Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 | The Basic Device Structure ~~~~~~~~~~~~~~~~~~~~~~~~~~ struct device { struct list_head g_list; struct list_head node; struct list_head bus_list; struct list_head driver_list; struct list_head intf_list; struct list_head children; struct device * parent; char name[DEVICE_NAME_SIZE]; char bus_id[BUS_ID_SIZE]; spinlock_t lock; atomic_t refcount; struct bus_type * bus; struct driver_dir_entry dir; u32 class_num; struct device_driver *driver; void *driver_data; void *platform_data; u32 current_state; unsigned char *saved_state; void (*release)(struct device * dev); }; Fields ~~~~~~ g_list: Node in the global device list. node: Node in device's parent's children list. bus_list: Node in device's bus's devices list. driver_list: Node in device's driver's devices list. intf_list: List of intf_data. There is one structure allocated for each interface that the device supports. children: List of child devices. parent: *** FIXME *** name: ASCII description of device. Example: " 3Com Corporation 3c905 100BaseTX [Boomerang]" bus_id: ASCII representation of device's bus position. This field should be a name unique across all devices on the bus type the device belongs to. Example: PCI bus_ids are in the form of <bus number>:<slot number>.<function number> This name is unique across all PCI devices in the system. lock: Spinlock for the device. refcount: Reference count on the device. bus: Pointer to struct bus_type that device belongs to. dir: Device's sysfs directory. class_num: Class-enumerated value of the device. driver: Pointer to struct device_driver that controls the device. driver_data: Driver-specific data. platform_data: Platform data specific to the device. Example: for devices on custom boards, as typical of embedded and SOC based hardware, Linux often uses platform_data to point to board-specific structures describing devices and how they are wired. That can include what ports are available, chip variants, which GPIO pins act in what additional roles, and so on. This shrinks the "Board Support Packages" (BSPs) and minimizes board-specific #ifdefs in drivers. current_state: Current power state of the device. saved_state: Pointer to saved state of the device. This is usable by the device driver controlling the device. release: Callback to free the device after all references have gone away. This should be set by the allocator of the device (i.e. the bus driver that discovered the device). Programming Interface ~~~~~~~~~~~~~~~~~~~~~ The bus driver that discovers the device uses this to register the device with the core: int device_register(struct device * dev); The bus should initialize the following fields: - parent - name - bus_id - bus A device is removed from the core when its reference count goes to 0. The reference count can be adjusted using: struct device * get_device(struct device * dev); void put_device(struct device * dev); get_device() will return a pointer to the struct device passed to it if the reference is not already 0 (if it's in the process of being removed already). A driver can access the lock in the device structure using: void lock_device(struct device * dev); void unlock_device(struct device * dev); Attributes ~~~~~~~~~~ struct device_attribute { struct attribute attr; ssize_t (*show)(struct device * dev, char * buf, size_t count, loff_t off); ssize_t (*store)(struct device * dev, const char * buf, size_t count, loff_t off); }; Attributes of devices can be exported via drivers using a simple procfs-like interface. Please see Documentation/filesystems/sysfs.txt for more information on how sysfs works. Attributes are declared using a macro called DEVICE_ATTR: #define DEVICE_ATTR(name,mode,show,store) Example: DEVICE_ATTR(power,0644,show_power,store_power); This declares a structure of type struct device_attribute named 'dev_attr_power'. This can then be added and removed to the device's directory using: int device_create_file(struct device *device, struct device_attribute * entry); void device_remove_file(struct device * dev, struct device_attribute * attr); Example: device_create_file(dev,&dev_attr_power); device_remove_file(dev,&dev_attr_power); The file name will be 'power' with a mode of 0644 (-rw-r--r--). |