Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 | <?xml version="1.0" encoding="UTF-8"?> <!DOCTYPE book PUBLIC "-//OASIS//DTD DocBook XML V4.1.2//EN" "http://www.oasis-open.org/docbook/xml/4.1.2/docbookx.dtd" []> <book id="MTD-NAND-Guide"> <bookinfo> <title>MTD NAND Driver Programming Interface</title> <authorgroup> <author> <firstname>Thomas</firstname> <surname>Gleixner</surname> <affiliation> <address> <email>tglx@linutronix.de</email> </address> </affiliation> </author> </authorgroup> <copyright> <year>2004</year> <holder>Thomas Gleixner</holder> </copyright> <legalnotice> <para> This documentation is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License version 2 as published by the Free Software Foundation. </para> <para> This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. </para> <para> You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA </para> <para> For more details see the file COPYING in the source distribution of Linux. </para> </legalnotice> </bookinfo> <toc></toc> <chapter id="intro"> <title>Introduction</title> <para> The generic NAND driver supports almost all NAND and AG-AND based chips and connects them to the Memory Technology Devices (MTD) subsystem of the Linux Kernel. </para> <para> This documentation is provided for developers who want to implement board drivers or filesystem drivers suitable for NAND devices. </para> </chapter> <chapter id="bugs"> <title>Known Bugs And Assumptions</title> <para> None. </para> </chapter> <chapter id="dochints"> <title>Documentation hints</title> <para> The function and structure docs are autogenerated. Each function and struct member has a short description which is marked with an [XXX] identifier. The following chapters explain the meaning of those identifiers. </para> <sect1> <title>Function identifiers [XXX]</title> <para> The functions are marked with [XXX] identifiers in the short comment. The identifiers explain the usage and scope of the functions. Following identifiers are used: </para> <itemizedlist> <listitem><para> [MTD Interface]</para><para> These functions provide the interface to the MTD kernel API. They are not replacable and provide functionality which is complete hardware independent. </para></listitem> <listitem><para> [NAND Interface]</para><para> These functions are exported and provide the interface to the NAND kernel API. </para></listitem> <listitem><para> [GENERIC]</para><para> Generic functions are not replacable and provide functionality which is complete hardware independent. </para></listitem> <listitem><para> [DEFAULT]</para><para> Default functions provide hardware related functionality which is suitable for most of the implementations. These functions can be replaced by the board driver if neccecary. Those functions are called via pointers in the NAND chip description structure. The board driver can set the functions which should be replaced by board dependend functions before calling nand_scan(). If the function pointer is NULL on entry to nand_scan() then the pointer is set to the default function which is suitable for the detected chip type. </para></listitem> </itemizedlist> </sect1> <sect1> <title>Struct member identifiers [XXX]</title> <para> The struct members are marked with [XXX] identifiers in the comment. The identifiers explain the usage and scope of the members. Following identifiers are used: </para> <itemizedlist> <listitem><para> [INTERN]</para><para> These members are for NAND driver internal use only and must not be modified. Most of these values are calculated from the chip geometry information which is evaluated during nand_scan(). </para></listitem> <listitem><para> [REPLACEABLE]</para><para> Replaceable members hold hardware related functions which can be provided by the board driver. The board driver can set the functions which should be replaced by board dependend functions before calling nand_scan(). If the function pointer is NULL on entry to nand_scan() then the pointer is set to the default function which is suitable for the detected chip type. </para></listitem> <listitem><para> [BOARDSPECIFIC]</para><para> Board specific members hold hardware related information which must be provided by the board driver. The board driver must set the function pointers and datafields before calling nand_scan(). </para></listitem> <listitem><para> [OPTIONAL]</para><para> Optional members can hold information relevant for the board driver. The generic NAND driver code does not use this information. </para></listitem> </itemizedlist> </sect1> </chapter> <chapter id="basicboarddriver"> <title>Basic board driver</title> <para> For most boards it will be sufficient to provide just the basic functions and fill out some really board dependend members in the nand chip description structure. See drivers/mtd/nand/skeleton for reference. </para> <sect1> <title>Basic defines</title> <para> At least you have to provide a mtd structure and a storage for the ioremap'ed chip address. You can allocate the mtd structure using kmalloc or you can allocate it statically. In case of static allocation you have to allocate a nand_chip structure too. </para> <para> Kmalloc based example </para> <programlisting> static struct mtd_info *board_mtd; static unsigned long baseaddr; </programlisting> <para> Static example </para> <programlisting> static struct mtd_info board_mtd; static struct nand_chip board_chip; static unsigned long baseaddr; </programlisting> </sect1> <sect1> <title>Partition defines</title> <para> If you want to divide your device into parititions, then enable the configuration switch CONFIG_MTD_PARITIONS and define a paritioning scheme suitable to your board. </para> <programlisting> #define NUM_PARTITIONS 2 static struct mtd_partition partition_info[] = { { .name = "Flash partition 1", .offset = 0, .size = 8 * 1024 * 1024 }, { .name = "Flash partition 2", .offset = MTDPART_OFS_NEXT, .size = MTDPART_SIZ_FULL }, }; </programlisting> </sect1> <sect1> <title>Hardware control function</title> <para> The hardware control function provides access to the control pins of the NAND chip(s). The access can be done by GPIO pins or by address lines. If you use address lines, make sure that the timing requirements are met. </para> <para> <emphasis>GPIO based example</emphasis> </para> <programlisting> static void board_hwcontrol(struct mtd_info *mtd, int cmd) { switch(cmd){ case NAND_CTL_SETCLE: /* Set CLE pin high */ break; case NAND_CTL_CLRCLE: /* Set CLE pin low */ break; case NAND_CTL_SETALE: /* Set ALE pin high */ break; case NAND_CTL_CLRALE: /* Set ALE pin low */ break; case NAND_CTL_SETNCE: /* Set nCE pin low */ break; case NAND_CTL_CLRNCE: /* Set nCE pin high */ break; } } </programlisting> <para> <emphasis>Address lines based example.</emphasis> It's assumed that the nCE pin is driven by a chip select decoder. </para> <programlisting> static void board_hwcontrol(struct mtd_info *mtd, int cmd) { struct nand_chip *this = (struct nand_chip *) mtd->priv; switch(cmd){ case NAND_CTL_SETCLE: this->IO_ADDR_W |= CLE_ADRR_BIT; break; case NAND_CTL_CLRCLE: this->IO_ADDR_W &= ~CLE_ADRR_BIT; break; case NAND_CTL_SETALE: this->IO_ADDR_W |= ALE_ADRR_BIT; break; case NAND_CTL_CLRALE: this->IO_ADDR_W &= ~ALE_ADRR_BIT; break; } } </programlisting> </sect1> <sect1> <title>Device ready function</title> <para> If the hardware interface has the ready busy pin of the NAND chip connected to a GPIO or other accesible I/O pin, this function is used to read back the state of the pin. The function has no arguments and should return 0, if the device is busy (R/B pin is low) and 1, if the device is ready (R/B pin is high). If the hardware interface does not give access to the ready busy pin, then the function must not be defined and the function pointer this->dev_ready is set to NULL. </para> </sect1> <sect1> <title>Init function</title> <para> The init function allocates memory and sets up all the board specific parameters and function pointers. When everything is set up nand_scan() is called. This function tries to detect and identify then chip. If a chip is found all the internal data fields are initialized accordingly. The structure(s) have to be zeroed out first and then filled with the neccecary information about the device. </para> <programlisting> int __init board_init (void) { struct nand_chip *this; int err = 0; /* Allocate memory for MTD device structure and private data */ board_mtd = kmalloc (sizeof(struct mtd_info) + sizeof (struct nand_chip), GFP_KERNEL); if (!board_mtd) { printk ("Unable to allocate NAND MTD device structure.\n"); err = -ENOMEM; goto out; } /* Initialize structures */ memset ((char *) board_mtd, 0, sizeof(struct mtd_info) + sizeof(struct nand_chip)); /* map physical adress */ baseaddr = (unsigned long)ioremap(CHIP_PHYSICAL_ADDRESS, 1024); if(!baseaddr){ printk("Ioremap to access NAND chip failed\n"); err = -EIO; goto out_mtd; } /* Get pointer to private data */ this = (struct nand_chip *) (); /* Link the private data with the MTD structure */ board_mtd->priv = this; /* Set address of NAND IO lines */ this->IO_ADDR_R = baseaddr; this->IO_ADDR_W = baseaddr; /* Reference hardware control function */ this->hwcontrol = board_hwcontrol; /* Set command delay time, see datasheet for correct value */ this->chip_delay = CHIP_DEPENDEND_COMMAND_DELAY; /* Assign the device ready function, if available */ this->dev_ready = board_dev_ready; this->eccmode = NAND_ECC_SOFT; /* Scan to find existance of the device */ if (nand_scan (board_mtd, 1)) { err = -ENXIO; goto out_ior; } add_mtd_partitions(board_mtd, partition_info, NUM_PARTITIONS); goto out; out_ior: iounmap((void *)baseaddr); out_mtd: kfree (board_mtd); out: return err; } module_init(board_init); </programlisting> </sect1> <sect1> <title>Exit function</title> <para> The exit function is only neccecary if the driver is compiled as a module. It releases all resources which are held by the chip driver and unregisters the partitions in the MTD layer. </para> <programlisting> #ifdef MODULE static void __exit board_cleanup (void) { /* Release resources, unregister device */ nand_release (board_mtd); /* unmap physical adress */ iounmap((void *)baseaddr); /* Free the MTD device structure */ kfree (board_mtd); } module_exit(board_cleanup); #endif </programlisting> </sect1> </chapter> <chapter id="boarddriversadvanced"> <title>Advanced board driver functions</title> <para> This chapter describes the advanced functionality of the NAND driver. For a list of functions which can be overridden by the board driver see the documentation of the nand_chip structure. </para> <sect1> <title>Multiple chip control</title> <para> The nand driver can control chip arrays. Therefor the board driver must provide an own select_chip function. This function must (de)select the requested chip. The function pointer in the nand_chip structure must be set before calling nand_scan(). The maxchip parameter of nand_scan() defines the maximum number of chips to scan for. Make sure that the select_chip function can handle the requested number of chips. </para> <para> The nand driver concatenates the chips to one virtual chip and provides this virtual chip to the MTD layer. </para> <para> <emphasis>Note: The driver can only handle linear chip arrays of equally sized chips. There is no support for parallel arrays which extend the buswidth.</emphasis> </para> <para> <emphasis>GPIO based example</emphasis> </para> <programlisting> static void board_select_chip (struct mtd_info *mtd, int chip) { /* Deselect all chips, set all nCE pins high */ GPIO(BOARD_NAND_NCE) |= 0xff; if (chip >= 0) GPIO(BOARD_NAND_NCE) &= ~ (1 << chip); } </programlisting> <para> <emphasis>Address lines based example.</emphasis> Its assumed that the nCE pins are connected to an address decoder. </para> <programlisting> static void board_select_chip (struct mtd_info *mtd, int chip) { struct nand_chip *this = (struct nand_chip *) mtd->priv; /* Deselect all chips */ this->IO_ADDR_R &= ~BOARD_NAND_ADDR_MASK; this->IO_ADDR_W &= ~BOARD_NAND_ADDR_MASK; switch (chip) { case 0: this->IO_ADDR_R |= BOARD_NAND_ADDR_CHIP0; this->IO_ADDR_W |= BOARD_NAND_ADDR_CHIP0; break; .... case n: this->IO_ADDR_R |= BOARD_NAND_ADDR_CHIPn; this->IO_ADDR_W |= BOARD_NAND_ADDR_CHIPn; break; } } </programlisting> </sect1> <sect1> <title>Hardware ECC support</title> <sect2> <title>Functions and constants</title> <para> The nand driver supports three different types of hardware ECC. <itemizedlist> <listitem><para>NAND_ECC_HW3_256</para><para> Hardware ECC generator providing 3 bytes ECC per 256 byte. </para> </listitem> <listitem><para>NAND_ECC_HW3_512</para><para> Hardware ECC generator providing 3 bytes ECC per 512 byte. </para> </listitem> <listitem><para>NAND_ECC_HW6_512</para><para> Hardware ECC generator providing 6 bytes ECC per 512 byte. </para> </listitem> <listitem><para>NAND_ECC_HW8_512</para><para> Hardware ECC generator providing 6 bytes ECC per 512 byte. </para> </listitem> </itemizedlist> If your hardware generator has a different functionality add it at the appropriate place in nand_base.c </para> <para> The board driver must provide following functions: <itemizedlist> <listitem><para>enable_hwecc</para><para> This function is called before reading / writing to the chip. Reset or initialize the hardware generator in this function. The function is called with an argument which let you distinguish between read and write operations. </para> </listitem> <listitem><para>calculate_ecc</para><para> This function is called after read / write from / to the chip. Transfer the ECC from the hardware to the buffer. If the option NAND_HWECC_SYNDROME is set then the function is only called on write. See below. </para> </listitem> <listitem><para>correct_data</para><para> In case of an ECC error this function is called for error detection and correction. Return 1 respectively 2 in case the error can be corrected. If the error is not correctable return -1. If your hardware generator matches the default algorithm of the nand_ecc software generator then use the correction function provided by nand_ecc instead of implementing duplicated code. </para> </listitem> </itemizedlist> </para> </sect2> <sect2> <title>Hardware ECC with syndrome calculation</title> <para> Many hardware ECC implementations provide Reed-Solomon codes and calculate an error syndrome on read. The syndrome must be converted to a standard Reed-Solomon syndrome before calling the error correction code in the generic Reed-Solomon library. </para> <para> The ECC bytes must be placed immidiately after the data bytes in order to make the syndrome generator work. This is contrary to the usual layout used by software ECC. The seperation of data and out of band area is not longer possible. The nand driver code handles this layout and the remaining free bytes in the oob area are managed by the autoplacement code. Provide a matching oob-layout in this case. See rts_from4.c and diskonchip.c for implementation reference. In those cases we must also use bad block tables on FLASH, because the ECC layout is interferring with the bad block marker positions. See bad block table support for details. </para> </sect2> </sect1> <sect1> <title>Bad block table support</title> <para> Most NAND chips mark the bad blocks at a defined position in the spare area. Those blocks must not be erased under any circumstances as the bad block information would be lost. It is possible to check the bad block mark each time when the blocks are accessed by reading the spare area of the first page in the block. This is time consuming so a bad block table is used. </para> <para> The nand driver supports various types of bad block tables. <itemizedlist> <listitem><para>Per device</para><para> The bad block table contains all bad block information of the device which can consist of multiple chips. </para> </listitem> <listitem><para>Per chip</para><para> A bad block table is used per chip and contains the bad block information for this particular chip. </para> </listitem> <listitem><para>Fixed offset</para><para> The bad block table is located at a fixed offset in the chip (device). This applies to various DiskOnChip devices. </para> </listitem> <listitem><para>Automatic placed</para><para> The bad block table is automatically placed and detected either at the end or at the beginning of a chip (device) </para> </listitem> <listitem><para>Mirrored tables</para><para> The bad block table is mirrored on the chip (device) to allow updates of the bad block table without data loss. </para> </listitem> </itemizedlist> </para> <para> nand_scan() calls the function nand_default_bbt(). nand_default_bbt() selects appropriate default bad block table desriptors depending on the chip information which was retrieved by nand_scan(). </para> <para> The standard policy is scanning the device for bad blocks and build a ram based bad block table which allows faster access than always checking the bad block information on the flash chip itself. </para> <sect2> <title>Flash based tables</title> <para> It may be desired or neccecary to keep a bad block table in FLASH. For AG-AND chips this is mandatory, as they have no factory marked bad blocks. They have factory marked good blocks. The marker pattern is erased when the block is erased to be reused. So in case of powerloss before writing the pattern back to the chip this block would be lost and added to the bad blocks. Therefor we scan the chip(s) when we detect them the first time for good blocks and store this information in a bad block table before erasing any of the blocks. </para> <para> The blocks in which the tables are stored are procteted against accidental access by marking them bad in the memory bad block table. The bad block table managment functions are allowed to circumvernt this protection. </para> <para> The simplest way to activate the FLASH based bad block table support is to set the option NAND_USE_FLASH_BBT in the option field of the nand chip structure before calling nand_scan(). For AG-AND chips is this done by default. This activates the default FLASH based bad block table functionality of the NAND driver. The default bad block table options are <itemizedlist> <listitem><para>Store bad block table per chip</para></listitem> <listitem><para>Use 2 bits per block</para></listitem> <listitem><para>Automatic placement at the end of the chip</para></listitem> <listitem><para>Use mirrored tables with version numbers</para></listitem> <listitem><para>Reserve 4 blocks at the end of the chip</para></listitem> </itemizedlist> </para> </sect2> <sect2> <title>User defined tables</title> <para> User defined tables are created by filling out a nand_bbt_descr structure and storing the pointer in the nand_chip structure member bbt_td before calling nand_scan(). If a mirror table is neccecary a second structure must be created and a pointer to this structure must be stored in bbt_md inside the nand_chip structure. If the bbt_md member is set to NULL then only the main table is used and no scan for the mirrored table is performed. </para> <para> The most important field in the nand_bbt_descr structure is the options field. The options define most of the table properties. Use the predefined constants from nand.h to define the options. <itemizedlist> <listitem><para>Number of bits per block</para> <para>The supported number of bits is 1, 2, 4, 8.</para></listitem> <listitem><para>Table per chip</para> <para>Setting the constant NAND_BBT_PERCHIP selects that a bad block table is managed for each chip in a chip array. If this option is not set then a per device bad block table is used.</para></listitem> <listitem><para>Table location is absolute</para> <para>Use the option constant NAND_BBT_ABSPAGE and define the absolute page number where the bad block table starts in the field pages. If you have selected bad block tables per chip and you have a multi chip array then the start page must be given for each chip in the chip array. Note: there is no scan for a table ident pattern performed, so the fields pattern, veroffs, offs, len can be left uninitialized</para></listitem> <listitem><para>Table location is automatically detected</para> <para>The table can either be located in the first or the last good blocks of the chip (device). Set NAND_BBT_LASTBLOCK to place the bad block table at the end of the chip (device). The bad block tables are marked and identified by a pattern which is stored in the spare area of the first page in the block which holds the bad block table. Store a pointer to the pattern in the pattern field. Further the length of the pattern has to be stored in len and the offset in the spare area must be given in the offs member of the nand_bbt_descr stucture. For mirrored bad block tables different patterns are mandatory.</para></listitem> <listitem><para>Table creation</para> <para>Set the option NAND_BBT_CREATE to enable the table creation if no table can be found during the scan. Usually this is done only once if a new chip is found. </para></listitem> <listitem><para>Table write support</para> <para>Set the option NAND_BBT_WRITE to enable the table write support. This allows the update of the bad block table(s) in case a block has to be marked bad due to wear. The MTD interface function block_markbad is calling the update function of the bad block table. If the write support is enabled then the table is updated on FLASH.</para> <para> Note: Write support should only be enabled for mirrored tables with version control. </para></listitem> <listitem><para>Table version control</para> <para>Set the option NAND_BBT_VERSION to enable the table version control. It's highly recommended to enable this for mirrored tables with write support. It makes sure that the risk of loosing the bad block table information is reduced to the loss of the information about the one worn out block which should be marked bad. The version is stored in 4 consecutive bytes in the spare area of the device. The position of the version number is defined by the member veroffs in the bad block table descriptor.</para></listitem> <listitem><para>Save block contents on write</para> <para> In case that the block which holds the bad block table does contain other useful information, set the option NAND_BBT_SAVECONTENT. When the bad block table is written then the whole block is read the bad block table is updated and the block is erased and everything is written back. If this option is not set only the bad block table is written and everything else in the block is ignored and erased. </para></listitem> <listitem><para>Number of reserved blocks</para> <para> For automatic placement some blocks must be reserved for bad block table storage. The number of reserved blocks is defined in the maxblocks member of the babd block table description structure. Reserving 4 blocks for mirrored tables should be a reasonable number. This also limits the number of blocks which are scanned for the bad block table ident pattern. </para></listitem> </itemizedlist> </para> </sect2> </sect1> <sect1> <title>Spare area (auto)placement</title> <para> The nand driver implements different possibilities for placement of filesystem data in the spare area, <itemizedlist> <listitem><para>Placement defined by fs driver</para></listitem> <listitem><para>Automatic placement</para></listitem> </itemizedlist> The default placement function is automatic placement. The nand driver has built in default placement schemes for the various chiptypes. If due to hardware ECC functionality the default placement does not fit then the board driver can provide a own placement scheme. </para> <para> File system drivers can provide a own placement scheme which is used instead of the default placement scheme. </para> <para> Placement schemes are defined by a nand_oobinfo structure <programlisting> struct nand_oobinfo { int useecc; int eccbytes; int eccpos[24]; int oobfree[8][2]; }; </programlisting> <itemizedlist> <listitem><para>useecc</para><para> The useecc member controls the ecc and placement function. The header file include/mtd/mtd-abi.h contains constants to select ecc and placement. MTD_NANDECC_OFF switches off the ecc complete. This is not recommended and available for testing and diagnosis only. MTD_NANDECC_PLACE selects caller defined placement, MTD_NANDECC_AUTOPLACE selects automatic placement. </para></listitem> <listitem><para>eccbytes</para><para> The eccbytes member defines the number of ecc bytes per page. </para></listitem> <listitem><para>eccpos</para><para> The eccpos array holds the byte offsets in the spare area where the ecc codes are placed. </para></listitem> <listitem><para>oobfree</para><para> The oobfree array defines the areas in the spare area which can be used for automatic placement. The information is given in the format {offset, size}. offset defines the start of the usable area, size the length in bytes. More than one area can be defined. The list is terminated by an {0, 0} entry. </para></listitem> </itemizedlist> </para> <sect2> <title>Placement defined by fs driver</title> <para> The calling function provides a pointer to a nand_oobinfo structure which defines the ecc placement. For writes the caller must provide a spare area buffer along with the data buffer. The spare area buffer size is (number of pages) * (size of spare area). For reads the buffer size is (number of pages) * ((size of spare area) + (number of ecc steps per page) * sizeof (int)). The driver stores the result of the ecc check for each tuple in the spare buffer. The storage sequence is </para> <para> <spare data page 0><ecc result 0>...<ecc result n> </para> <para> ... </para> <para> <spare data page n><ecc result 0>...<ecc result n> </para> <para> This is a legacy mode used by YAFFS1. </para> <para> If the spare area buffer is NULL then only the ECC placement is done according to the given scheme in the nand_oobinfo structure. </para> </sect2> <sect2> <title>Automatic placement</title> <para> Automatic placement uses the built in defaults to place the ecc bytes in the spare area. If filesystem data have to be stored / read into the spare area then the calling function must provide a buffer. The buffer size per page is determined by the oobfree array in the nand_oobinfo structure. </para> <para> If the spare area buffer is NULL then only the ECC placement is done according to the default builtin scheme. </para> </sect2> <sect2> <title>User space placement selection</title> <para> All non ecc functions like mtd->read and mtd->write use an internal structure, which can be set by an ioctl. This structure is preset to the autoplacement default. <programlisting> ioctl (fd, MEMSETOOBSEL, oobsel); </programlisting> oobsel is a pointer to a user supplied structure of type nand_oobconfig. The contents of this structure must match the criteria of the filesystem, which will be used. See an example in utils/nandwrite.c. </para> </sect2> </sect1> <sect1> <title>Spare area autoplacement default schemes</title> <sect2> <title>256 byte pagesize</title> <informaltable><tgroup cols="3"><tbody> <row> <entry>Offset</entry> <entry>Content</entry> <entry>Comment</entry> </row> <row> <entry>0x00</entry> <entry>ECC byte 0</entry> <entry>Error correction code byte 0</entry> </row> <row> <entry>0x01</entry> <entry>ECC byte 1</entry> <entry>Error correction code byte 1</entry> </row> <row> <entry>0x02</entry> <entry>ECC byte 2</entry> <entry>Error correction code byte 2</entry> </row> <row> <entry>0x03</entry> <entry>Autoplace 0</entry> <entry></entry> </row> <row> <entry>0x04</entry> <entry>Autoplace 1</entry> <entry></entry> </row> <row> <entry>0x05</entry> <entry>Bad block marker</entry> <entry>If any bit in this byte is zero, then this block is bad. This applies only to the first page in a block. In the remaining pages this byte is reserved</entry> </row> <row> <entry>0x06</entry> <entry>Autoplace 2</entry> <entry></entry> </row> <row> <entry>0x07</entry> <entry>Autoplace 3</entry> <entry></entry> </row> </tbody></tgroup></informaltable> </sect2> <sect2> <title>512 byte pagesize</title> <informaltable><tgroup cols="3"><tbody> <row> <entry>Offset</entry> <entry>Content</entry> <entry>Comment</entry> </row> <row> <entry>0x00</entry> <entry>ECC byte 0</entry> <entry>Error correction code byte 0 of the lower 256 Byte data in this page</entry> </row> <row> <entry>0x01</entry> <entry>ECC byte 1</entry> <entry>Error correction code byte 1 of the lower 256 Bytes of data in this page</entry> </row> <row> <entry>0x02</entry> <entry>ECC byte 2</entry> <entry>Error correction code byte 2 of the lower 256 Bytes of data in this page</entry> </row> <row> <entry>0x03</entry> <entry>ECC byte 3</entry> <entry>Error correction code byte 0 of the upper 256 Bytes of data in this page</entry> </row> <row> <entry>0x04</entry> <entry>reserved</entry> <entry>reserved</entry> </row> <row> <entry>0x05</entry> <entry>Bad block marker</entry> <entry>If any bit in this byte is zero, then this block is bad. This applies only to the first page in a block. In the remaining pages this byte is reserved</entry> </row> <row> <entry>0x06</entry> <entry>ECC byte 4</entry> <entry>Error correction code byte 1 of the upper 256 Bytes of data in this page</entry> </row> <row> <entry>0x07</entry> <entry>ECC byte 5</entry> <entry>Error correction code byte 2 of the upper 256 Bytes of data in this page</entry> </row> <row> <entry>0x08 - 0x0F</entry> <entry>Autoplace 0 - 7</entry> <entry></entry> </row> </tbody></tgroup></informaltable> </sect2> <sect2> <title>2048 byte pagesize</title> <informaltable><tgroup cols="3"><tbody> <row> <entry>Offset</entry> <entry>Content</entry> <entry>Comment</entry> </row> <row> <entry>0x00</entry> <entry>Bad block marker</entry> <entry>If any bit in this byte is zero, then this block is bad. This applies only to the first page in a block. In the remaining pages this byte is reserved</entry> </row> <row> <entry>0x01</entry> <entry>Reserved</entry> <entry>Reserved</entry> </row> <row> <entry>0x02-0x27</entry> <entry>Autoplace 0 - 37</entry> <entry></entry> </row> <row> <entry>0x28</entry> <entry>ECC byte 0</entry> <entry>Error correction code byte 0 of the first 256 Byte data in this page</entry> </row> <row> <entry>0x29</entry> <entry>ECC byte 1</entry> <entry>Error correction code byte 1 of the first 256 Bytes of data in this page</entry> </row> <row> <entry>0x2A</entry> <entry>ECC byte 2</entry> <entry>Error correction code byte 2 of the first 256 Bytes data in this page</entry> </row> <row> <entry>0x2B</entry> <entry>ECC byte 3</entry> <entry>Error correction code byte 0 of the second 256 Bytes of data in this page</entry> </row> <row> <entry>0x2C</entry> <entry>ECC byte 4</entry> <entry>Error correction code byte 1 of the second 256 Bytes of data in this page</entry> </row> <row> <entry>0x2D</entry> <entry>ECC byte 5</entry> <entry>Error correction code byte 2 of the second 256 Bytes of data in this page</entry> </row> <row> <entry>0x2E</entry> <entry>ECC byte 6</entry> <entry>Error correction code byte 0 of the third 256 Bytes of data in this page</entry> </row> <row> <entry>0x2F</entry> <entry>ECC byte 7</entry> <entry>Error correction code byte 1 of the third 256 Bytes of data in this page</entry> </row> <row> <entry>0x30</entry> <entry>ECC byte 8</entry> <entry>Error correction code byte 2 of the third 256 Bytes of data in this page</entry> </row> <row> <entry>0x31</entry> <entry>ECC byte 9</entry> <entry>Error correction code byte 0 of the fourth 256 Bytes of data in this page</entry> </row> <row> <entry>0x32</entry> <entry>ECC byte 10</entry> <entry>Error correction code byte 1 of the fourth 256 Bytes of data in this page</entry> </row> <row> <entry>0x33</entry> <entry>ECC byte 11</entry> <entry>Error correction code byte 2 of the fourth 256 Bytes of data in this page</entry> </row> <row> <entry>0x34</entry> <entry>ECC byte 12</entry> <entry>Error correction code byte 0 of the fifth 256 Bytes of data in this page</entry> </row> <row> <entry>0x35</entry> <entry>ECC byte 13</entry> <entry>Error correction code byte 1 of the fifth 256 Bytes of data in this page</entry> </row> <row> <entry>0x36</entry> <entry>ECC byte 14</entry> <entry>Error correction code byte 2 of the fifth 256 Bytes of data in this page</entry> </row> <row> <entry>0x37</entry> <entry>ECC byte 15</entry> <entry>Error correction code byte 0 of the sixt 256 Bytes of data in this page</entry> </row> <row> <entry>0x38</entry> <entry>ECC byte 16</entry> <entry>Error correction code byte 1 of the sixt 256 Bytes of data in this page</entry> </row> <row> <entry>0x39</entry> <entry>ECC byte 17</entry> <entry>Error correction code byte 2 of the sixt 256 Bytes of data in this page</entry> </row> <row> <entry>0x3A</entry> <entry>ECC byte 18</entry> <entry>Error correction code byte 0 of the seventh 256 Bytes of data in this page</entry> </row> <row> <entry>0x3B</entry> <entry>ECC byte 19</entry> <entry>Error correction code byte 1 of the seventh 256 Bytes of data in this page</entry> </row> <row> <entry>0x3C</entry> <entry>ECC byte 20</entry> <entry>Error correction code byte 2 of the seventh 256 Bytes of data in this page</entry> </row> <row> <entry>0x3D</entry> <entry>ECC byte 21</entry> <entry>Error correction code byte 0 of the eigth 256 Bytes of data in this page</entry> </row> <row> <entry>0x3E</entry> <entry>ECC byte 22</entry> <entry>Error correction code byte 1 of the eigth 256 Bytes of data in this page</entry> </row> <row> <entry>0x3F</entry> <entry>ECC byte 23</entry> <entry>Error correction code byte 2 of the eigth 256 Bytes of data in this page</entry> </row> </tbody></tgroup></informaltable> </sect2> </sect1> </chapter> <chapter id="filesystems"> <title>Filesystem support</title> <para> The NAND driver provides all neccecary functions for a filesystem via the MTD interface. </para> <para> Filesystems must be aware of the NAND pecularities and restrictions. One major restrictions of NAND Flash is, that you cannot write as often as you want to a page. The consecutive writes to a page, before erasing it again, are restricted to 1-3 writes, depending on the manufacturers specifications. This applies similar to the spare area. </para> <para> Therefor NAND aware filesystems must either write in page size chunks or hold a writebuffer to collect smaller writes until they sum up to pagesize. Available NAND aware filesystems: JFFS2, YAFFS. </para> <para> The spare area usage to store filesystem data is controlled by the spare area placement functionality which is described in one of the earlier chapters. </para> </chapter> <chapter id="tools"> <title>Tools</title> <para> The MTD project provides a couple of helpful tools to handle NAND Flash. <itemizedlist> <listitem><para>flasherase, flasheraseall: Erase and format FLASH partitions</para></listitem> <listitem><para>nandwrite: write filesystem images to NAND FLASH</para></listitem> <listitem><para>nanddump: dump the contents of a NAND FLASH partitions</para></listitem> </itemizedlist> </para> <para> These tools are aware of the NAND restrictions. Please use those tools instead of complaining about errors which are caused by non NAND aware access methods. </para> </chapter> <chapter id="defines"> <title>Constants</title> <para> This chapter describes the constants which might be relevant for a driver developer. </para> <sect1> <title>Chip option constants</title> <sect2> <title>Constants for chip id table</title> <para> These constants are defined in nand.h. They are ored together to describe the chip functionality. <programlisting> /* Chip can not auto increment pages */ #define NAND_NO_AUTOINCR 0x00000001 /* Buswitdh is 16 bit */ #define NAND_BUSWIDTH_16 0x00000002 /* Device supports partial programming without padding */ #define NAND_NO_PADDING 0x00000004 /* Chip has cache program function */ #define NAND_CACHEPRG 0x00000008 /* Chip has copy back function */ #define NAND_COPYBACK 0x00000010 /* AND Chip which has 4 banks and a confusing page / block * assignment. See Renesas datasheet for further information */ #define NAND_IS_AND 0x00000020 /* Chip has a array of 4 pages which can be read without * additional ready /busy waits */ #define NAND_4PAGE_ARRAY 0x00000040 </programlisting> </para> </sect2> <sect2> <title>Constants for runtime options</title> <para> These constants are defined in nand.h. They are ored together to describe the functionality. <programlisting> /* Use a flash based bad block table. This option is parsed by the * default bad block table function (nand_default_bbt). */ #define NAND_USE_FLASH_BBT 0x00010000 /* The hw ecc generator provides a syndrome instead a ecc value on read * This can only work if we have the ecc bytes directly behind the * data bytes. Applies for DOC and AG-AND Renesas HW Reed Solomon generators */ #define NAND_HWECC_SYNDROME 0x00020000 </programlisting> </para> </sect2> </sect1> <sect1> <title>ECC selection constants</title> <para> Use these constants to select the ECC algorithm. <programlisting> /* No ECC. Usage is not recommended ! */ #define NAND_ECC_NONE 0 /* Software ECC 3 byte ECC per 256 Byte data */ #define NAND_ECC_SOFT 1 /* Hardware ECC 3 byte ECC per 256 Byte data */ #define NAND_ECC_HW3_256 2 /* Hardware ECC 3 byte ECC per 512 Byte data */ #define NAND_ECC_HW3_512 3 /* Hardware ECC 6 byte ECC per 512 Byte data */ #define NAND_ECC_HW6_512 4 /* Hardware ECC 6 byte ECC per 512 Byte data */ #define NAND_ECC_HW8_512 6 </programlisting> </para> </sect1> <sect1> <title>Hardware control related constants</title> <para> These constants describe the requested hardware access function when the boardspecific hardware control function is called <programlisting> /* Select the chip by setting nCE to low */ #define NAND_CTL_SETNCE 1 /* Deselect the chip by setting nCE to high */ #define NAND_CTL_CLRNCE 2 /* Select the command latch by setting CLE to high */ #define NAND_CTL_SETCLE 3 /* Deselect the command latch by setting CLE to low */ #define NAND_CTL_CLRCLE 4 /* Select the address latch by setting ALE to high */ #define NAND_CTL_SETALE 5 /* Deselect the address latch by setting ALE to low */ #define NAND_CTL_CLRALE 6 /* Set write protection by setting WP to high. Not used! */ #define NAND_CTL_SETWP 7 /* Clear write protection by setting WP to low. Not used! */ #define NAND_CTL_CLRWP 8 </programlisting> </para> </sect1> <sect1> <title>Bad block table related constants</title> <para> These constants describe the options used for bad block table descriptors. <programlisting> /* Options for the bad block table descriptors */ /* The number of bits used per block in the bbt on the device */ #define NAND_BBT_NRBITS_MSK 0x0000000F #define NAND_BBT_1BIT 0x00000001 #define NAND_BBT_2BIT 0x00000002 #define NAND_BBT_4BIT 0x00000004 #define NAND_BBT_8BIT 0x00000008 /* The bad block table is in the last good block of the device */ #define NAND_BBT_LASTBLOCK 0x00000010 /* The bbt is at the given page, else we must scan for the bbt */ #define NAND_BBT_ABSPAGE 0x00000020 /* The bbt is at the given page, else we must scan for the bbt */ #define NAND_BBT_SEARCH 0x00000040 /* bbt is stored per chip on multichip devices */ #define NAND_BBT_PERCHIP 0x00000080 /* bbt has a version counter at offset veroffs */ #define NAND_BBT_VERSION 0x00000100 /* Create a bbt if none axists */ #define NAND_BBT_CREATE 0x00000200 /* Search good / bad pattern through all pages of a block */ #define NAND_BBT_SCANALLPAGES 0x00000400 /* Scan block empty during good / bad block scan */ #define NAND_BBT_SCANEMPTY 0x00000800 /* Write bbt if neccecary */ #define NAND_BBT_WRITE 0x00001000 /* Read and write back block contents when writing bbt */ #define NAND_BBT_SAVECONTENT 0x00002000 </programlisting> </para> </sect1> </chapter> <chapter id="structs"> <title>Structures</title> <para> This chapter contains the autogenerated documentation of the structures which are used in the NAND driver and might be relevant for a driver developer. Each struct member has a short description which is marked with an [XXX] identifier. See the chapter "Documentation hints" for an explanation. </para> !Iinclude/linux/mtd/nand.h </chapter> <chapter id="pubfunctions"> <title>Public Functions Provided</title> <para> This chapter contains the autogenerated documentation of the NAND kernel API functions which are exported. Each function has a short description which is marked with an [XXX] identifier. See the chapter "Documentation hints" for an explanation. </para> !Edrivers/mtd/nand/nand_base.c !Edrivers/mtd/nand/nand_bbt.c !Edrivers/mtd/nand/nand_ecc.c </chapter> <chapter id="intfunctions"> <title>Internal Functions Provided</title> <para> This chapter contains the autogenerated documentation of the NAND driver internal functions. Each function has a short description which is marked with an [XXX] identifier. See the chapter "Documentation hints" for an explanation. The functions marked with [DEFAULT] might be relevant for a board driver developer. </para> !Idrivers/mtd/nand/nand_base.c !Idrivers/mtd/nand/nand_bbt.c !Idrivers/mtd/nand/nand_ecc.c </chapter> <chapter id="credits"> <title>Credits</title> <para> The following people have contributed to the NAND driver: <orderedlist> <listitem><para>Steven J. Hill<email>sjhill@realitydiluted.com</email></para></listitem> <listitem><para>David Woodhouse<email>dwmw2@infradead.org</email></para></listitem> <listitem><para>Thomas Gleixner<email>tglx@linutronix.de</email></para></listitem> </orderedlist> A lot of users have provided bugfixes, improvements and helping hands for testing. Thanks a lot. </para> <para> The following people have contributed to this document: <orderedlist> <listitem><para>Thomas Gleixner<email>tglx@linutronix.de</email></para></listitem> </orderedlist> </para> </chapter> </book> |