Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 | #ifndef __PPC64_SYSTEM_H #define __PPC64_SYSTEM_H /* * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version * 2 of the License, or (at your option) any later version. */ #include <linux/config.h> #include <linux/compiler.h> #include <asm/page.h> #include <asm/processor.h> #include <asm/hw_irq.h> #include <asm/memory.h> /* * Memory barrier. * The sync instruction guarantees that all memory accesses initiated * by this processor have been performed (with respect to all other * mechanisms that access memory). The eieio instruction is a barrier * providing an ordering (separately) for (a) cacheable stores and (b) * loads and stores to non-cacheable memory (e.g. I/O devices). * * mb() prevents loads and stores being reordered across this point. * rmb() prevents loads being reordered across this point. * wmb() prevents stores being reordered across this point. * read_barrier_depends() prevents data-dependent loads being reordered * across this point (nop on PPC). * * We have to use the sync instructions for mb(), since lwsync doesn't * order loads with respect to previous stores. Lwsync is fine for * rmb(), though. * For wmb(), we use sync since wmb is used in drivers to order * stores to system memory with respect to writes to the device. * However, smp_wmb() can be a lighter-weight eieio barrier on * SMP since it is only used to order updates to system memory. */ #define mb() __asm__ __volatile__ ("sync" : : : "memory") #define rmb() __asm__ __volatile__ ("lwsync" : : : "memory") #define wmb() __asm__ __volatile__ ("sync" : : : "memory") #define read_barrier_depends() do { } while(0) #define set_mb(var, value) do { var = value; smp_mb(); } while (0) #define set_wmb(var, value) do { var = value; smp_wmb(); } while (0) #ifdef CONFIG_SMP #define smp_mb() mb() #define smp_rmb() rmb() #define smp_wmb() __asm__ __volatile__ ("eieio" : : : "memory") #define smp_read_barrier_depends() read_barrier_depends() #else #define smp_mb() __asm__ __volatile__("": : :"memory") #define smp_rmb() __asm__ __volatile__("": : :"memory") #define smp_wmb() __asm__ __volatile__("": : :"memory") #define smp_read_barrier_depends() do { } while(0) #endif /* CONFIG_SMP */ #ifdef __KERNEL__ struct task_struct; struct pt_regs; #ifdef CONFIG_DEBUGGER extern int (*__debugger)(struct pt_regs *regs); extern int (*__debugger_ipi)(struct pt_regs *regs); extern int (*__debugger_bpt)(struct pt_regs *regs); extern int (*__debugger_sstep)(struct pt_regs *regs); extern int (*__debugger_iabr_match)(struct pt_regs *regs); extern int (*__debugger_dabr_match)(struct pt_regs *regs); extern int (*__debugger_fault_handler)(struct pt_regs *regs); #define DEBUGGER_BOILERPLATE(__NAME) \ static inline int __NAME(struct pt_regs *regs) \ { \ if (unlikely(__ ## __NAME)) \ return __ ## __NAME(regs); \ return 0; \ } DEBUGGER_BOILERPLATE(debugger) DEBUGGER_BOILERPLATE(debugger_ipi) DEBUGGER_BOILERPLATE(debugger_bpt) DEBUGGER_BOILERPLATE(debugger_sstep) DEBUGGER_BOILERPLATE(debugger_iabr_match) DEBUGGER_BOILERPLATE(debugger_dabr_match) DEBUGGER_BOILERPLATE(debugger_fault_handler) #ifdef CONFIG_XMON extern void xmon_init(int enable); #endif #else static inline int debugger(struct pt_regs *regs) { return 0; } static inline int debugger_ipi(struct pt_regs *regs) { return 0; } static inline int debugger_bpt(struct pt_regs *regs) { return 0; } static inline int debugger_sstep(struct pt_regs *regs) { return 0; } static inline int debugger_iabr_match(struct pt_regs *regs) { return 0; } static inline int debugger_dabr_match(struct pt_regs *regs) { return 0; } static inline int debugger_fault_handler(struct pt_regs *regs) { return 0; } #endif extern int set_dabr(unsigned long dabr); extern void _exception(int signr, struct pt_regs *regs, int code, unsigned long addr); extern int fix_alignment(struct pt_regs *regs); extern void bad_page_fault(struct pt_regs *regs, unsigned long address, int sig); extern void show_regs(struct pt_regs * regs); extern void low_hash_fault(struct pt_regs *regs, unsigned long address); extern int die(const char *str, struct pt_regs *regs, long err); extern int _get_PVR(void); extern void giveup_fpu(struct task_struct *); extern void disable_kernel_fp(void); extern void flush_fp_to_thread(struct task_struct *); extern void enable_kernel_fp(void); extern void giveup_altivec(struct task_struct *); extern void disable_kernel_altivec(void); extern void enable_kernel_altivec(void); extern int emulate_altivec(struct pt_regs *); extern void cvt_fd(float *from, double *to, unsigned long *fpscr); extern void cvt_df(double *from, float *to, unsigned long *fpscr); #ifdef CONFIG_ALTIVEC extern void flush_altivec_to_thread(struct task_struct *); #else static inline void flush_altivec_to_thread(struct task_struct *t) { } #endif extern int mem_init_done; /* set on boot once kmalloc can be called */ /* EBCDIC -> ASCII conversion for [0-9A-Z] on iSeries */ extern unsigned char e2a(unsigned char); extern struct task_struct *__switch_to(struct task_struct *, struct task_struct *); #define switch_to(prev, next, last) ((last) = __switch_to((prev), (next))) struct thread_struct; extern struct task_struct * _switch(struct thread_struct *prev, struct thread_struct *next); static inline int __is_processor(unsigned long pv) { unsigned long pvr; asm("mfspr %0, 0x11F" : "=r" (pvr)); return(PVR_VER(pvr) == pv); } /* * Atomic exchange * * Changes the memory location '*ptr' to be val and returns * the previous value stored there. * * Inline asm pulled from arch/ppc/kernel/misc.S so ppc64 * is more like most of the other architectures. */ static __inline__ unsigned long __xchg_u32(volatile unsigned int *m, unsigned long val) { unsigned long dummy; __asm__ __volatile__( EIEIO_ON_SMP "1: lwarx %0,0,%3 # __xchg_u32\n\ stwcx. %2,0,%3\n\ 2: bne- 1b" ISYNC_ON_SMP : "=&r" (dummy), "=m" (*m) : "r" (val), "r" (m) : "cc", "memory"); return (dummy); } static __inline__ unsigned long __xchg_u64(volatile long *m, unsigned long val) { unsigned long dummy; __asm__ __volatile__( EIEIO_ON_SMP "1: ldarx %0,0,%3 # __xchg_u64\n\ stdcx. %2,0,%3\n\ 2: bne- 1b" ISYNC_ON_SMP : "=&r" (dummy), "=m" (*m) : "r" (val), "r" (m) : "cc", "memory"); return (dummy); } /* * This function doesn't exist, so you'll get a linker error * if something tries to do an invalid xchg(). */ extern void __xchg_called_with_bad_pointer(void); static __inline__ unsigned long __xchg(volatile void *ptr, unsigned long x, unsigned int size) { switch (size) { case 4: return __xchg_u32(ptr, x); case 8: return __xchg_u64(ptr, x); } __xchg_called_with_bad_pointer(); return x; } #define xchg(ptr,x) \ ({ \ __typeof__(*(ptr)) _x_ = (x); \ (__typeof__(*(ptr))) __xchg((ptr), (unsigned long)_x_, sizeof(*(ptr))); \ }) #define tas(ptr) (xchg((ptr),1)) #define __HAVE_ARCH_CMPXCHG 1 static __inline__ unsigned long __cmpxchg_u32(volatile unsigned int *p, unsigned long old, unsigned long new) { unsigned int prev; __asm__ __volatile__ ( EIEIO_ON_SMP "1: lwarx %0,0,%2 # __cmpxchg_u32\n\ cmpw 0,%0,%3\n\ bne- 2f\n\ stwcx. %4,0,%2\n\ bne- 1b" ISYNC_ON_SMP "\n\ 2:" : "=&r" (prev), "=m" (*p) : "r" (p), "r" (old), "r" (new), "m" (*p) : "cc", "memory"); return prev; } static __inline__ unsigned long __cmpxchg_u64(volatile long *p, unsigned long old, unsigned long new) { unsigned long prev; __asm__ __volatile__ ( EIEIO_ON_SMP "1: ldarx %0,0,%2 # __cmpxchg_u64\n\ cmpd 0,%0,%3\n\ bne- 2f\n\ stdcx. %4,0,%2\n\ bne- 1b" ISYNC_ON_SMP "\n\ 2:" : "=&r" (prev), "=m" (*p) : "r" (p), "r" (old), "r" (new), "m" (*p) : "cc", "memory"); return prev; } /* This function doesn't exist, so you'll get a linker error if something tries to do an invalid cmpxchg(). */ extern void __cmpxchg_called_with_bad_pointer(void); static __inline__ unsigned long __cmpxchg(volatile void *ptr, unsigned long old, unsigned long new, unsigned int size) { switch (size) { case 4: return __cmpxchg_u32(ptr, old, new); case 8: return __cmpxchg_u64(ptr, old, new); } __cmpxchg_called_with_bad_pointer(); return old; } #define cmpxchg(ptr,o,n)\ ((__typeof__(*(ptr)))__cmpxchg((ptr),(unsigned long)(o),\ (unsigned long)(n),sizeof(*(ptr)))) /* * We handle most unaligned accesses in hardware. On the other hand * unaligned DMA can be very expensive on some ppc64 IO chips (it does * powers of 2 writes until it reaches sufficient alignment). * * Based on this we disable the IP header alignment in network drivers. */ #define NET_IP_ALIGN 0 #define arch_align_stack(x) (x) extern unsigned long reloc_offset(void); #endif /* __KERNEL__ */ #endif |