Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 | #include <asm/delay.h> #include <asm/arch/irq.h> #include <asm/arch/hwregs/intr_vect.h> #include <asm/arch/hwregs/intr_vect_defs.h> #include <asm/tlbflush.h> #include <asm/mmu_context.h> #include <asm/arch/hwregs/mmu_defs_asm.h> #include <asm/arch/hwregs/supp_reg.h> #include <asm/atomic.h> #include <linux/err.h> #include <linux/init.h> #include <linux/timex.h> #include <linux/sched.h> #include <linux/kernel.h> #include <linux/cpumask.h> #include <linux/interrupt.h> #define IPI_SCHEDULE 1 #define IPI_CALL 2 #define IPI_FLUSH_TLB 4 #define FLUSH_ALL (void*)0xffffffff /* Vector of locks used for various atomic operations */ spinlock_t cris_atomic_locks[] = { [0 ... LOCK_COUNT - 1] = SPIN_LOCK_UNLOCKED}; /* CPU masks */ cpumask_t cpu_online_map = CPU_MASK_NONE; cpumask_t phys_cpu_present_map = CPU_MASK_NONE; /* Variables used during SMP boot */ volatile int cpu_now_booting = 0; volatile struct thread_info *smp_init_current_idle_thread; /* Variables used during IPI */ static DEFINE_SPINLOCK(call_lock); static DEFINE_SPINLOCK(tlbstate_lock); struct call_data_struct { void (*func) (void *info); void *info; int wait; }; static struct call_data_struct * call_data; static struct mm_struct* flush_mm; static struct vm_area_struct* flush_vma; static unsigned long flush_addr; extern int setup_irq(int, struct irqaction *); /* Mode registers */ static unsigned long irq_regs[NR_CPUS] = { regi_irq, regi_irq2 }; static irqreturn_t crisv32_ipi_interrupt(int irq, void *dev_id, struct pt_regs *regs); static int send_ipi(int vector, int wait, cpumask_t cpu_mask); static struct irqaction irq_ipi = { crisv32_ipi_interrupt, SA_INTERRUPT, CPU_MASK_NONE, "ipi", NULL, NULL}; extern void cris_mmu_init(void); extern void cris_timer_init(void); /* SMP initialization */ void __init smp_prepare_cpus(unsigned int max_cpus) { int i; /* From now on we can expect IPIs so set them up */ setup_irq(IPI_INTR_VECT, &irq_ipi); /* Mark all possible CPUs as present */ for (i = 0; i < max_cpus; i++) cpu_set(i, phys_cpu_present_map); } void __devinit smp_prepare_boot_cpu(void) { /* PGD pointer has moved after per_cpu initialization so * update the MMU. */ pgd_t **pgd; pgd = (pgd_t**)&per_cpu(current_pgd, smp_processor_id()); SUPP_BANK_SEL(1); SUPP_REG_WR(RW_MM_TLB_PGD, pgd); SUPP_BANK_SEL(2); SUPP_REG_WR(RW_MM_TLB_PGD, pgd); cpu_set(0, cpu_online_map); cpu_set(0, phys_cpu_present_map); } void __init smp_cpus_done(unsigned int max_cpus) { } /* Bring one cpu online.*/ static int __init smp_boot_one_cpu(int cpuid) { unsigned timeout; struct task_struct *idle; idle = fork_idle(cpuid); if (IS_ERR(idle)) panic("SMP: fork failed for CPU:%d", cpuid); idle->thread_info->cpu = cpuid; /* Information to the CPU that is about to boot */ smp_init_current_idle_thread = idle->thread_info; cpu_now_booting = cpuid; /* Wait for CPU to come online */ for (timeout = 0; timeout < 10000; timeout++) { if(cpu_online(cpuid)) { cpu_now_booting = 0; smp_init_current_idle_thread = NULL; return 0; /* CPU online */ } udelay(100); barrier(); } put_task_struct(idle); idle = NULL; printk(KERN_CRIT "SMP: CPU:%d is stuck.\n", cpuid); return -1; } /* Secondary CPUs starts uing C here. Here we need to setup CPU * specific stuff such as the local timer and the MMU. */ void __init smp_callin(void) { extern void cpu_idle(void); int cpu = cpu_now_booting; reg_intr_vect_rw_mask vect_mask = {0}; /* Initialise the idle task for this CPU */ atomic_inc(&init_mm.mm_count); current->active_mm = &init_mm; /* Set up MMU */ cris_mmu_init(); __flush_tlb_all(); /* Setup local timer. */ cris_timer_init(); /* Enable IRQ and idle */ REG_WR(intr_vect, irq_regs[cpu], rw_mask, vect_mask); unmask_irq(IPI_INTR_VECT); unmask_irq(TIMER_INTR_VECT); local_irq_enable(); cpu_set(cpu, cpu_online_map); cpu_idle(); } /* Stop execution on this CPU.*/ void stop_this_cpu(void* dummy) { local_irq_disable(); asm volatile("halt"); } /* Other calls */ void smp_send_stop(void) { smp_call_function(stop_this_cpu, NULL, 1, 0); } int setup_profiling_timer(unsigned int multiplier) { return -EINVAL; } /* cache_decay_ticks is used by the scheduler to decide if a process * is "hot" on one CPU. A higher value means a higher penalty to move * a process to another CPU. Our cache is rather small so we report * 1 tick. */ unsigned long cache_decay_ticks = 1; int __devinit __cpu_up(unsigned int cpu) { smp_boot_one_cpu(cpu); return cpu_online(cpu) ? 0 : -ENOSYS; } void smp_send_reschedule(int cpu) { cpumask_t cpu_mask = CPU_MASK_NONE; cpu_set(cpu, cpu_mask); send_ipi(IPI_SCHEDULE, 0, cpu_mask); } /* TLB flushing * * Flush needs to be done on the local CPU and on any other CPU that * may have the same mapping. The mm->cpu_vm_mask is used to keep track * of which CPUs that a specific process has been executed on. */ void flush_tlb_common(struct mm_struct* mm, struct vm_area_struct* vma, unsigned long addr) { unsigned long flags; cpumask_t cpu_mask; spin_lock_irqsave(&tlbstate_lock, flags); cpu_mask = (mm == FLUSH_ALL ? CPU_MASK_ALL : mm->cpu_vm_mask); cpu_clear(smp_processor_id(), cpu_mask); flush_mm = mm; flush_vma = vma; flush_addr = addr; send_ipi(IPI_FLUSH_TLB, 1, cpu_mask); spin_unlock_irqrestore(&tlbstate_lock, flags); } void flush_tlb_all(void) { __flush_tlb_all(); flush_tlb_common(FLUSH_ALL, FLUSH_ALL, 0); } void flush_tlb_mm(struct mm_struct *mm) { __flush_tlb_mm(mm); flush_tlb_common(mm, FLUSH_ALL, 0); /* No more mappings in other CPUs */ cpus_clear(mm->cpu_vm_mask); cpu_set(smp_processor_id(), mm->cpu_vm_mask); } void flush_tlb_page(struct vm_area_struct *vma, unsigned long addr) { __flush_tlb_page(vma, addr); flush_tlb_common(vma->vm_mm, vma, addr); } /* Inter processor interrupts * * The IPIs are used for: * * Force a schedule on a CPU * * FLush TLB on other CPUs * * Call a function on other CPUs */ int send_ipi(int vector, int wait, cpumask_t cpu_mask) { int i = 0; reg_intr_vect_rw_ipi ipi = REG_RD(intr_vect, irq_regs[i], rw_ipi); int ret = 0; /* Calculate CPUs to send to. */ cpus_and(cpu_mask, cpu_mask, cpu_online_map); /* Send the IPI. */ for_each_cpu_mask(i, cpu_mask) { ipi.vector |= vector; REG_WR(intr_vect, irq_regs[i], rw_ipi, ipi); } /* Wait for IPI to finish on other CPUS */ if (wait) { for_each_cpu_mask(i, cpu_mask) { int j; for (j = 0 ; j < 1000; j++) { ipi = REG_RD(intr_vect, irq_regs[i], rw_ipi); if (!ipi.vector) break; udelay(100); } /* Timeout? */ if (ipi.vector) { printk("SMP call timeout from %d to %d\n", smp_processor_id(), i); ret = -ETIMEDOUT; dump_stack(); } } } return ret; } /* * You must not call this function with disabled interrupts or from a * hardware interrupt handler or from a bottom half handler. */ int smp_call_function(void (*func)(void *info), void *info, int nonatomic, int wait) { cpumask_t cpu_mask = CPU_MASK_ALL; struct call_data_struct data; int ret; cpu_clear(smp_processor_id(), cpu_mask); WARN_ON(irqs_disabled()); data.func = func; data.info = info; data.wait = wait; spin_lock(&call_lock); call_data = &data; ret = send_ipi(IPI_CALL, wait, cpu_mask); spin_unlock(&call_lock); return ret; } irqreturn_t crisv32_ipi_interrupt(int irq, void *dev_id, struct pt_regs *regs) { void (*func) (void *info) = call_data->func; void *info = call_data->info; reg_intr_vect_rw_ipi ipi; ipi = REG_RD(intr_vect, irq_regs[smp_processor_id()], rw_ipi); if (ipi.vector & IPI_CALL) { func(info); } if (ipi.vector & IPI_FLUSH_TLB) { if (flush_mm == FLUSH_ALL) __flush_tlb_all(); else if (flush_vma == FLUSH_ALL) __flush_tlb_mm(flush_mm); else __flush_tlb_page(flush_vma, flush_addr); } ipi.vector = 0; REG_WR(intr_vect, irq_regs[smp_processor_id()], rw_ipi, ipi); return IRQ_HANDLED; } |