete = SkI2cReadSensor(pAC, IoC, pSen); if (ReadComplete) { SK_ERR_LOG(pAC, SK_ERRCL_INIT, SKERR_I2C_E008, SKERR_I2C_E008MSG); } /* Now we are correctly initialized */ pAC->I2c.InitLevel = SK_INIT_RUN; return(0); } /* SkI2cInit2*/ /* * Initialize I2C devices * * Get the first voltage value and discard it. * Go into temperature read mode. A default pointer is not set. * * The things to be done depend on the init level in the parameter list: * Level 0: * Initialize only the data structures. Do NOT access hardware. * Level 1: * Initialize hardware through SK_IN / SK_OUT commands. Do NOT use interrupts. * Level 2: * Everything is possible. Interrupts may be used from now on. * * return: * 0 = success * other = error. */ int SkI2cInit( SK_AC *pAC, /* Adapter Context */ SK_IOC IoC, /* I/O Context needed in levels 1 and 2 */ int Level) /* Init Level */ { switch (Level) { case SK_INIT_DATA: return(SkI2cInit0(pAC)); case SK_INIT_IO: return(SkI2cInit1(pAC, IoC)); case SK_INIT_RUN: return(SkI2cInit2(pAC, IoC)); default: break; } return(0); } /* SkI2cInit */ #ifndef SK_DIAG /* * Interrupt service function for the I2C Interface * * Clears the Interrupt source * * Reads the register and check it for sending a trap. * * Starts the timer if necessary. */ void SkI2cIsr( SK_AC *pAC, /* Adapter Context */ SK_IOC IoC) /* I/O Context */ { SK_EVPARA Para; /* Clear I2C IRQ */ SK_OUT32(IoC, B2_I2C_IRQ, I2C_CLR_IRQ); Para.Para64 = 0; SkEventQueue(pAC, SKGE_I2C, SK_I2CEV_IRQ, Para); } /* SkI2cIsr */ /* * Check this sensors Value against the threshold and send events. */ static void SkI2cCheckSensor( SK_AC *pAC, /* Adapter Context */ SK_SENSOR *pSen) { SK_EVPARA ParaLocal; SK_BOOL TooHigh; /* Is sensor too high? */ SK_BOOL TooLow; /* Is sensor too low? */ SK_U64 CurrTime; /* Current Time */ SK_BOOL DoTrapSend; /* We need to send a trap */ SK_BOOL DoErrLog; /* We need to log the error */ SK_BOOL IsError; /* We need to log the error */ /* Check Dummy Reads first */ if (pAC->I2c.DummyReads > 0) { pAC->I2c.DummyReads--; return; } /* Get the current time */ CurrTime = SkOsGetTime(pAC); /* Set para to the most useful setting: The current sensor. */ ParaLocal.Para64 = (SK_U64)pAC->I2c.CurrSens; /* Check the Value against the thresholds. First: Error Thresholds */ TooHigh = (pSen->SenValue > pSen->SenThreErrHigh); TooLow = (pSen->SenValue < pSen->SenThreErrLow); IsError = SK_FALSE; if (TooHigh || TooLow) { /* Error condition is satisfied */ DoTrapSend = SK_TRUE; DoErrLog = SK_TRUE; /* Now error condition is satisfied */ IsError = SK_TRUE; if (pSen->SenErrFlag == SK_SEN_ERR_ERR) { /* This state is the former one */ /* So check first whether we have to send a trap */ if (pSen->SenLastErrTrapTS + SK_SEN_ERR_TR_HOLD > CurrTime) { /* * Do NOT send the Trap. The hold back time * has to run out first. */ DoTrapSend = SK_FALSE; } /* Check now whether we have to log an Error */ if (pSen->SenLastErrLogTS + SK_SEN_ERR_LOG_HOLD > CurrTime) { /* * Do NOT log the error. The hold back time * has to run out first. */ DoErrLog = SK_FALSE; } } else { /* We came from a different state -> Set Begin Time Stamp */ pSen->SenBegErrTS = CurrTime; pSen->SenErrFlag = SK_SEN_ERR_ERR; } if (DoTrapSend) { /* Set current Time */ pSen->SenLastErrTrapTS = CurrTime; pSen->SenErrCts++; /* Queue PNMI Event */ SkEventQueue(pAC, SKGE_PNMI, (TooHigh ? SK_PNMI_EVT_SEN_ERR_UPP : SK_PNMI_EVT_SEN_ERR_LOW), ParaLocal); } if (DoErrLog) { /* Set current Time */ pSen->SenLastErrLogTS = CurrTime; if (pSen->SenType == SK_SEN_TEMP) { SK_ERR_LOG(pAC, SK_ERRCL_HW, SKERR_I2C_E011, SKERR_I2C_E011MSG); } else if (pSen->SenType == SK_SEN_VOLT) { SK_ERR_LOG(pAC, SK_ERRCL_HW, SKERR_I2C_E012, SKERR_I2C_E012MSG); } else { SK_ERR_LOG(pAC, SK_ERRCL_HW, SKERR_I2C_E015, SKERR_I2C_E015MSG); } } } /* Check the Value against the thresholds */ /* 2nd: Warning thresholds */ TooHigh = (pSen->SenValue > pSen->SenThreWarnHigh); TooLow = (pSen->SenValue < pSen->SenThreWarnLow); if (!IsError && (TooHigh || TooLow)) { /* Error condition is satisfied */ DoTrapSend = SK_TRUE; DoErrLog = SK_TRUE; if (pSen->SenErrFlag == SK_SEN_ERR_WARN) { /* This state is the former one */ /* So check first whether we have to send a trap */ if (pSen->SenLastWarnTrapTS + SK_SEN_WARN_TR_HOLD > CurrTime) { /* * Do NOT send the Trap. The hold back time * has to run out first. */ DoTrapSend = SK_FALSE; } /* Check now whether we have to log an Error */ if (pSen->SenLastWarnLogTS + SK_SEN_WARN_LOG_HOLD > CurrTime) { /* * Do NOT log the error. The hold back time * has to run out first. */ DoErrLog = SK_FALSE; } } else { /* We came from a different state -> Set Begin Time Stamp */ pSen->SenBegWarnTS = CurrTime; pSen->SenErrFlag = SK_SEN_ERR_WARN; } if (DoTrapSend) { /* Set current Time */ pSen->SenLastWarnTrapTS = CurrTime; pSen->SenWarnCts++; /* Queue PNMI Event */ SkEventQueue(pAC, SKGE_PNMI, (TooHigh ? SK_PNMI_EVT_SEN_WAR_UPP : SK_PNMI_EVT_SEN_WAR_LOW), ParaLocal); } if (DoErrLog) { /* Set current Time */ pSen->SenLastWarnLogTS = CurrTime; if (pSen->SenType == SK_SEN_TEMP) { SK_ERR_LOG(pAC, SK_ERRCL_HW, SKERR_I2C_E009, SKERR_I2C_E009MSG); } else if (pSen->SenType == SK_SEN_VOLT) { SK_ERR_LOG(pAC, SK_ERRCL_HW, SKERR_I2C_E010, SKERR_I2C_E010MSG); } else { SK_ERR_LOG(pAC, SK_ERRCL_HW, SKERR_I2C_E014, SKERR_I2C_E014MSG); } } } /* Check for NO error at all */ if (!IsError && !TooHigh && !TooLow) { /* Set o.k. Status if no error and no warning condition */ pSen->SenErrFlag = SK_SEN_ERR_OK; } /* End of check against the thresholds */ /* Bug fix AF: 16.Aug.2001: Correct the init base * of LM80 sensor. */ if (pSen->SenInit == SK_SEN_DYN_INIT_PCI_IO) { pSen->SenInit = SK_SEN_DYN_INIT_NONE; if (pSen->SenValue > SK_SEN_PCI_IO_RANGE_LIMITER) { /* 5V PCI-IO Voltage */ pSen->SenThreWarnLow = SK_SEN_PCI_IO_5V_LOW_WARN; pSen->SenThreErrLow = SK_SEN_PCI_IO_5V_LOW_ERR; } else { /* 3.3V PCI-IO Voltage */ pSen->SenThreWarnHigh = SK_SEN_PCI_IO_3V3_HIGH_WARN; pSen->SenThreErrHigh = SK_SEN_PCI_IO_3V3_HIGH_ERR; } } #ifdef TEST_ONLY /* Dynamic thresholds also for VAUX of LM80 sensor */ if (pSen->SenInit == SK_SEN_DYN_INIT_VAUX) { pSen->SenInit = SK_SEN_DYN_INIT_NONE; /* 3.3V VAUX Voltage */ if (pSen->SenValue > SK_SEN_VAUX_RANGE_LIMITER) { pSen->SenThreWarnLow = SK_SEN_VAUX_3V3_LOW_WARN; pSen->SenThreErrLow = SK_SEN_VAUX_3V3_LOW_ERR; } /* 0V VAUX Voltage */ else { pSen->SenThreWarnHigh = SK_SEN_VAUX_0V_WARN_ERR; pSen->SenThreErrHigh = SK_SEN_VAUX_0V_WARN_ERR; } } /* * Check initialization state: * The VIO Thresholds need adaption */ if (!pSen->SenInit && pSen->SenReg == LM80_VT1_IN && pSen->SenValue > SK_SEN_WARNLOW2C && pSen->SenValue < SK_SEN_WARNHIGH2) { pSen->SenThreErrLow = SK_SEN_ERRLOW2C; pSen->SenThreWarnLow = SK_SEN_WARNLOW2C; pSen->SenInit = SK_TRUE; } if (!pSen->SenInit && pSen->SenReg == LM80_VT1_IN && pSen->SenValue > SK_SEN_WARNLOW2 && pSen->SenValue < SK_SEN_WARNHIGH2C) { pSen->SenThreErrHigh = SK_SEN_ERRHIGH2C; pSen->SenThreWarnHigh = SK_SEN_WARNHIGH2C; pSen->SenInit = SK_TRUE; } #endif if (pSen->SenInit != SK_SEN_DYN_INIT_NONE) { SK_ERR_LOG(pAC, SK_ERRCL_HW, SKERR_I2C_E013, SKERR_I2C_E013MSG); } } /* SkI2cCheckSensor */ /* * The only Event to be served is the timeout event * */ int SkI2cEvent( SK_AC *pAC, /* Adapter Context */ SK_IOC IoC, /* I/O Context */ SK_U32 Event, /* Module specific Event */ SK_EVPARA Para) /* Event specific Parameter */ { int ReadComplete; SK_SENSOR *pSen; SK_U32 Time; SK_EVPARA ParaLocal; int i; /* New case: no sensors */ if (pAC->I2c.MaxSens == 0) { return(0); } switch (Event) { case SK_I2CEV_IRQ: pSen = &pAC->I2c.SenTable[pAC->I2c.CurrSens]; ReadComplete = SkI2cReadSensor(pAC, IoC, pSen); if (ReadComplete) { /* Check sensor against defined thresholds */ SkI2cCheckSensor(pAC, pSen); /* Increment Current sensor and set appropriate Timeout */ pAC->I2c.CurrSens++; if (pAC->I2c.CurrSens >= pAC->I2c.MaxSens) { pAC->I2c.CurrSens = 0; Time = SK_I2C_TIM_LONG; } else { Time = SK_I2C_TIM_SHORT; } /* Start Timer */ ParaLocal.Para64 = (SK_U64)0; pAC->I2c.TimerMode = SK_TIMER_NEW_GAUGING; SkTimerStart(pAC, IoC, &pAC->I2c.SenTimer, Time, SKGE_I2C, SK_I2CEV_TIM, ParaLocal); } else { /* Start Timer */ ParaLocal.Para64 = (SK_U64)0; pAC->I2c.TimerMode = SK_TIMER_WATCH_SM; SkTimerStart(pAC, IoC, &pAC->I2c.SenTimer, SK_I2C_TIM_WATCH, SKGE_I2C, SK_I2CEV_TIM, ParaLocal); } break; case SK_I2CEV_TIM: if (pAC->I2c.TimerMode == SK_TIMER_NEW_GAUGING) { ParaLocal.Para64 = (SK_U64)0; SkTimerStop(pAC, IoC, &pAC->I2c.SenTimer); pSen = &pAC->I2c.SenTable[pAC->I2c.CurrSens]; ReadComplete = SkI2cReadSensor(pAC, IoC, pSen); if (ReadComplete) { /* Check sensor against defined thresholds */ SkI2cCheckSensor(pAC, pSen); /* Increment Current sensor and set appropriate Timeout */ pAC->I2c.CurrSens++; if (pAC->I2c.CurrSens == pAC->I2c.MaxSens) { pAC->I2c.CurrSens = 0; Time = SK_I2C_TIM_LONG; } else { Time = SK_I2C_TIM_SHORT; } /* Start Timer */ ParaLocal.Para64 = (SK_U64)0; pAC->I2c.TimerMode = SK_TIMER_NEW_GAUGING; SkTimerStart(pAC, IoC, &pAC->I2c.SenTimer, Time, SKGE_I2C, SK_I2CEV_TIM, ParaLocal); } } else { pSen = &pAC->I2c.SenTable[pAC->I2c.CurrSens]; pSen->SenErrFlag = SK_SEN_ERR_FAULTY; SK_I2C_STOP(IoC); /* Increment Current sensor and set appropriate Timeout */ pAC->I2c.CurrSens++; if (pAC->I2c.CurrSens == pAC->I2c.MaxSens) { pAC->I2c.CurrSens = 0; Time = SK_I2C_TIM_LONG; } else { Time = SK_I2C_TIM_SHORT; } /* Start Timer */ ParaLocal.Para64 = (SK_U64)0; pAC->I2c.TimerMode = SK_TIMER_NEW_GAUGING; SkTimerStart(pAC, IoC, &pAC->I2c.SenTimer, Time, SKGE_I2C, SK_I2CEV_TIM, ParaLocal); } break; case SK_I2CEV_CLEAR: for (i = 0; i < SK_MAX_SENSORS; i++) { pAC->I2c.SenTable[i].SenErrFlag = SK_SEN_ERR_OK; pAC->I2c.SenTable[i].SenErrCts = 0; pAC->I2c.SenTable[i].SenWarnCts = 0; pAC->I2c.SenTable[i].SenBegErrTS = 0; pAC->I2c.SenTable[i].SenBegWarnTS = 0; pAC->I2c.SenTable[i].SenLastErrTrapTS = (SK_U64)0; pAC->I2c.SenTable[i].SenLastErrLogTS = (SK_U64)0; pAC->I2c.SenTable[i].SenLastWarnTrapTS = (SK_U64)0; pAC->I2c.SenTable[i].SenLastWarnLogTS = (SK_U64)0; } break; default: SK_ERR_LOG(pAC, SK_ERRCL_SW, SKERR_I2C_E006, SKERR_I2C_E006MSG); } return(0); } /* SkI2cEvent*/ #endif /* !SK_DIAG */ |