Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 | /* * Interface for the 93C66/56/46/26/06 serial eeprom parts. * * Copyright (c) 1995, 1996 Daniel M. Eischen * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions, and the following disclaimer, * without modification. * 2. The name of the author may not be used to endorse or promote products * derived from this software without specific prior written permission. * * Alternatively, this software may be distributed under the terms of the * GNU General Public License ("GPL"). * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * $Id: //depot/aic7xxx/aic7xxx/aic7xxx_93cx6.c#17 $ * * $FreeBSD$ */ /* * The instruction set of the 93C66/56/46/26/06 chips are as follows: * * Start OP * * Function Bit Code Address** Data Description * ------------------------------------------------------------------- * READ 1 10 A5 - A0 Reads data stored in memory, * starting at specified address * EWEN 1 00 11XXXX Write enable must precede * all programming modes * ERASE 1 11 A5 - A0 Erase register A5A4A3A2A1A0 * WRITE 1 01 A5 - A0 D15 - D0 Writes register * ERAL 1 00 10XXXX Erase all registers * WRAL 1 00 01XXXX D15 - D0 Writes to all registers * EWDS 1 00 00XXXX Disables all programming * instructions * *Note: A value of X for address is a don't care condition. * **Note: There are 8 address bits for the 93C56/66 chips unlike * the 93C46/26/06 chips which have 6 address bits. * * The 93C46 has a four wire interface: clock, chip select, data in, and * data out. In order to perform one of the above functions, you need * to enable the chip select for a clock period (typically a minimum of * 1 usec, with the clock high and low a minimum of 750 and 250 nsec * respectively). While the chip select remains high, you can clock in * the instructions (above) starting with the start bit, followed by the * OP code, Address, and Data (if needed). For the READ instruction, the * requested 16-bit register contents is read from the data out line but * is preceded by an initial zero (leading 0, followed by 16-bits, MSB * first). The clock cycling from low to high initiates the next data * bit to be sent from the chip. * */ #ifdef __linux__ #include "aic7xxx_osm.h" #include "aic7xxx_inline.h" #include "aic7xxx_93cx6.h" #else #include <dev/aic7xxx/aic7xxx_osm.h> #include <dev/aic7xxx/aic7xxx_inline.h> #include <dev/aic7xxx/aic7xxx_93cx6.h> #endif /* * Right now, we only have to read the SEEPROM. But we make it easier to * add other 93Cx6 functions. */ static struct seeprom_cmd { uint8_t len; uint8_t bits[9]; } seeprom_read = {3, {1, 1, 0}}; static struct seeprom_cmd seeprom_ewen = {9, {1, 0, 0, 1, 1, 0, 0, 0, 0}}; static struct seeprom_cmd seeprom_ewds = {9, {1, 0, 0, 0, 0, 0, 0, 0, 0}}; static struct seeprom_cmd seeprom_write = {3, {1, 0, 1}}; /* * Wait for the SEERDY to go high; about 800 ns. */ #define CLOCK_PULSE(sd, rdy) \ while ((SEEPROM_STATUS_INB(sd) & rdy) == 0) { \ ; /* Do nothing */ \ } \ (void)SEEPROM_INB(sd); /* Clear clock */ /* * Send a START condition and the given command */ static void send_seeprom_cmd(struct seeprom_descriptor *sd, struct seeprom_cmd *cmd) { uint8_t temp; int i = 0; /* Send chip select for one clock cycle. */ temp = sd->sd_MS ^ sd->sd_CS; SEEPROM_OUTB(sd, temp ^ sd->sd_CK); CLOCK_PULSE(sd, sd->sd_RDY); for (i = 0; i < cmd->len; i++) { if (cmd->bits[i] != 0) temp ^= sd->sd_DO; SEEPROM_OUTB(sd, temp); CLOCK_PULSE(sd, sd->sd_RDY); SEEPROM_OUTB(sd, temp ^ sd->sd_CK); CLOCK_PULSE(sd, sd->sd_RDY); if (cmd->bits[i] != 0) temp ^= sd->sd_DO; } } /* * Clear CS put the chip in the reset state, where it can wait for new commands. */ static void reset_seeprom(struct seeprom_descriptor *sd) { uint8_t temp; temp = sd->sd_MS; SEEPROM_OUTB(sd, temp); CLOCK_PULSE(sd, sd->sd_RDY); SEEPROM_OUTB(sd, temp ^ sd->sd_CK); CLOCK_PULSE(sd, sd->sd_RDY); SEEPROM_OUTB(sd, temp); CLOCK_PULSE(sd, sd->sd_RDY); } /* * Read the serial EEPROM and returns 1 if successful and 0 if * not successful. */ int ahc_read_seeprom(struct seeprom_descriptor *sd, uint16_t *buf, u_int start_addr, u_int count) { int i = 0; u_int k = 0; uint16_t v; uint8_t temp; /* * Read the requested registers of the seeprom. The loop * will range from 0 to count-1. */ for (k = start_addr; k < count + start_addr; k++) { /* * Now we're ready to send the read command followed by the * address of the 16-bit register we want to read. */ send_seeprom_cmd(sd, &seeprom_read); /* Send the 6 or 8 bit address (MSB first, LSB last). */ temp = sd->sd_MS ^ sd->sd_CS; for (i = (sd->sd_chip - 1); i >= 0; i--) { if ((k & (1 << i)) != 0) temp ^= sd->sd_DO; SEEPROM_OUTB(sd, temp); CLOCK_PULSE(sd, sd->sd_RDY); SEEPROM_OUTB(sd, temp ^ sd->sd_CK); CLOCK_PULSE(sd, sd->sd_RDY); if ((k & (1 << i)) != 0) temp ^= sd->sd_DO; } /* * Now read the 16 bit register. An initial 0 precedes the * register contents which begins with bit 15 (MSB) and ends * with bit 0 (LSB). The initial 0 will be shifted off the * top of our word as we let the loop run from 0 to 16. */ v = 0; for (i = 16; i >= 0; i--) { SEEPROM_OUTB(sd, temp); CLOCK_PULSE(sd, sd->sd_RDY); v <<= 1; if (SEEPROM_DATA_INB(sd) & sd->sd_DI) v |= 1; SEEPROM_OUTB(sd, temp ^ sd->sd_CK); CLOCK_PULSE(sd, sd->sd_RDY); } buf[k - start_addr] = v; /* Reset the chip select for the next command cycle. */ reset_seeprom(sd); } #ifdef AHC_DUMP_EEPROM printf("\nSerial EEPROM:\n\t"); for (k = 0; k < count; k = k + 1) { if (((k % 8) == 0) && (k != 0)) { printf ("\n\t"); } printf (" 0x%x", buf[k]); } printf ("\n"); #endif return (1); } /* * Write the serial EEPROM and return 1 if successful and 0 if * not successful. */ int ahc_write_seeprom(struct seeprom_descriptor *sd, uint16_t *buf, u_int start_addr, u_int count) { uint16_t v; uint8_t temp; int i, k; /* Place the chip into write-enable mode */ send_seeprom_cmd(sd, &seeprom_ewen); reset_seeprom(sd); /* Write all requested data out to the seeprom. */ temp = sd->sd_MS ^ sd->sd_CS; for (k = start_addr; k < count + start_addr; k++) { /* Send the write command */ send_seeprom_cmd(sd, &seeprom_write); /* Send the 6 or 8 bit address (MSB first). */ for (i = (sd->sd_chip - 1); i >= 0; i--) { if ((k & (1 << i)) != 0) temp ^= sd->sd_DO; SEEPROM_OUTB(sd, temp); CLOCK_PULSE(sd, sd->sd_RDY); SEEPROM_OUTB(sd, temp ^ sd->sd_CK); CLOCK_PULSE(sd, sd->sd_RDY); if ((k & (1 << i)) != 0) temp ^= sd->sd_DO; } /* Write the 16 bit value, MSB first */ v = buf[k - start_addr]; for (i = 15; i >= 0; i--) { if ((v & (1 << i)) != 0) temp ^= sd->sd_DO; SEEPROM_OUTB(sd, temp); CLOCK_PULSE(sd, sd->sd_RDY); SEEPROM_OUTB(sd, temp ^ sd->sd_CK); CLOCK_PULSE(sd, sd->sd_RDY); if ((v & (1 << i)) != 0) temp ^= sd->sd_DO; } /* Wait for the chip to complete the write */ temp = sd->sd_MS; SEEPROM_OUTB(sd, temp); CLOCK_PULSE(sd, sd->sd_RDY); temp = sd->sd_MS ^ sd->sd_CS; do { SEEPROM_OUTB(sd, temp); CLOCK_PULSE(sd, sd->sd_RDY); SEEPROM_OUTB(sd, temp ^ sd->sd_CK); CLOCK_PULSE(sd, sd->sd_RDY); } while ((SEEPROM_DATA_INB(sd) & sd->sd_DI) == 0); reset_seeprom(sd); } /* Put the chip back into write-protect mode */ send_seeprom_cmd(sd, &seeprom_ewds); reset_seeprom(sd); return (1); } int ahc_verify_cksum(struct seeprom_config *sc) { int i; int maxaddr; uint32_t checksum; uint16_t *scarray; maxaddr = (sizeof(*sc)/2) - 1; checksum = 0; scarray = (uint16_t *)sc; for (i = 0; i < maxaddr; i++) checksum = checksum + scarray[i]; if (checksum == 0 || (checksum & 0xFFFF) != sc->checksum) { return (0); } else { return(1); } } |