Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 | /* * linux/arch/arm/mach-sa1100/time.c * * Copyright (C) 1998 Deborah Wallach. * Twiddles (C) 1999 Hugo Fiennes <hugo@empeg.com> * * 2000/03/29 (C) Nicolas Pitre <nico@cam.org> * Rewritten: big cleanup, much simpler, better HZ accuracy. * */ #include <linux/init.h> #include <linux/errno.h> #include <linux/interrupt.h> #include <linux/timex.h> #include <linux/signal.h> #include <asm/mach/time.h> #include <asm/hardware.h> #define RTC_DEF_DIVIDER (32768 - 1) #define RTC_DEF_TRIM 0 static unsigned long __init sa1100_get_rtc_time(void) { /* * According to the manual we should be able to let RTTR be zero * and then a default diviser for a 32.768KHz clock is used. * Apparently this doesn't work, at least for my SA1110 rev 5. * If the clock divider is uninitialized then reset it to the * default value to get the 1Hz clock. */ if (RTTR == 0) { RTTR = RTC_DEF_DIVIDER + (RTC_DEF_TRIM << 16); printk(KERN_WARNING "Warning: uninitialized Real Time Clock\n"); /* The current RTC value probably doesn't make sense either */ RCNR = 0; return 0; } return RCNR; } static int sa1100_set_rtc(void) { unsigned long current_time = xtime.tv_sec; if (RTSR & RTSR_ALE) { /* make sure not to forward the clock over an alarm */ unsigned long alarm = RTAR; if (current_time >= alarm && alarm >= RCNR) return -ERESTARTSYS; } RCNR = current_time; return 0; } /* IRQs are disabled before entering here from do_gettimeofday() */ static unsigned long sa1100_gettimeoffset (void) { unsigned long ticks_to_match, elapsed, usec; /* Get ticks before next timer match */ ticks_to_match = OSMR0 - OSCR; /* We need elapsed ticks since last match */ elapsed = LATCH - ticks_to_match; /* Now convert them to usec */ usec = (unsigned long)(elapsed * (tick_nsec / 1000))/LATCH; return usec; } #ifdef CONFIG_NO_IDLE_HZ static unsigned long initial_match; static int match_posponed; #endif static irqreturn_t sa1100_timer_interrupt(int irq, void *dev_id, struct pt_regs *regs) { unsigned int next_match; write_seqlock(&xtime_lock); #ifdef CONFIG_NO_IDLE_HZ if (match_posponed) { match_posponed = 0; OSMR0 = initial_match; } #endif /* * Loop until we get ahead of the free running timer. * This ensures an exact clock tick count and time accuracy. * Since IRQs are disabled at this point, coherence between * lost_ticks(updated in do_timer()) and the match reg value is * ensured, hence we can use do_gettimeofday() from interrupt * handlers. */ do { timer_tick(regs); OSSR = OSSR_M0; /* Clear match on timer 0 */ next_match = (OSMR0 += LATCH); } while ((signed long)(next_match - OSCR) <= 0); write_sequnlock(&xtime_lock); return IRQ_HANDLED; } static struct irqaction sa1100_timer_irq = { .name = "SA11xx Timer Tick", .flags = SA_INTERRUPT | SA_TIMER, .handler = sa1100_timer_interrupt, }; static void __init sa1100_timer_init(void) { struct timespec tv; set_rtc = sa1100_set_rtc; tv.tv_nsec = 0; tv.tv_sec = sa1100_get_rtc_time(); do_settimeofday(&tv); OSMR0 = 0; /* set initial match at 0 */ OSSR = 0xf; /* clear status on all timers */ setup_irq(IRQ_OST0, &sa1100_timer_irq); OIER |= OIER_E0; /* enable match on timer 0 to cause interrupts */ OSCR = 0; /* initialize free-running timer, force first match */ } #ifdef CONFIG_NO_IDLE_HZ static int sa1100_dyn_tick_enable_disable(void) { /* nothing to do */ return 0; } static void sa1100_dyn_tick_reprogram(unsigned long ticks) { if (ticks > 1) { initial_match = OSMR0; OSMR0 = initial_match + ticks * LATCH; match_posponed = 1; } } static irqreturn_t sa1100_dyn_tick_handler(int irq, void *dev_id, struct pt_regs *regs) { if (match_posponed) { match_posponed = 0; OSMR0 = initial_match; if ((signed long)(initial_match - OSCR) <= 0) return sa1100_timer_interrupt(irq, dev_id, regs); } return IRQ_NONE; } static struct dyn_tick_timer sa1100_dyn_tick = { .enable = sa1100_dyn_tick_enable_disable, .disable = sa1100_dyn_tick_enable_disable, .reprogram = sa1100_dyn_tick_reprogram, .handler = sa1100_dyn_tick_handler, }; #endif #ifdef CONFIG_PM unsigned long osmr[4], oier; static void sa1100_timer_suspend(void) { osmr[0] = OSMR0; osmr[1] = OSMR1; osmr[2] = OSMR2; osmr[3] = OSMR3; oier = OIER; } static void sa1100_timer_resume(void) { OSSR = 0x0f; OSMR0 = osmr[0]; OSMR1 = osmr[1]; OSMR2 = osmr[2]; OSMR3 = osmr[3]; OIER = oier; /* * OSMR0 is the system timer: make sure OSCR is sufficiently behind */ OSCR = OSMR0 - LATCH; } #else #define sa1100_timer_suspend NULL #define sa1100_timer_resume NULL #endif struct sys_timer sa1100_timer = { .init = sa1100_timer_init, .suspend = sa1100_timer_suspend, .resume = sa1100_timer_resume, .offset = sa1100_gettimeoffset, #ifdef CONFIG_NO_IDLE_HZ .dyn_tick = &sa1100_dyn_tick, #endif }; |