Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 | /* * fp_util.S * * Copyright Roman Zippel, 1997. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, and the entire permission notice in its entirety, * including the disclaimer of warranties. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. The name of the author may not be used to endorse or promote * products derived from this software without specific prior * written permission. * * ALTERNATIVELY, this product may be distributed under the terms of * the GNU General Public License, in which case the provisions of the GPL are * required INSTEAD OF the above restrictions. (This clause is * necessary due to a potential bad interaction between the GPL and * the restrictions contained in a BSD-style copyright.) * * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED * OF THE POSSIBILITY OF SUCH DAMAGE. */ #include <linux/config.h> #include "fp_emu.h" /* * Here are lots of conversion and normalization functions mainly * used by fp_scan.S * Note that these functions are optimized for "normal" numbers, * these are handled first and exit as fast as possible, this is * especially important for fp_normalize_ext/fp_conv_ext2ext, as * it's called very often. * The register usage is optimized for fp_scan.S and which register * is currently at that time unused, be careful if you want change * something here. %d0 and %d1 is always usable, sometimes %d2 (or * only the lower half) most function have to return the %a0 * unmodified, so that the caller can immediately reuse it. */ .globl fp_ill, fp_end | exits from fp_scan: | illegal instruction fp_ill: printf ,"fp_illegal\n" rts | completed instruction fp_end: tst.l (TASK_MM-8,%a2) jmi 1f tst.l (TASK_MM-4,%a2) jmi 1f tst.l (TASK_MM,%a2) jpl 2f 1: printf ,"oops:%p,%p,%p\n",3,%a2@(TASK_MM-8),%a2@(TASK_MM-4),%a2@(TASK_MM) 2: clr.l %d0 rts .globl fp_conv_long2ext, fp_conv_single2ext .globl fp_conv_double2ext, fp_conv_ext2ext .globl fp_normalize_ext, fp_normalize_double .globl fp_normalize_single, fp_normalize_single_fast .globl fp_conv_ext2double, fp_conv_ext2single .globl fp_conv_ext2long, fp_conv_ext2short .globl fp_conv_ext2byte .globl fp_finalrounding_single, fp_finalrounding_single_fast .globl fp_finalrounding_double .globl fp_finalrounding, fp_finaltest, fp_final /* * First several conversion functions from a source operand * into the extended format. Note, that only fp_conv_ext2ext * normalizes the number and is always called after the other * conversion functions, which only move the information into * fp_ext structure. */ | fp_conv_long2ext: | | args: %d0 = source (32-bit long) | %a0 = destination (ptr to struct fp_ext) fp_conv_long2ext: printf PCONV,"l2e: %p -> %p(",2,%d0,%a0 clr.l %d1 | sign defaults to zero tst.l %d0 jeq fp_l2e_zero | is source zero? jpl 1f | positive? moveq #1,%d1 neg.l %d0 1: swap %d1 move.w #0x3fff+31,%d1 move.l %d1,(%a0)+ | set sign / exp move.l %d0,(%a0)+ | set mantissa clr.l (%a0) subq.l #8,%a0 | restore %a0 printx PCONV,%a0@ printf PCONV,")\n" rts | source is zero fp_l2e_zero: clr.l (%a0)+ clr.l (%a0)+ clr.l (%a0) subq.l #8,%a0 printx PCONV,%a0@ printf PCONV,")\n" rts | fp_conv_single2ext | args: %d0 = source (single-precision fp value) | %a0 = dest (struct fp_ext *) fp_conv_single2ext: printf PCONV,"s2e: %p -> %p(",2,%d0,%a0 move.l %d0,%d1 lsl.l #8,%d0 | shift mantissa lsr.l #8,%d1 | exponent / sign lsr.l #7,%d1 lsr.w #8,%d1 jeq fp_s2e_small | zero / denormal? cmp.w #0xff,%d1 | NaN / Inf? jeq fp_s2e_large bset #31,%d0 | set explizit bit add.w #0x3fff-0x7f,%d1 | re-bias the exponent. 9: move.l %d1,(%a0)+ | fp_ext.sign, fp_ext.exp move.l %d0,(%a0)+ | high lword of fp_ext.mant clr.l (%a0) | low lword = 0 subq.l #8,%a0 printx PCONV,%a0@ printf PCONV,")\n" rts | zeros and denormalized fp_s2e_small: | exponent is zero, so explizit bit is already zero too tst.l %d0 jeq 9b move.w #0x4000-0x7f,%d1 jra 9b | infinities and NAN fp_s2e_large: bclr #31,%d0 | clear explizit bit move.w #0x7fff,%d1 jra 9b fp_conv_double2ext: #ifdef FPU_EMU_DEBUG getuser.l %a1@(0),%d0,fp_err_ua2,%a1 getuser.l %a1@(4),%d1,fp_err_ua2,%a1 printf PCONV,"d2e: %p%p -> %p(",3,%d0,%d1,%a0 #endif getuser.l (%a1)+,%d0,fp_err_ua2,%a1 move.l %d0,%d1 lsl.l #8,%d0 | shift high mantissa lsl.l #3,%d0 lsr.l #8,%d1 | exponent / sign lsr.l #7,%d1 lsr.w #5,%d1 jeq fp_d2e_small | zero / denormal? cmp.w #0x7ff,%d1 | NaN / Inf? jeq fp_d2e_large bset #31,%d0 | set explizit bit add.w #0x3fff-0x3ff,%d1 | re-bias the exponent. 9: move.l %d1,(%a0)+ | fp_ext.sign, fp_ext.exp move.l %d0,(%a0)+ getuser.l (%a1)+,%d0,fp_err_ua2,%a1 move.l %d0,%d1 lsl.l #8,%d0 lsl.l #3,%d0 move.l %d0,(%a0) moveq #21,%d0 lsr.l %d0,%d1 or.l %d1,-(%a0) subq.l #4,%a0 printx PCONV,%a0@ printf PCONV,")\n" rts | zeros and denormalized fp_d2e_small: | exponent is zero, so explizit bit is already zero too tst.l %d0 jeq 9b move.w #0x4000-0x3ff,%d1 jra 9b | infinities and NAN fp_d2e_large: bclr #31,%d0 | clear explizit bit move.w #0x7fff,%d1 jra 9b | fp_conv_ext2ext: | originally used to get longdouble from userspace, now it's | called before arithmetic operations to make sure the number | is normalized [maybe rename it?]. | args: %a0 = dest (struct fp_ext *) | returns 0 in %d0 for a NaN, otherwise 1 fp_conv_ext2ext: printf PCONV,"e2e: %p(",1,%a0 printx PCONV,%a0@ printf PCONV,"), " move.l (%a0)+,%d0 cmp.w #0x7fff,%d0 | Inf / NaN? jeq fp_e2e_large move.l (%a0),%d0 jpl fp_e2e_small | zero / denorm? | The high bit is set, so normalization is irrelevant. fp_e2e_checkround: subq.l #4,%a0 #ifdef CONFIG_M68KFPU_EMU_EXTRAPREC move.b (%a0),%d0 jne fp_e2e_round #endif printf PCONV,"%p(",1,%a0 printx PCONV,%a0@ printf PCONV,")\n" moveq #1,%d0 rts #ifdef CONFIG_M68KFPU_EMU_EXTRAPREC fp_e2e_round: fp_set_sr FPSR_EXC_INEX2 clr.b (%a0) move.w (FPD_RND,FPDATA),%d2 jne fp_e2e_roundother | %d2 == 0, round to nearest tst.b %d0 | test guard bit jpl 9f | zero is closer btst #0,(11,%a0) | test lsb bit jne fp_e2e_doroundup | round to infinity lsl.b #1,%d0 | check low bits jeq 9f | round to zero fp_e2e_doroundup: addq.l #1,(8,%a0) jcc 9f addq.l #1,(4,%a0) jcc 9f move.w #0x8000,(4,%a0) addq.w #1,(2,%a0) 9: printf PNORM,"%p(",1,%a0 printx PNORM,%a0@ printf PNORM,")\n" rts fp_e2e_roundother: subq.w #2,%d2 jcs 9b | %d2 < 2, round to zero jhi 1f | %d2 > 2, round to +infinity tst.b (1,%a0) | to -inf jne fp_e2e_doroundup | negative, round to infinity jra 9b | positive, round to zero 1: tst.b (1,%a0) | to +inf jeq fp_e2e_doroundup | positive, round to infinity jra 9b | negative, round to zero #endif | zeros and subnormals: | try to normalize these anyway. fp_e2e_small: jne fp_e2e_small1 | high lword zero? move.l (4,%a0),%d0 jne fp_e2e_small2 #ifdef CONFIG_M68KFPU_EMU_EXTRAPREC clr.l %d0 move.b (-4,%a0),%d0 jne fp_e2e_small3 #endif | Genuine zero. clr.w -(%a0) subq.l #2,%a0 printf PNORM,"%p(",1,%a0 printx PNORM,%a0@ printf PNORM,")\n" moveq #1,%d0 rts | definitely subnormal, need to shift all 64 bits fp_e2e_small1: bfffo %d0{#0,#32},%d1 move.w -(%a0),%d2 sub.w %d1,%d2 jcc 1f | Pathologically small, denormalize. add.w %d2,%d1 clr.w %d2 1: move.w %d2,(%a0)+ move.w %d1,%d2 jeq fp_e2e_checkround | fancy 64-bit double-shift begins here lsl.l %d2,%d0 move.l %d0,(%a0)+ move.l (%a0),%d0 move.l %d0,%d1 lsl.l %d2,%d0 move.l %d0,(%a0) neg.w %d2 and.w #0x1f,%d2 lsr.l %d2,%d1 or.l %d1,-(%a0) #ifdef CONFIG_M68KFPU_EMU_EXTRAPREC fp_e2e_extra1: clr.l %d0 move.b (-4,%a0),%d0 neg.w %d2 add.w #24,%d2 jcc 1f clr.b (-4,%a0) lsl.l %d2,%d0 or.l %d0,(4,%a0) jra fp_e2e_checkround 1: addq.w #8,%d2 lsl.l %d2,%d0 move.b %d0,(-4,%a0) lsr.l #8,%d0 or.l %d0,(4,%a0) #endif jra fp_e2e_checkround | pathologically small subnormal fp_e2e_small2: bfffo %d0{#0,#32},%d1 add.w #32,%d1 move.w -(%a0),%d2 sub.w %d1,%d2 jcc 1f | Beyond pathologically small, denormalize. add.w %d2,%d1 clr.w %d2 1: move.w %d2,(%a0)+ ext.l %d1 jeq fp_e2e_checkround clr.l (4,%a0) sub.w #32,%d2 jcs 1f lsl.l %d1,%d0 | lower lword needs only to be shifted move.l %d0,(%a0) | into the higher lword #ifdef CONFIG_M68KFPU_EMU_EXTRAPREC clr.l %d0 move.b (-4,%a0),%d0 clr.b (-4,%a0) neg.w %d1 add.w #32,%d1 bfins %d0,(%a0){%d1,#8} #endif jra fp_e2e_checkround 1: neg.w %d1 | lower lword is splitted between bfins %d0,(%a0){%d1,#32} | higher and lower lword #ifndef CONFIG_M68KFPU_EMU_EXTRAPREC jra fp_e2e_checkround #else move.w %d1,%d2 jra fp_e2e_extra1 | These are extremely small numbers, that will mostly end up as zero | anyway, so this is only important for correct rounding. fp_e2e_small3: bfffo %d0{#24,#8},%d1 add.w #40,%d1 move.w -(%a0),%d2 sub.w %d1,%d2 jcc 1f | Pathologically small, denormalize. add.w %d2,%d1 clr.w %d2 1: move.w %d2,(%a0)+ ext.l %d1 jeq fp_e2e_checkround cmp.w #8,%d1 jcs 2f 1: clr.b (-4,%a0) sub.w #64,%d1 jcs 1f add.w #24,%d1 lsl.l %d1,%d0 move.l %d0,(%a0) jra fp_e2e_checkround 1: neg.w %d1 bfins %d0,(%a0){%d1,#8} jra fp_e2e_checkround 2: lsl.l %d1,%d0 move.b %d0,(-4,%a0) lsr.l #8,%d0 move.b %d0,(7,%a0) jra fp_e2e_checkround #endif 1: move.l %d0,%d1 | lower lword is splitted between lsl.l %d2,%d0 | higher and lower lword move.l %d0,(%a0) move.l %d1,%d0 neg.w %d2 add.w #32,%d2 lsr.l %d2,%d0 move.l %d0,-(%a0) jra fp_e2e_checkround | Infinities and NaNs fp_e2e_large: move.l (%a0)+,%d0 jne 3f 1: tst.l (%a0) jne 4f moveq #1,%d0 2: subq.l #8,%a0 printf PCONV,"%p(",1,%a0 printx PCONV,%a0@ printf PCONV,")\n" rts | we have maybe a NaN, shift off the highest bit 3: lsl.l #1,%d0 jeq 1b | we have a NaN, clear the return value 4: clrl %d0 jra 2b /* * Normalization functions. Call these on the output of general * FP operators, and before any conversion into the destination * formats. fp_normalize_ext has always to be called first, the * following conversion functions expect an already normalized * number. */ | fp_normalize_ext: | normalize an extended in extended (unpacked) format, basically | it does the same as fp_conv_ext2ext, additionally it also does | the necessary postprocessing checks. | args: %a0 (struct fp_ext *) | NOTE: it does _not_ modify %a0/%a1 and the upper word of %d2 fp_normalize_ext: printf PNORM,"ne: %p(",1,%a0 printx PNORM,%a0@ printf PNORM,"), " move.l (%a0)+,%d0 cmp.w #0x7fff,%d0 | Inf / NaN? jeq fp_ne_large move.l (%a0),%d0 jpl fp_ne_small | zero / denorm? | The high bit is set, so normalization is irrelevant. fp_ne_checkround: subq.l #4,%a0 #ifdef CONFIG_M68KFPU_EMU_EXTRAPREC move.b (%a0),%d0 jne fp_ne_round #endif printf PNORM,"%p(",1,%a0 printx PNORM,%a0@ printf PNORM,")\n" rts #ifdef CONFIG_M68KFPU_EMU_EXTRAPREC fp_ne_round: fp_set_sr FPSR_EXC_INEX2 clr.b (%a0) move.w (FPD_RND,FPDATA),%d2 jne fp_ne_roundother | %d2 == 0, round to nearest tst.b %d0 | test guard bit jpl 9f | zero is closer btst #0,(11,%a0) | test lsb bit jne fp_ne_doroundup | round to infinity lsl.b #1,%d0 | check low bits jeq 9f | round to zero fp_ne_doroundup: addq.l #1,(8,%a0) jcc 9f addq.l #1,(4,%a0) jcc 9f addq.w #1,(2,%a0) move.w #0x8000,(4,%a0) 9: printf PNORM,"%p(",1,%a0 printx PNORM,%a0@ printf PNORM,")\n" rts fp_ne_roundother: subq.w #2,%d2 jcs 9b | %d2 < 2, round to zero jhi 1f | %d2 > 2, round to +infinity tst.b (1,%a0) | to -inf jne fp_ne_doroundup | negative, round to infinity jra 9b | positive, round to zero 1: tst.b (1,%a0) | to +inf jeq fp_ne_doroundup | positive, round to infinity jra 9b | negative, round to zero #endif | Zeros and subnormal numbers | These are probably merely subnormal, rather than "denormalized" | numbers, so we will try to make them normal again. fp_ne_small: jne fp_ne_small1 | high lword zero? move.l (4,%a0),%d0 jne fp_ne_small2 #ifdef CONFIG_M68KFPU_EMU_EXTRAPREC clr.l %d0 move.b (-4,%a0),%d0 jne fp_ne_small3 #endif | Genuine zero. clr.w -(%a0) subq.l #2,%a0 printf PNORM,"%p(",1,%a0 printx PNORM,%a0@ printf PNORM,")\n" rts | Subnormal. fp_ne_small1: bfffo %d0{#0,#32},%d1 move.w -(%a0),%d2 sub.w %d1,%d2 jcc 1f | Pathologically small, denormalize. add.w %d2,%d1 clr.w %d2 fp_set_sr FPSR_EXC_UNFL 1: move.w %d2,(%a0)+ move.w %d1,%d2 jeq fp_ne_checkround | This is exactly the same 64-bit double shift as seen above. lsl.l %d2,%d0 move.l %d0,(%a0)+ move.l (%a0),%d0 move.l %d0,%d1 lsl.l %d2,%d0 move.l %d0,(%a0) neg.w %d2 and.w #0x1f,%d2 lsr.l %d2,%d1 or.l %d1,-(%a0) #ifdef CONFIG_M68KFPU_EMU_EXTRAPREC fp_ne_extra1: clr.l %d0 move.b (-4,%a0),%d0 neg.w %d2 add.w #24,%d2 jcc 1f clr.b (-4,%a0) lsl.l %d2,%d0 or.l %d0,(4,%a0) jra fp_ne_checkround 1: addq.w #8,%d2 lsl.l %d2,%d0 move.b %d0,(-4,%a0) lsr.l #8,%d0 or.l %d0,(4,%a0) #endif jra fp_ne_checkround | May or may not be subnormal, if so, only 32 bits to shift. fp_ne_small2: bfffo %d0{#0,#32},%d1 add.w #32,%d1 move.w -(%a0),%d2 sub.w %d1,%d2 jcc 1f | Beyond pathologically small, denormalize. add.w %d2,%d1 clr.w %d2 fp_set_sr FPSR_EXC_UNFL 1: move.w %d2,(%a0)+ ext.l %d1 jeq fp_ne_checkround clr.l (4,%a0) sub.w #32,%d1 jcs 1f lsl.l %d1,%d0 | lower lword needs only to be shifted move.l %d0,(%a0) | into the higher lword #ifdef CONFIG_M68KFPU_EMU_EXTRAPREC clr.l %d0 move.b (-4,%a0),%d0 clr.b (-4,%a0) neg.w %d1 add.w #32,%d1 bfins %d0,(%a0){%d1,#8} #endif jra fp_ne_checkround 1: neg.w %d1 | lower lword is splitted between bfins %d0,(%a0){%d1,#32} | higher and lower lword #ifndef CONFIG_M68KFPU_EMU_EXTRAPREC jra fp_ne_checkround #else move.w %d1,%d2 jra fp_ne_extra1 | These are extremely small numbers, that will mostly end up as zero | anyway, so this is only important for correct rounding. fp_ne_small3: bfffo %d0{#24,#8},%d1 add.w #40,%d1 move.w -(%a0),%d2 sub.w %d1,%d2 jcc 1f | Pathologically small, denormalize. add.w %d2,%d1 clr.w %d2 1: move.w %d2,(%a0)+ ext.l %d1 jeq fp_ne_checkround cmp.w #8,%d1 jcs 2f 1: clr.b (-4,%a0) sub.w #64,%d1 jcs 1f add.w #24,%d1 lsl.l %d1,%d0 move.l %d0,(%a0) jra fp_ne_checkround 1: neg.w %d1 bfins %d0,(%a0){%d1,#8} jra fp_ne_checkround 2: lsl.l %d1,%d0 move.b %d0,(-4,%a0) lsr.l #8,%d0 move.b %d0,(7,%a0) jra fp_ne_checkround #endif | Infinities and NaNs, again, same as above. fp_ne_large: move.l (%a0)+,%d0 jne 3f 1: tst.l (%a0) jne 4f 2: subq.l #8,%a0 printf PNORM,"%p(",1,%a0 printx PNORM,%a0@ printf PNORM,")\n" rts | we have maybe a NaN, shift off the highest bit 3: move.l %d0,%d1 lsl.l #1,%d1 jne 4f clr.l (-4,%a0) jra 1b | we have a NaN, test if it is signaling 4: bset #30,%d0 jne 2b fp_set_sr FPSR_EXC_SNAN move.l %d0,(-4,%a0) jra 2b | these next two do rounding as per the IEEE standard. | values for the rounding modes appear to be: | 0: Round to nearest | 1: Round to zero | 2: Round to -Infinity | 3: Round to +Infinity | both functions expect that fp_normalize was already | called (and extended argument is already normalized | as far as possible), these are used if there is different | rounding precision is selected and before converting | into single/double | fp_normalize_double: | normalize an extended with double (52-bit) precision | args: %a0 (struct fp_ext *) fp_normalize_double: printf PNORM,"nd: %p(",1,%a0 printx PNORM,%a0@ printf PNORM,"), " move.l (%a0)+,%d2 tst.w %d2 jeq fp_nd_zero | zero / denormalized cmp.w #0x7fff,%d2 jeq fp_nd_huge | NaN / infinitive. sub.w #0x4000-0x3ff,%d2 | will the exponent fit? jcs fp_nd_small | too small. cmp.w #0x7fe,%d2 jcc fp_nd_large | too big. addq.l #4,%a0 move.l (%a0),%d0 | low lword of mantissa | now, round off the low 11 bits. fp_nd_round: moveq #21,%d1 lsl.l %d1,%d0 | keep 11 low bits. jne fp_nd_checkround | Are they non-zero? | nothing to do here 9: subq.l #8,%a0 printf PNORM,"%p(",1,%a0 printx PNORM,%a0@ printf PNORM,")\n" rts | Be careful with the X bit! It contains the lsb | from the shift above, it is needed for round to nearest. fp_nd_checkround: fp_set_sr FPSR_EXC_INEX2 | INEX2 bit and.w #0xf800,(2,%a0) | clear bits 0-10 move.w (FPD_RND,FPDATA),%d2 | rounding mode jne 2f | %d2 == 0, round to nearest tst.l %d0 | test guard bit jpl 9b | zero is closer | here we test the X bit by adding it to %d2 clr.w %d2 | first set z bit, addx only clears it addx.w %d2,%d2 | test lsb bit | IEEE754-specified "round to even" behaviour. If the guard | bit is set, then the number is odd, so rounding works like | in grade-school arithmetic (i.e. 1.5 rounds to 2.0) | Otherwise, an equal distance rounds towards zero, so as not | to produce an odd number. This is strange, but it is what | the standard says. jne fp_nd_doroundup | round to infinity lsl.l #1,%d0 | check low bits jeq 9b | round to zero fp_nd_doroundup: | round (the mantissa, that is) towards infinity add.l #0x800,(%a0) jcc 9b | no overflow, good. addq.l #1,-(%a0) | extend to high lword jcc 1f | no overflow, good. | Yow! we have managed to overflow the mantissa. Since this | only happens when %d1 was 0xfffff800, it is now zero, so | reset the high bit, and increment the exponent. move.w #0x8000,(%a0) addq.w #1,-(%a0) cmp.w #0x43ff,(%a0)+ | exponent now overflown? jeq fp_nd_large | yes, so make it infinity. 1: subq.l #4,%a0 printf PNORM,"%p(",1,%a0 printx PNORM,%a0@ printf PNORM,")\n" rts 2: subq.w #2,%d2 jcs 9b | %d2 < 2, round to zero jhi 3f | %d2 > 2, round to +infinity | Round to +Inf or -Inf. High word of %d2 contains the | sign of the number, by the way. swap %d2 | to -inf tst.b %d2 jne fp_nd_doroundup | negative, round to infinity jra 9b | positive, round to zero 3: swap %d2 | to +inf tst.b %d2 jeq fp_nd_doroundup | positive, round to infinity jra 9b | negative, round to zero | Exponent underflow. Try to make a denormal, and set it to | the smallest possible fraction if this fails. fp_nd_small: fp_set_sr FPSR_EXC_UNFL | set UNFL bit move.w #0x3c01,(-2,%a0) | 2**-1022 neg.w %d2 | degree of underflow cmp.w #32,%d2 | single or double shift? jcc 1f | Again, another 64-bit double shift. move.l (%a0),%d0 move.l %d0,%d1 lsr.l %d2,%d0 move.l %d0,(%a0)+ move.l (%a0),%d0 lsr.l %d2,%d0 neg.w %d2 add.w #32,%d2 lsl.l %d2,%d1 or.l %d1,%d0 move.l (%a0),%d1 move.l %d0,(%a0) | Check to see if we shifted off any significant bits lsl.l %d2,%d1 jeq fp_nd_round | Nope, round. bset #0,%d0 | Yes, so set the "sticky bit". jra fp_nd_round | Now, round. | Another 64-bit single shift and store 1: sub.w #32,%d2 cmp.w #32,%d2 | Do we really need to shift? jcc 2f | No, the number is too small. move.l (%a0),%d0 clr.l (%a0)+ move.l %d0,%d1 lsr.l %d2,%d0 neg.w %d2 add.w #32,%d2 | Again, check to see if we shifted off any significant bits. tst.l (%a0) jeq 1f bset #0,%d0 | Sticky bit. 1: move.l %d0,(%a0) lsl.l %d2,%d1 jeq fp_nd_round bset #0,%d0 jra fp_nd_round | Sorry, the number is just too small. 2: clr.l (%a0)+ clr.l (%a0) moveq #1,%d0 | Smallest possible fraction, jra fp_nd_round | round as desired. | zero and denormalized fp_nd_zero: tst.l (%a0)+ jne 1f tst.l (%a0) jne 1f subq.l #8,%a0 printf PNORM,"%p(",1,%a0 printx PNORM,%a0@ printf PNORM,")\n" rts | zero. nothing to do. | These are not merely subnormal numbers, but true denormals, | i.e. pathologically small (exponent is 2**-16383) numbers. | It is clearly impossible for even a normal extended number | with that exponent to fit into double precision, so just | write these ones off as "too darn small". 1: fp_set_sr FPSR_EXC_UNFL | Set UNFL bit clr.l (%a0) clr.l -(%a0) move.w #0x3c01,-(%a0) | i.e. 2**-1022 addq.l #6,%a0 moveq #1,%d0 jra fp_nd_round | round. | Exponent overflow. Just call it infinity. fp_nd_large: move.w #0x7ff,%d0 and.w (6,%a0),%d0 jeq 1f fp_set_sr FPSR_EXC_INEX2 1: fp_set_sr FPSR_EXC_OVFL move.w (FPD_RND,FPDATA),%d2 jne 3f | %d2 = 0 round to nearest 1: move.w #0x7fff,(-2,%a0) clr.l (%a0)+ clr.l (%a0) 2: subq.l #8,%a0 printf PNORM,"%p(",1,%a0 printx PNORM,%a0@ printf PNORM,")\n" rts 3: subq.w #2,%d2 jcs 5f | %d2 < 2, round to zero jhi 4f | %d2 > 2, round to +infinity tst.b (-3,%a0) | to -inf jne 1b jra 5f 4: tst.b (-3,%a0) | to +inf jeq 1b 5: move.w #0x43fe,(-2,%a0) moveq #-1,%d0 move.l %d0,(%a0)+ move.w #0xf800,%d0 move.l %d0,(%a0) jra 2b | Infinities or NaNs fp_nd_huge: subq.l #4,%a0 printf PNORM,"%p(",1,%a0 printx PNORM,%a0@ printf PNORM,")\n" rts | fp_normalize_single: | normalize an extended with single (23-bit) precision | args: %a0 (struct fp_ext *) fp_normalize_single: printf PNORM,"ns: %p(",1,%a0 printx PNORM,%a0@ printf PNORM,") " addq.l #2,%a0 move.w (%a0)+,%d2 jeq fp_ns_zero | zero / denormalized cmp.w #0x7fff,%d2 jeq fp_ns_huge | NaN / infinitive. sub.w #0x4000-0x7f,%d2 | will the exponent fit? jcs fp_ns_small | too small. cmp.w #0xfe,%d2 jcc fp_ns_large | too big. move.l (%a0)+,%d0 | get high lword of mantissa fp_ns_round: tst.l (%a0) | check the low lword jeq 1f | Set a sticky bit if it is non-zero. This should only | affect the rounding in what would otherwise be equal- | distance situations, which is what we want it to do. bset #0,%d0 1: clr.l (%a0) | zap it from memory. | now, round off the low 8 bits of the hi lword. tst.b %d0 | 8 low bits. jne fp_ns_checkround | Are they non-zero? | nothing to do here subq.l #8,%a0 printf PNORM,"%p(",1,%a0 printx PNORM,%a0@ printf PNORM,")\n" rts fp_ns_checkround: fp_set_sr FPSR_EXC_INEX2 | INEX2 bit clr.b -(%a0) | clear low byte of high lword subq.l #3,%a0 move.w (FPD_RND,FPDATA),%d2 | rounding mode jne 2f | %d2 == 0, round to nearest tst.b %d0 | test guard bit jpl 9f | zero is closer btst #8,%d0 | test lsb bit | round to even behaviour, see above. jne fp_ns_doroundup | round to infinity lsl.b #1,%d0 | check low bits jeq 9f | round to zero fp_ns_doroundup: | round (the mantissa, that is) towards infinity add.l #0x100,(%a0) jcc 9f | no overflow, good. | Overflow. This means that the %d1 was 0xffffff00, so it | is now zero. We will set the mantissa to reflect this, and | increment the exponent (checking for overflow there too) move.w #0x8000,(%a0) addq.w #1,-(%a0) cmp.w #0x407f,(%a0)+ | exponent now overflown? jeq fp_ns_large | yes, so make it infinity. 9: subq.l #4,%a0 printf PNORM,"%p(",1,%a0 printx PNORM,%a0@ printf PNORM,")\n" rts | check nondefault rounding modes 2: subq.w #2,%d2 jcs 9b | %d2 < 2, round to zero jhi 3f | %d2 > 2, round to +infinity tst.b (-3,%a0) | to -inf jne fp_ns_doroundup | negative, round to infinity jra 9b | positive, round to zero 3: tst.b (-3,%a0) | to +inf jeq fp_ns_doroundup | positive, round to infinity jra 9b | negative, round to zero | Exponent underflow. Try to make a denormal, and set it to | the smallest possible fraction if this fails. fp_ns_small: fp_set_sr FPSR_EXC_UNFL | set UNFL bit move.w #0x3f81,(-2,%a0) | 2**-126 neg.w %d2 | degree of underflow cmp.w #32,%d2 | single or double shift? jcc 2f | a 32-bit shift. move.l (%a0),%d0 move.l %d0,%d1 lsr.l %d2,%d0 move.l %d0,(%a0)+ | Check to see if we shifted off any significant bits. neg.w %d2 add.w #32,%d2 lsl.l %d2,%d1 jeq 1f bset #0,%d0 | Sticky bit. | Check the lower lword 1: tst.l (%a0) jeq fp_ns_round clr (%a0) bset #0,%d0 | Sticky bit. jra fp_ns_round | Sorry, the number is just too small. 2: clr.l (%a0)+ clr.l (%a0) moveq #1,%d0 | Smallest possible fraction, jra fp_ns_round | round as desired. | Exponent overflow. Just call it infinity. fp_ns_large: tst.b (3,%a0) jeq 1f fp_set_sr FPSR_EXC_INEX2 1: fp_set_sr FPSR_EXC_OVFL move.w (FPD_RND,FPDATA),%d2 jne 3f | %d2 = 0 round to nearest 1: move.w #0x7fff,(-2,%a0) clr.l (%a0)+ clr.l (%a0) 2: subq.l #8,%a0 printf PNORM,"%p(",1,%a0 printx PNORM,%a0@ printf PNORM,")\n" rts 3: subq.w #2,%d2 jcs 5f | %d2 < 2, round to zero jhi 4f | %d2 > 2, round to +infinity tst.b (-3,%a0) | to -inf jne 1b jra 5f 4: tst.b (-3,%a0) | to +inf jeq 1b 5: move.w #0x407e,(-2,%a0) move.l #0xffffff00,(%a0)+ clr.l (%a0) jra 2b | zero and denormalized fp_ns_zero: tst.l (%a0)+ jne 1f tst.l (%a0) jne 1f subq.l #8,%a0 printf PNORM,"%p(",1,%a0 printx PNORM,%a0@ printf PNORM,")\n" rts | zero. nothing to do. | These are not merely subnormal numbers, but true denormals, | i.e. pathologically small (exponent is 2**-16383) numbers. | It is clearly impossible for even a normal extended number | with that exponent to fit into single precision, so just | write these ones off as "too darn small". 1: fp_set_sr FPSR_EXC_UNFL | Set UNFL bit clr.l (%a0) clr.l -(%a0) move.w #0x3f81,-(%a0) | i.e. 2**-126 addq.l #6,%a0 moveq #1,%d0 jra fp_ns_round | round. | Infinities or NaNs fp_ns_huge: subq.l #4,%a0 printf PNORM,"%p(",1,%a0 printx PNORM,%a0@ printf PNORM,")\n" rts | fp_normalize_single_fast: | normalize an extended with single (23-bit) precision | this is only used by fsgldiv/fsgdlmul, where the | operand is not completly normalized. | args: %a0 (struct fp_ext *) fp_normalize_single_fast: printf PNORM,"nsf: %p(",1,%a0 printx PNORM,%a0@ printf PNORM,") " addq.l #2,%a0 move.w (%a0)+,%d2 cmp.w #0x7fff,%d2 jeq fp_nsf_huge | NaN / infinitive. move.l (%a0)+,%d0 | get high lword of mantissa fp_nsf_round: tst.l (%a0) | check the low lword jeq 1f | Set a sticky bit if it is non-zero. This should only | affect the rounding in what would otherwise be equal- | distance situations, which is what we want it to do. bset #0,%d0 1: clr.l (%a0) | zap it from memory. | now, round off the low 8 bits of the hi lword. tst.b %d0 | 8 low bits. jne fp_nsf_checkround | Are they non-zero? | nothing to do here subq.l #8,%a0 printf PNORM,"%p(",1,%a0 printx PNORM,%a0@ printf PNORM,")\n" rts fp_nsf_checkround: fp_set_sr FPSR_EXC_INEX2 | INEX2 bit clr.b -(%a0) | clear low byte of high lword subq.l #3,%a0 move.w (FPD_RND,FPDATA),%d2 | rounding mode jne 2f | %d2 == 0, round to nearest tst.b %d0 | test guard bit jpl 9f | zero is closer btst #8,%d0 | test lsb bit | round to even behaviour, see above. jne fp_nsf_doroundup | round to infinity lsl.b #1,%d0 | check low bits jeq 9f | round to zero fp_nsf_doroundup: | round (the mantissa, that is) towards infinity add.l #0x100,(%a0) jcc 9f | no overflow, good. | Overflow. This means that the %d1 was 0xffffff00, so it | is now zero. We will set the mantissa to reflect this, and | increment the exponent (checking for overflow there too) move.w #0x8000,(%a0) addq.w #1,-(%a0) cmp.w #0x407f,(%a0)+ | exponent now overflown? jeq fp_nsf_large | yes, so make it infinity. 9: subq.l #4,%a0 printf PNORM,"%p(",1,%a0 printx PNORM,%a0@ printf PNORM,")\n" rts | check nondefault rounding modes 2: subq.w #2,%d2 jcs 9b | %d2 < 2, round to zero jhi 3f | %d2 > 2, round to +infinity tst.b (-3,%a0) | to -inf jne fp_nsf_doroundup | negative, round to infinity jra 9b | positive, round to zero 3: tst.b (-3,%a0) | to +inf jeq fp_nsf_doroundup | positive, round to infinity jra 9b | negative, round to zero | Exponent overflow. Just call it infinity. fp_nsf_large: tst.b (3,%a0) jeq 1f fp_set_sr FPSR_EXC_INEX2 1: fp_set_sr FPSR_EXC_OVFL move.w (FPD_RND,FPDATA),%d2 jne 3f | %d2 = 0 round to nearest 1: move.w #0x7fff,(-2,%a0) clr.l (%a0)+ clr.l (%a0) 2: subq.l #8,%a0 printf PNORM,"%p(",1,%a0 printx PNORM,%a0@ printf PNORM,")\n" rts 3: subq.w #2,%d2 jcs 5f | %d2 < 2, round to zero jhi 4f | %d2 > 2, round to +infinity tst.b (-3,%a0) | to -inf jne 1b jra 5f 4: tst.b (-3,%a0) | to +inf jeq 1b 5: move.w #0x407e,(-2,%a0) move.l #0xffffff00,(%a0)+ clr.l (%a0) jra 2b | Infinities or NaNs fp_nsf_huge: subq.l #4,%a0 printf PNORM,"%p(",1,%a0 printx PNORM,%a0@ printf PNORM,")\n" rts | conv_ext2int (macro): | Generates a subroutine that converts an extended value to an | integer of a given size, again, with the appropriate type of | rounding. | Macro arguments: | s: size, as given in an assembly instruction. | b: number of bits in that size. | Subroutine arguments: | %a0: source (struct fp_ext *) | Returns the integer in %d0 (like it should) .macro conv_ext2int s,b .set inf,(1<<(\b-1))-1 | i.e. MAXINT printf PCONV,"e2i%d: %p(",2,#\b,%a0 printx PCONV,%a0@ printf PCONV,") " addq.l #2,%a0 move.w (%a0)+,%d2 | exponent jeq fp_e2i_zero\b | zero / denorm (== 0, here) cmp.w #0x7fff,%d2 jeq fp_e2i_huge\b | Inf / NaN sub.w #0x3ffe,%d2 jcs fp_e2i_small\b cmp.w #\b,%d2 jhi fp_e2i_large\b move.l (%a0),%d0 move.l %d0,%d1 lsl.l %d2,%d1 jne fp_e2i_round\b tst.l (4,%a0) jne fp_e2i_round\b neg.w %d2 add.w #32,%d2 lsr.l %d2,%d0 9: tst.w (-4,%a0) jne 1f tst.\s %d0 jmi fp_e2i_large\b printf PCONV,"-> %p\n",1,%d0 rts 1: neg.\s %d0 jeq 1f jpl fp_e2i_large\b 1: printf PCONV,"-> %p\n",1,%d0 rts fp_e2i_round\b: fp_set_sr FPSR_EXC_INEX2 | INEX2 bit neg.w %d2 add.w #32,%d2 .if \b>16 jeq 5f .endif lsr.l %d2,%d0 move.w (FPD_RND,FPDATA),%d2 | rounding mode jne 2f | %d2 == 0, round to nearest tst.l %d1 | test guard bit jpl 9b | zero is closer btst %d2,%d0 | test lsb bit (%d2 still 0) jne fp_e2i_doroundup\b lsl.l #1,%d1 | check low bits jne fp_e2i_doroundup\b tst.l (4,%a0) jeq 9b fp_e2i_doroundup\b: addq.l #1,%d0 jra 9b | check nondefault rounding modes 2: subq.w #2,%d2 jcs 9b | %d2 < 2, round to zero jhi 3f | %d2 > 2, round to +infinity tst.w (-4,%a0) | to -inf jne fp_e2i_doroundup\b | negative, round to infinity jra 9b | positive, round to zero 3: tst.w (-4,%a0) | to +inf jeq fp_e2i_doroundup\b | positive, round to infinity jra 9b | negative, round to zero | we are only want -2**127 get correctly rounded here, | since the guard bit is in the lower lword. | everything else ends up anyway as overflow. .if \b>16 5: move.w (FPD_RND,FPDATA),%d2 | rounding mode jne 2b | %d2 == 0, round to nearest move.l (4,%a0),%d1 | test guard bit jpl 9b | zero is closer lsl.l #1,%d1 | check low bits jne fp_e2i_doroundup\b jra 9b .endif fp_e2i_zero\b: clr.l %d0 tst.l (%a0)+ jne 1f tst.l (%a0) jeq 3f 1: subq.l #4,%a0 fp_clr_sr FPSR_EXC_UNFL | fp_normalize_ext has set this bit fp_e2i_small\b: fp_set_sr FPSR_EXC_INEX2 clr.l %d0 move.w (FPD_RND,FPDATA),%d2 | rounding mode subq.w #2,%d2 jcs 3f | %d2 < 2, round to nearest/zero jhi 2f | %d2 > 2, round to +infinity tst.w (-4,%a0) | to -inf jeq 3f subq.\s #1,%d0 jra 3f 2: tst.w (-4,%a0) | to +inf jne 3f addq.\s #1,%d0 3: printf PCONV,"-> %p\n",1,%d0 rts fp_e2i_large\b: fp_set_sr FPSR_EXC_OPERR move.\s #inf,%d0 tst.w (-4,%a0) jeq 1f addq.\s #1,%d0 1: printf PCONV,"-> %p\n",1,%d0 rts fp_e2i_huge\b: move.\s (%a0),%d0 tst.l (%a0) jne 1f tst.l (%a0) jeq fp_e2i_large\b | fp_normalize_ext has set this bit already | and made the number nonsignaling 1: fp_tst_sr FPSR_EXC_SNAN jne 1f fp_set_sr FPSR_EXC_OPERR 1: printf PCONV,"-> %p\n",1,%d0 rts .endm fp_conv_ext2long: conv_ext2int l,32 fp_conv_ext2short: conv_ext2int w,16 fp_conv_ext2byte: conv_ext2int b,8 fp_conv_ext2double: jsr fp_normalize_double printf PCONV,"e2d: %p(",1,%a0 printx PCONV,%a0@ printf PCONV,"), " move.l (%a0)+,%d2 cmp.w #0x7fff,%d2 jne 1f move.w #0x7ff,%d2 move.l (%a0)+,%d0 jra 2f 1: sub.w #0x3fff-0x3ff,%d2 move.l (%a0)+,%d0 jmi 2f clr.w %d2 2: lsl.w #5,%d2 lsl.l #7,%d2 lsl.l #8,%d2 move.l %d0,%d1 lsl.l #1,%d0 lsr.l #4,%d0 lsr.l #8,%d0 or.l %d2,%d0 putuser.l %d0,(%a1)+,fp_err_ua2,%a1 moveq #21,%d0 lsl.l %d0,%d1 move.l (%a0),%d0 lsr.l #4,%d0 lsr.l #7,%d0 or.l %d1,%d0 putuser.l %d0,(%a1),fp_err_ua2,%a1 #ifdef FPU_EMU_DEBUG getuser.l %a1@(-4),%d0,fp_err_ua2,%a1 getuser.l %a1@(0),%d1,fp_err_ua2,%a1 printf PCONV,"%p(%08x%08x)\n",3,%a1,%d0,%d1 #endif rts fp_conv_ext2single: jsr fp_normalize_single printf PCONV,"e2s: %p(",1,%a0 printx PCONV,%a0@ printf PCONV,"), " move.l (%a0)+,%d1 cmp.w #0x7fff,%d1 jne 1f move.w #0xff,%d1 move.l (%a0)+,%d0 jra 2f 1: sub.w #0x3fff-0x7f,%d1 move.l (%a0)+,%d0 jmi 2f clr.w %d1 2: lsl.w #8,%d1 lsl.l #7,%d1 lsl.l #8,%d1 bclr #31,%d0 lsr.l #8,%d0 or.l %d1,%d0 printf PCONV,"%08x\n",1,%d0 rts | special return addresses for instr that | encode the rounding precision in the opcode | (e.g. fsmove,fdmove) fp_finalrounding_single: addq.l #8,%sp jsr fp_normalize_ext jsr fp_normalize_single jra fp_finaltest fp_finalrounding_single_fast: addq.l #8,%sp jsr fp_normalize_ext jsr fp_normalize_single_fast jra fp_finaltest fp_finalrounding_double: addq.l #8,%sp jsr fp_normalize_ext jsr fp_normalize_double jra fp_finaltest | fp_finaltest: | set the emulated status register based on the outcome of an | emulated instruction. fp_finalrounding: addq.l #8,%sp | printf ,"f: %p\n",1,%a0 jsr fp_normalize_ext move.w (FPD_PREC,FPDATA),%d0 subq.w #1,%d0 jcs fp_finaltest jne 1f jsr fp_normalize_single jra 2f 1: jsr fp_normalize_double 2:| printf ,"f: %p\n",1,%a0 fp_finaltest: | First, we do some of the obvious tests for the exception | status byte and condition code bytes of fp_sr here, so that | they do not have to be handled individually by every | emulated instruction. clr.l %d0 addq.l #1,%a0 tst.b (%a0)+ | sign jeq 1f bset #FPSR_CC_NEG-24,%d0 | N bit 1: cmp.w #0x7fff,(%a0)+ | exponent jeq 2f | test for zero moveq #FPSR_CC_Z-24,%d1 tst.l (%a0)+ jne 9f tst.l (%a0) jne 9f jra 8f | infinitiv and NAN 2: moveq #FPSR_CC_NAN-24,%d1 move.l (%a0)+,%d2 lsl.l #1,%d2 | ignore high bit jne 8f tst.l (%a0) jne 8f moveq #FPSR_CC_INF-24,%d1 8: bset %d1,%d0 9: move.b %d0,(FPD_FPSR+0,FPDATA) | set condition test result | move instructions enter here | Here, we test things in the exception status byte, and set | other things in the accrued exception byte accordingly. | Emulated instructions can set various things in the former, | as defined in fp_emu.h. fp_final: move.l (FPD_FPSR,FPDATA),%d0 #if 0 btst #FPSR_EXC_SNAN,%d0 | EXC_SNAN jne 1f btst #FPSR_EXC_OPERR,%d0 | EXC_OPERR jeq 2f 1: bset #FPSR_AEXC_IOP,%d0 | set IOP bit 2: btst #FPSR_EXC_OVFL,%d0 | EXC_OVFL jeq 1f bset #FPSR_AEXC_OVFL,%d0 | set OVFL bit 1: btst #FPSR_EXC_UNFL,%d0 | EXC_UNFL jeq 1f btst #FPSR_EXC_INEX2,%d0 | EXC_INEX2 jeq 1f bset #FPSR_AEXC_UNFL,%d0 | set UNFL bit 1: btst #FPSR_EXC_DZ,%d0 | EXC_INEX1 jeq 1f bset #FPSR_AEXC_DZ,%d0 | set DZ bit 1: btst #FPSR_EXC_OVFL,%d0 | EXC_OVFL jne 1f btst #FPSR_EXC_INEX2,%d0 | EXC_INEX2 jne 1f btst #FPSR_EXC_INEX1,%d0 | EXC_INEX1 jeq 2f 1: bset #FPSR_AEXC_INEX,%d0 | set INEX bit 2: move.l %d0,(FPD_FPSR,FPDATA) #else | same as above, greatly optimized, but untested (yet) move.l %d0,%d2 lsr.l #5,%d0 move.l %d0,%d1 lsr.l #4,%d1 or.l %d0,%d1 and.b #0x08,%d1 move.l %d2,%d0 lsr.l #6,%d0 or.l %d1,%d0 move.l %d2,%d1 lsr.l #4,%d1 or.b #0xdf,%d1 and.b %d1,%d0 move.l %d2,%d1 lsr.l #7,%d1 and.b #0x80,%d1 or.b %d1,%d0 and.b #0xf8,%d0 or.b %d0,%d2 move.l %d2,(FPD_FPSR,FPDATA) #endif move.b (FPD_FPSR+2,FPDATA),%d0 and.b (FPD_FPCR+2,FPDATA),%d0 jeq 1f printf ,"send signal!!!\n" 1: jra fp_end |