Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 | /* -*- c-basic-offset: 8 -*- * * amdtp.c - Audio and Music Data Transmission Protocol Driver * Copyright (C) 2001 Kristian Høgsberg * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software Foundation, * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ /* OVERVIEW * -------- * * The AMDTP driver is designed to expose the IEEE1394 bus as a * regular OSS soundcard, i.e. you can link /dev/dsp to /dev/amdtp and * then your favourite MP3 player, game or whatever sound program will * output to an IEEE1394 isochronous channel. The signal destination * could be a set of IEEE1394 loudspeakers (if and when such things * become available) or an amplifier with IEEE1394 input (like the * Sony STR-LSA1). The driver only handles the actual streaming, some * connection management is also required for this to actually work. * That is outside the scope of this driver, and furthermore it is not * really standardized yet. * * The Audio and Music Data Tranmission Protocol is available at * * http://www.1394ta.org/Download/Technology/Specifications/2001/AM20Final-jf2.pdf * * * TODO * ---- * * - We should be able to change input sample format between LE/BE, as * we already shift the bytes around when we construct the iso * packets. * * - Fix DMA stop after bus reset! * * - Clean up iso context handling in ohci1394. * * * MAYBE TODO * ---------- * * - Receive data for local playback or recording. Playback requires * soft syncing with the sound card. * * - Signal processing, i.e. receive packets, do some processing, and * transmit them again using the same packet structure and timestamps * offset by processing time. * * - Maybe make an ALSA interface, that is, create a file_ops * implementation that recognizes ALSA ioctls and uses defaults for * things that can't be controlled through ALSA (iso channel). * * Changes: * * - Audit copy_from_user in amdtp_write. * Daniele Bellucci <bellucda@tiscali.it> * */ #include <linux/module.h> #include <linux/list.h> #include <linux/sched.h> #include <linux/types.h> #include <linux/fs.h> #include <linux/ioctl.h> #include <linux/wait.h> #include <linux/pci.h> #include <linux/interrupt.h> #include <linux/poll.h> #include <linux/ioctl32.h> #include <linux/compat.h> #include <linux/cdev.h> #include <asm/uaccess.h> #include <asm/atomic.h> #include "hosts.h" #include "highlevel.h" #include "ieee1394.h" #include "ieee1394_core.h" #include "ohci1394.h" #include "amdtp.h" #include "cmp.h" #define FMT_AMDTP 0x10 #define FDF_AM824 0x00 #define FDF_SFC_32KHZ 0x00 #define FDF_SFC_44K1HZ 0x01 #define FDF_SFC_48KHZ 0x02 #define FDF_SFC_88K2HZ 0x03 #define FDF_SFC_96KHZ 0x04 #define FDF_SFC_176K4HZ 0x05 #define FDF_SFC_192KHZ 0x06 struct descriptor_block { struct output_more_immediate { u32 control; u32 pad0; u32 skip; u32 pad1; u32 header[4]; } header_desc; struct output_last { u32 control; u32 data_address; u32 branch; u32 status; } payload_desc; }; struct packet { struct descriptor_block *db; dma_addr_t db_bus; struct iso_packet *payload; dma_addr_t payload_bus; }; #include <asm/byteorder.h> #if defined __BIG_ENDIAN_BITFIELD struct iso_packet { /* First quadlet */ unsigned int dbs : 8; unsigned int eoh0 : 2; unsigned int sid : 6; unsigned int dbc : 8; unsigned int fn : 2; unsigned int qpc : 3; unsigned int sph : 1; unsigned int reserved : 2; /* Second quadlet */ unsigned int fdf : 8; unsigned int eoh1 : 2; unsigned int fmt : 6; unsigned int syt : 16; quadlet_t data[0]; }; #elif defined __LITTLE_ENDIAN_BITFIELD struct iso_packet { /* First quadlet */ unsigned int sid : 6; unsigned int eoh0 : 2; unsigned int dbs : 8; unsigned int reserved : 2; unsigned int sph : 1; unsigned int qpc : 3; unsigned int fn : 2; unsigned int dbc : 8; /* Second quadlet */ unsigned int fmt : 6; unsigned int eoh1 : 2; unsigned int fdf : 8; unsigned int syt : 16; quadlet_t data[0]; }; #else #error Unknown bitfield type #endif struct fraction { int integer; int numerator; int denominator; }; #define PACKET_LIST_SIZE 256 #define MAX_PACKET_LISTS 4 struct packet_list { struct list_head link; int last_cycle_count; struct packet packets[PACKET_LIST_SIZE]; }; #define BUFFER_SIZE 128 /* This implements a circular buffer for incoming samples. */ struct buffer { size_t head, tail, length, size; unsigned char data[0]; }; struct stream { int iso_channel; int format; int rate; int dimension; int fdf; int mode; int sample_format; struct cmp_pcr *opcr; /* Input samples are copied here. */ struct buffer *input; /* ISO Packer state */ unsigned char dbc; struct packet_list *current_packet_list; int current_packet; struct fraction ready_samples, samples_per_cycle; /* We use these to generate control bits when we are packing * iec958 data. */ int iec958_frame_count; int iec958_rate_code; /* The cycle_count and cycle_offset fields are used for the * synchronization timestamps (syt) in the cip header. They * are incremented by at least a cycle every time we put a * time stamp in a packet. As we don't time stamp all * packages, cycle_count isn't updated in every cycle, and * sometimes it's incremented by 2. Thus, we have * cycle_count2, which is simply incremented by one with each * packet, so we can compare it to the transmission time * written back in the dma programs. */ atomic_t cycle_count, cycle_count2; struct fraction cycle_offset, ticks_per_syt_offset; int syt_interval; int stale_count; /* Theses fields control the sample output to the DMA engine. * The dma_packet_lists list holds packet lists currently * queued for dma; the head of the list is currently being * processed. The last program in a packet list generates an * interrupt, which removes the head from dma_packet_lists and * puts it back on the free list. */ struct list_head dma_packet_lists; struct list_head free_packet_lists; wait_queue_head_t packet_list_wait; spinlock_t packet_list_lock; struct ohci1394_iso_tasklet iso_tasklet; struct pci_pool *descriptor_pool, *packet_pool; /* Streams at a host controller are chained through this field. */ struct list_head link; struct amdtp_host *host; }; struct amdtp_host { struct hpsb_host *host; struct ti_ohci *ohci; struct list_head stream_list; spinlock_t stream_list_lock; }; static struct hpsb_highlevel amdtp_highlevel; /* FIXME: This doesn't belong here... */ #define OHCI1394_CONTEXT_CYCLE_MATCH 0x80000000 #define OHCI1394_CONTEXT_RUN 0x00008000 #define OHCI1394_CONTEXT_WAKE 0x00001000 #define OHCI1394_CONTEXT_DEAD 0x00000800 #define OHCI1394_CONTEXT_ACTIVE 0x00000400 void ohci1394_start_it_ctx(struct ti_ohci *ohci, int ctx, dma_addr_t first_cmd, int z, int cycle_match) { reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, 1 << ctx); reg_write(ohci, OHCI1394_IsoXmitCommandPtr + ctx * 16, first_cmd | z); reg_write(ohci, OHCI1394_IsoXmitContextControlClear + ctx * 16, ~0); wmb(); reg_write(ohci, OHCI1394_IsoXmitContextControlSet + ctx * 16, OHCI1394_CONTEXT_CYCLE_MATCH | (cycle_match << 16) | OHCI1394_CONTEXT_RUN); } void ohci1394_wake_it_ctx(struct ti_ohci *ohci, int ctx) { reg_write(ohci, OHCI1394_IsoXmitContextControlSet + ctx * 16, OHCI1394_CONTEXT_WAKE); } void ohci1394_stop_it_ctx(struct ti_ohci *ohci, int ctx, int synchronous) { u32 control; int wait; reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, 1 << ctx); reg_write(ohci, OHCI1394_IsoXmitContextControlClear + ctx * 16, OHCI1394_CONTEXT_RUN); wmb(); if (synchronous) { for (wait = 0; wait < 5; wait++) { control = reg_read(ohci, OHCI1394_IsoXmitContextControlSet + ctx * 16); if ((control & OHCI1394_CONTEXT_ACTIVE) == 0) break; set_current_state(TASK_INTERRUPTIBLE); schedule_timeout(1); } } } /* Note: we can test if free_packet_lists is empty without aquiring * the packet_list_lock. The interrupt handler only adds to the free * list, there is no race condition between testing the list non-empty * and acquiring the lock. */ static struct packet_list *stream_get_free_packet_list(struct stream *s) { struct packet_list *pl; unsigned long flags; if (list_empty(&s->free_packet_lists)) return NULL; spin_lock_irqsave(&s->packet_list_lock, flags); pl = list_entry(s->free_packet_lists.next, struct packet_list, link); list_del(&pl->link); spin_unlock_irqrestore(&s->packet_list_lock, flags); return pl; } static void stream_start_dma(struct stream *s, struct packet_list *pl) { u32 syt_cycle, cycle_count, start_cycle; cycle_count = reg_read(s->host->ohci, OHCI1394_IsochronousCycleTimer) >> 12; syt_cycle = (pl->last_cycle_count - PACKET_LIST_SIZE + 1) & 0x0f; /* We program the DMA controller to start transmission at * least 17 cycles from now - this happens when the lower four * bits of cycle_count is 0x0f and syt_cycle is 0, in this * case the start cycle is cycle_count - 15 + 32. */ start_cycle = (cycle_count & ~0x0f) + 32 + syt_cycle; if ((start_cycle & 0x1fff) >= 8000) start_cycle = start_cycle - 8000 + 0x2000; ohci1394_start_it_ctx(s->host->ohci, s->iso_tasklet.context, pl->packets[0].db_bus, 3, start_cycle & 0x7fff); } static void stream_put_dma_packet_list(struct stream *s, struct packet_list *pl) { unsigned long flags; struct packet_list *prev; /* Remember the cycle_count used for timestamping the last packet. */ pl->last_cycle_count = atomic_read(&s->cycle_count2) - 1; pl->packets[PACKET_LIST_SIZE - 1].db->payload_desc.branch = 0; spin_lock_irqsave(&s->packet_list_lock, flags); list_add_tail(&pl->link, &s->dma_packet_lists); spin_unlock_irqrestore(&s->packet_list_lock, flags); prev = list_entry(pl->link.prev, struct packet_list, link); if (pl->link.prev != &s->dma_packet_lists) { struct packet *last = &prev->packets[PACKET_LIST_SIZE - 1]; last->db->payload_desc.branch = pl->packets[0].db_bus | 3; last->db->header_desc.skip = pl->packets[0].db_bus | 3; ohci1394_wake_it_ctx(s->host->ohci, s->iso_tasklet.context); } else stream_start_dma(s, pl); } static void stream_shift_packet_lists(unsigned long l) { struct stream *s = (struct stream *) l; struct packet_list *pl; struct packet *last; int diff; if (list_empty(&s->dma_packet_lists)) { HPSB_ERR("empty dma_packet_lists in %s", __FUNCTION__); return; } /* Now that we know the list is non-empty, we can get the head * of the list without locking, because the process context * only adds to the tail. */ pl = list_entry(s->dma_packet_lists.next, struct packet_list, link); last = &pl->packets[PACKET_LIST_SIZE - 1]; /* This is weird... if we stop dma processing in the middle of * a packet list, the dma context immediately generates an * interrupt if we enable it again later. This only happens * when amdtp_release is interrupted while waiting for dma to * complete, though. Anyway, we detect this by seeing that * the status of the dma descriptor that we expected an * interrupt from is still 0. */ if (last->db->payload_desc.status == 0) { HPSB_INFO("weird interrupt..."); return; } /* If the last descriptor block does not specify a branch * address, we have a sample underflow. */ if (last->db->payload_desc.branch == 0) HPSB_INFO("FIXME: sample underflow..."); /* Here we check when (which cycle) the last packet was sent * and compare it to what the iso packer was using at the * time. If there is a mismatch, we adjust the cycle count in * the iso packer. However, there are still up to * MAX_PACKET_LISTS packet lists queued with bad time stamps, * so we disable time stamp monitoring for the next * MAX_PACKET_LISTS packet lists. */ diff = (last->db->payload_desc.status - pl->last_cycle_count) & 0xf; if (diff > 0 && s->stale_count == 0) { atomic_add(diff, &s->cycle_count); atomic_add(diff, &s->cycle_count2); s->stale_count = MAX_PACKET_LISTS; } if (s->stale_count > 0) s->stale_count--; /* Finally, we move the packet list that was just processed * back to the free list, and notify any waiters. */ spin_lock(&s->packet_list_lock); list_del(&pl->link); list_add_tail(&pl->link, &s->free_packet_lists); spin_unlock(&s->packet_list_lock); wake_up_interruptible(&s->packet_list_wait); } static struct packet *stream_current_packet(struct stream *s) { if (s->current_packet_list == NULL && (s->current_packet_list = stream_get_free_packet_list(s)) == NULL) return NULL; return &s->current_packet_list->packets[s->current_packet]; } static void stream_queue_packet(struct stream *s) { s->current_packet++; if (s->current_packet == PACKET_LIST_SIZE) { stream_put_dma_packet_list(s, s->current_packet_list); s->current_packet_list = NULL; s->current_packet = 0; } } /* Integer fractional math. When we transmit a 44k1Hz signal we must * send 5 41/80 samples per isochronous cycle, as these occur 8000 * times a second. Of course, we must send an integral number of * samples in a packet, so we use the integer math to alternate * between sending 5 and 6 samples per packet. */ static void fraction_init(struct fraction *f, int numerator, int denominator) { f->integer = numerator / denominator; f->numerator = numerator % denominator; f->denominator = denominator; } static __inline__ void fraction_add(struct fraction *dst, struct fraction *src1, struct fraction *src2) { /* assert: src1->denominator == src2->denominator */ int sum, denom; /* We use these two local variables to allow gcc to optimize * the division and the modulo into only one division. */ sum = src1->numerator + src2->numerator; denom = src1->denominator; dst->integer = src1->integer + src2->integer + sum / denom; dst->numerator = sum % denom; dst->denominator = denom; } static __inline__ void fraction_sub_int(struct fraction *dst, struct fraction *src, int integer) { dst->integer = src->integer - integer; dst->numerator = src->numerator; dst->denominator = src->denominator; } static __inline__ int fraction_floor(struct fraction *frac) { return frac->integer; } static __inline__ int fraction_ceil(struct fraction *frac) { return frac->integer + (frac->numerator > 0 ? 1 : 0); } void packet_initialize(struct packet *p, struct packet *next) { /* Here we initialize the dma descriptor block for * transferring one iso packet. We use two descriptors per * packet: an OUTPUT_MORE_IMMMEDIATE descriptor for the * IEEE1394 iso packet header and an OUTPUT_LAST descriptor * for the payload. */ p->db->header_desc.control = DMA_CTL_OUTPUT_MORE | DMA_CTL_IMMEDIATE | 8; if (next) { p->db->payload_desc.control = DMA_CTL_OUTPUT_LAST | DMA_CTL_BRANCH; p->db->payload_desc.branch = next->db_bus | 3; p->db->header_desc.skip = next->db_bus | 3; } else { p->db->payload_desc.control = DMA_CTL_OUTPUT_LAST | DMA_CTL_BRANCH | DMA_CTL_UPDATE | DMA_CTL_IRQ; p->db->payload_desc.branch = 0; p->db->header_desc.skip = 0; } p->db->payload_desc.data_address = p->payload_bus; p->db->payload_desc.status = 0; } struct packet_list *packet_list_alloc(struct stream *s) { int i; struct packet_list *pl; struct packet *next; pl = kmalloc(sizeof *pl, SLAB_KERNEL); if (pl == NULL) return NULL; for (i = 0; i < PACKET_LIST_SIZE; i++) { struct packet *p = &pl->packets[i]; p->db = pci_pool_alloc(s->descriptor_pool, SLAB_KERNEL, &p->db_bus); p->payload = pci_pool_alloc(s->packet_pool, SLAB_KERNEL, &p->payload_bus); } for (i = 0; i < PACKET_LIST_SIZE; i++) { if (i < PACKET_LIST_SIZE - 1) next = &pl->packets[i + 1]; else next = NULL; packet_initialize(&pl->packets[i], next); } return pl; } void packet_list_free(struct packet_list *pl, struct stream *s) { int i; for (i = 0; i < PACKET_LIST_SIZE; i++) { struct packet *p = &pl->packets[i]; pci_pool_free(s->descriptor_pool, p->db, p->db_bus); pci_pool_free(s->packet_pool, p->payload, p->payload_bus); } kfree(pl); } static struct buffer *buffer_alloc(int size) { struct buffer *b; b = kmalloc(sizeof *b + size, SLAB_KERNEL); if (b == NULL) return NULL; b->head = 0; b->tail = 0; b->length = 0; b->size = size; return b; } static unsigned char *buffer_get_bytes(struct buffer *buffer, int size) { unsigned char *p; if (buffer->head + size > buffer->size) BUG(); p = &buffer->data[buffer->head]; buffer->head += size; if (buffer->head == buffer->size) buffer->head = 0; buffer->length -= size; return p; } static unsigned char *buffer_put_bytes(struct buffer *buffer, size_t max, size_t *actual) { size_t length; unsigned char *p; p = &buffer->data[buffer->tail]; length = min(buffer->size - buffer->length, max); if (buffer->tail + length < buffer->size) { *actual = length; buffer->tail += length; } else { *actual = buffer->size - buffer->tail; buffer->tail = 0; } buffer->length += *actual; return p; } static u32 get_iec958_header_bits(struct stream *s, int sub_frame, u32 sample) { int csi, parity, shift; int block_start; u32 bits; switch (s->iec958_frame_count) { case 1: csi = s->format == AMDTP_FORMAT_IEC958_AC3; break; case 2: case 9: csi = 1; break; case 24 ... 27: csi = (s->iec958_rate_code >> (27 - s->iec958_frame_count)) & 0x01; break; default: csi = 0; break; } block_start = (s->iec958_frame_count == 0 && sub_frame == 0); /* The parity bit is the xor of the sample bits and the * channel status info bit. */ for (shift = 16, parity = sample ^ csi; shift > 0; shift >>= 1) parity ^= (parity >> shift); bits = (block_start << 5) | /* Block start bit */ ((sub_frame == 0) << 4) | /* Subframe bit */ ((parity & 1) << 3) | /* Parity bit */ (csi << 2); /* Channel status info bit */ return bits; } static u32 get_header_bits(struct stream *s, int sub_frame, u32 sample) { switch (s->format) { case AMDTP_FORMAT_IEC958_PCM: case AMDTP_FORMAT_IEC958_AC3: return get_iec958_header_bits(s, sub_frame, sample); case AMDTP_FORMAT_RAW: return 0x40; default: return 0; } } static void fill_payload_le16(struct stream *s, quadlet_t *data, int nevents) { quadlet_t *event, sample, bits; unsigned char *p; int i, j; for (i = 0, event = data; i < nevents; i++) { for (j = 0; j < s->dimension; j++) { p = buffer_get_bytes(s->input, 2); sample = (p[1] << 16) | (p[0] << 8); bits = get_header_bits(s, j, sample); event[j] = cpu_to_be32((bits << 24) | sample); } event += s->dimension; if (++s->iec958_frame_count == 192) s->iec958_frame_count = 0; } } static void fill_packet(struct stream *s, struct packet *packet, int nevents) { int syt_index, syt, size; u32 control; size = (nevents * s->dimension + 2) * sizeof(quadlet_t); /* Update DMA descriptors */ packet->db->payload_desc.status = 0; control = packet->db->payload_desc.control & 0xffff0000; packet->db->payload_desc.control = control | size; /* Fill IEEE1394 headers */ packet->db->header_desc.header[0] = (IEEE1394_SPEED_100 << 16) | (0x01 << 14) | (s->iso_channel << 8) | (TCODE_ISO_DATA << 4); packet->db->header_desc.header[1] = size << 16; /* Calculate synchronization timestamp (syt). First we * determine syt_index, that is, the index in the packet of * the sample for which the timestamp is valid. */ syt_index = (s->syt_interval - s->dbc) & (s->syt_interval - 1); if (syt_index < nevents) { syt = ((atomic_read(&s->cycle_count) << 12) | s->cycle_offset.integer) & 0xffff; fraction_add(&s->cycle_offset, &s->cycle_offset, &s->ticks_per_syt_offset); /* This next addition should be modulo 8000 (0x1f40), * but we only use the lower 4 bits of cycle_count, so * we don't need the modulo. */ atomic_add(s->cycle_offset.integer / 3072, &s->cycle_count); s->cycle_offset.integer %= 3072; } else syt = 0xffff; atomic_inc(&s->cycle_count2); /* Fill cip header */ packet->payload->eoh0 = 0; packet->payload->sid = s->host->host->node_id & 0x3f; packet->payload->dbs = s->dimension; packet->payload->fn = 0; packet->payload->qpc = 0; packet->payload->sph = 0; packet->payload->reserved = 0; packet->payload->dbc = s->dbc; packet->payload->eoh1 = 2; packet->payload->fmt = FMT_AMDTP; packet->payload->fdf = s->fdf; packet->payload->syt = cpu_to_be16(syt); switch (s->sample_format) { case AMDTP_INPUT_LE16: fill_payload_le16(s, packet->payload->data, nevents); break; } s->dbc += nevents; } static void stream_flush(struct stream *s) { struct packet *p; int nevents; struct fraction next; /* The AMDTP specifies two transmission modes: blocking and * non-blocking. In blocking mode you always transfer * syt_interval or zero samples, whereas in non-blocking mode * you send as many samples as you have available at transfer * time. * * The fraction samples_per_cycle specifies the number of * samples that become available per cycle. We add this to * the fraction ready_samples, which specifies the number of * leftover samples from the previous transmission. The sum, * stored in the fraction next, specifies the number of * samples available for transmission, and from this we * determine the number of samples to actually transmit. */ while (1) { fraction_add(&next, &s->ready_samples, &s->samples_per_cycle); if (s->mode == AMDTP_MODE_BLOCKING) { if (fraction_floor(&next) >= s->syt_interval) nevents = s->syt_interval; else nevents = 0; } else nevents = fraction_floor(&next); p = stream_current_packet(s); if (s->input->length < nevents * s->dimension * 2 || p == NULL) break; fill_packet(s, p, nevents); stream_queue_packet(s); /* Now that we have successfully queued the packet for * transmission, we update the fraction ready_samples. */ fraction_sub_int(&s->ready_samples, &next, nevents); } } static int stream_alloc_packet_lists(struct stream *s) { int max_nevents, max_packet_size, i; if (s->mode == AMDTP_MODE_BLOCKING) max_nevents = s->syt_interval; else max_nevents = fraction_ceil(&s->samples_per_cycle); max_packet_size = max_nevents * s->dimension * 4 + 8; s->packet_pool = pci_pool_create("packet pool", s->host->ohci->dev, max_packet_size, 0, 0); if (s->packet_pool == NULL) return -1; INIT_LIST_HEAD(&s->free_packet_lists); INIT_LIST_HEAD(&s->dma_packet_lists); for (i = 0; i < MAX_PACKET_LISTS; i++) { struct packet_list *pl = packet_list_alloc(s); if (pl == NULL) break; list_add_tail(&pl->link, &s->free_packet_lists); } return i < MAX_PACKET_LISTS ? -1 : 0; } static void stream_free_packet_lists(struct stream *s) { struct packet_list *packet_l, *packet_l_next; if (s->current_packet_list != NULL) packet_list_free(s->current_packet_list, s); list_for_each_entry_safe(packet_l, packet_l_next, &s->dma_packet_lists, link) packet_list_free(packet_l, s); list_for_each_entry_safe(packet_l, packet_l_next, &s->free_packet_lists, link) packet_list_free(packet_l, s); if (s->packet_pool != NULL) pci_pool_destroy(s->packet_pool); s->current_packet_list = NULL; INIT_LIST_HEAD(&s->free_packet_lists); INIT_LIST_HEAD(&s->dma_packet_lists); s->packet_pool = NULL; } static void plug_update(struct cmp_pcr *plug, void *data) { struct stream *s = data; HPSB_INFO("plug update: p2p_count=%d, channel=%d", plug->p2p_count, plug->channel); s->iso_channel = plug->channel; if (plug->p2p_count > 0) { struct packet_list *pl; pl = list_entry(s->dma_packet_lists.next, struct packet_list, link); stream_start_dma(s, pl); } else { ohci1394_stop_it_ctx(s->host->ohci, s->iso_tasklet.context, 0); } } static int stream_configure(struct stream *s, int cmd, struct amdtp_ioctl *cfg) { const int transfer_delay = 9000; if (cfg->format <= AMDTP_FORMAT_IEC958_AC3) s->format = cfg->format; else return -EINVAL; switch (cfg->rate) { case 32000: s->syt_interval = 8; s->fdf = FDF_SFC_32KHZ; s->iec958_rate_code = 0x0c; break; case 44100: s->syt_interval = 8; s->fdf = FDF_SFC_44K1HZ; s->iec958_rate_code = 0x00; break; case 48000: s->syt_interval = 8; s->fdf = FDF_SFC_48KHZ; s->iec958_rate_code = 0x04; break; case 88200: s->syt_interval = 16; s->fdf = FDF_SFC_88K2HZ; s->iec958_rate_code = 0x00; break; case 96000: s->syt_interval = 16; s->fdf = FDF_SFC_96KHZ; s->iec958_rate_code = 0x00; break; case 176400: s->syt_interval = 32; s->fdf = FDF_SFC_176K4HZ; s->iec958_rate_code = 0x00; break; case 192000: s->syt_interval = 32; s->fdf = FDF_SFC_192KHZ; s->iec958_rate_code = 0x00; break; default: return -EINVAL; } s->rate = cfg->rate; fraction_init(&s->samples_per_cycle, s->rate, 8000); fraction_init(&s->ready_samples, 0, 8000); /* The ticks_per_syt_offset is initialized to the number of * ticks between syt_interval events. The number of ticks per * second is 24.576e6, so the number of ticks between * syt_interval events is 24.576e6 * syt_interval / rate. */ fraction_init(&s->ticks_per_syt_offset, 24576000 * s->syt_interval, s->rate); fraction_init(&s->cycle_offset, (transfer_delay % 3072) * s->rate, s->rate); atomic_set(&s->cycle_count, transfer_delay / 3072); atomic_set(&s->cycle_count2, 0); s->mode = cfg->mode; s->sample_format = AMDTP_INPUT_LE16; /* When using the AM824 raw subformat we can stream signals of * any dimension. The IEC958 subformat, however, only * supports 2 channels. */ if (s->format == AMDTP_FORMAT_RAW || cfg->dimension == 2) s->dimension = cfg->dimension; else return -EINVAL; if (s->opcr != NULL) { cmp_unregister_opcr(s->host->host, s->opcr); s->opcr = NULL; } switch(cmd) { case AMDTP_IOC_PLUG: s->opcr = cmp_register_opcr(s->host->host, cfg->u.plug, /*payload*/ 12, plug_update, s); if (s->opcr == NULL) return -EINVAL; s->iso_channel = s->opcr->channel; break; case AMDTP_IOC_CHANNEL: if (cfg->u.channel >= 0 && cfg->u.channel < 64) s->iso_channel = cfg->u.channel; else return -EINVAL; break; } /* The ioctl settings were all valid, so we realloc the packet * lists to make sure the packet size is big enough. */ if (s->packet_pool != NULL) stream_free_packet_lists(s); if (stream_alloc_packet_lists(s) < 0) { stream_free_packet_lists(s); return -ENOMEM; } return 0; } struct stream *stream_alloc(struct amdtp_host *host) { struct stream *s; unsigned long flags; s = kmalloc(sizeof(struct stream), SLAB_KERNEL); if (s == NULL) return NULL; memset(s, 0, sizeof(struct stream)); s->host = host; s->input = buffer_alloc(BUFFER_SIZE); if (s->input == NULL) { kfree(s); return NULL; } s->descriptor_pool = pci_pool_create("descriptor pool", host->ohci->dev, sizeof(struct descriptor_block), 16, 0); if (s->descriptor_pool == NULL) { kfree(s->input); kfree(s); return NULL; } INIT_LIST_HEAD(&s->free_packet_lists); INIT_LIST_HEAD(&s->dma_packet_lists); init_waitqueue_head(&s->packet_list_wait); spin_lock_init(&s->packet_list_lock); ohci1394_init_iso_tasklet(&s->iso_tasklet, OHCI_ISO_TRANSMIT, stream_shift_packet_lists, (unsigned long) s); if (ohci1394_register_iso_tasklet(host->ohci, &s->iso_tasklet) < 0) { pci_pool_destroy(s->descriptor_pool); kfree(s->input); kfree(s); return NULL; } spin_lock_irqsave(&host->stream_list_lock, flags); list_add_tail(&s->link, &host->stream_list); spin_unlock_irqrestore(&host->stream_list_lock, flags); return s; } void stream_free(struct stream *s) { unsigned long flags; /* Stop the DMA. We wait for the dma packet list to become * empty and let the dma controller run out of programs. This * seems to be more reliable than stopping it directly, since * that sometimes generates an it transmit interrupt if we * later re-enable the context. */ wait_event_interruptible(s->packet_list_wait, list_empty(&s->dma_packet_lists)); ohci1394_stop_it_ctx(s->host->ohci, s->iso_tasklet.context, 1); ohci1394_unregister_iso_tasklet(s->host->ohci, &s->iso_tasklet); if (s->opcr != NULL) cmp_unregister_opcr(s->host->host, s->opcr); spin_lock_irqsave(&s->host->stream_list_lock, flags); list_del(&s->link); spin_unlock_irqrestore(&s->host->stream_list_lock, flags); kfree(s->input); stream_free_packet_lists(s); pci_pool_destroy(s->descriptor_pool); kfree(s); } /* File operations */ static ssize_t amdtp_write(struct file *file, const char __user *buffer, size_t count, loff_t *offset_is_ignored) { struct stream *s = file->private_data; unsigned char *p; int i; size_t length; if (s->packet_pool == NULL) return -EBADFD; /* Fill the circular buffer from the input buffer and call the * iso packer when the buffer is full. The iso packer may * leave bytes in the buffer for two reasons: either the * remaining bytes wasn't enough to build a new packet, or * there were no free packet lists. In the first case we * re-fill the buffer and call the iso packer again or return * if we used all the data from userspace. In the second * case, the wait_event_interruptible will block until the irq * handler frees a packet list. */ for (i = 0; i < count; i += length) { p = buffer_put_bytes(s->input, count - i, &length); if (copy_from_user(p, buffer + i, length)) return -EFAULT; if (s->input->length < s->input->size) continue; stream_flush(s); if (s->current_packet_list != NULL) continue; if (file->f_flags & O_NONBLOCK) return i + length > 0 ? i + length : -EAGAIN; if (wait_event_interruptible(s->packet_list_wait, !list_empty(&s->free_packet_lists))) return -EINTR; } return count; } static long amdtp_ioctl(struct file *file, unsigned int cmd, unsigned long arg) { struct stream *s = file->private_data; struct amdtp_ioctl cfg; int err; lock_kernel(); switch(cmd) { case AMDTP_IOC_PLUG: case AMDTP_IOC_CHANNEL: if (copy_from_user(&cfg, (struct amdtp_ioctl __user *) arg, sizeof cfg)) err = -EFAULT; else err = stream_configure(s, cmd, &cfg); break; default: err = -EINVAL; break; } unlock_kernel(); return err; } static unsigned int amdtp_poll(struct file *file, poll_table *pt) { struct stream *s = file->private_data; poll_wait(file, &s->packet_list_wait, pt); if (!list_empty(&s->free_packet_lists)) return POLLOUT | POLLWRNORM; else return 0; } static int amdtp_open(struct inode *inode, struct file *file) { struct amdtp_host *host; int i = ieee1394_file_to_instance(file); host = hpsb_get_hostinfo_bykey(&amdtp_highlevel, i); if (host == NULL) return -ENODEV; file->private_data = stream_alloc(host); if (file->private_data == NULL) return -ENOMEM; return 0; } static int amdtp_release(struct inode *inode, struct file *file) { struct stream *s = file->private_data; stream_free(s); return 0; } static struct cdev amdtp_cdev; static struct file_operations amdtp_fops = { .owner = THIS_MODULE, .write = amdtp_write, .poll = amdtp_poll, .unlocked_ioctl = amdtp_ioctl, .compat_ioctl = amdtp_ioctl, /* All amdtp ioctls are compatible */ .open = amdtp_open, .release = amdtp_release }; /* IEEE1394 Subsystem functions */ static void amdtp_add_host(struct hpsb_host *host) { struct amdtp_host *ah; int minor; if (strcmp(host->driver->name, OHCI1394_DRIVER_NAME) != 0) return; ah = hpsb_create_hostinfo(&amdtp_highlevel, host, sizeof(*ah)); if (!ah) { HPSB_ERR("amdtp: Unable able to alloc hostinfo"); return; } ah->host = host; ah->ohci = host->hostdata; hpsb_set_hostinfo_key(&amdtp_highlevel, host, ah->host->id); minor = IEEE1394_MINOR_BLOCK_AMDTP * 16 + ah->host->id; INIT_LIST_HEAD(&ah->stream_list); spin_lock_init(&ah->stream_list_lock); devfs_mk_cdev(MKDEV(IEEE1394_MAJOR, minor), S_IFCHR|S_IRUSR|S_IWUSR, "amdtp/%d", ah->host->id); } static void amdtp_remove_host(struct hpsb_host *host) { struct amdtp_host *ah = hpsb_get_hostinfo(&amdtp_highlevel, host); if (ah) devfs_remove("amdtp/%d", ah->host->id); return; } static struct hpsb_highlevel amdtp_highlevel = { .name = "amdtp", .add_host = amdtp_add_host, .remove_host = amdtp_remove_host, }; /* Module interface */ MODULE_AUTHOR("Kristian Hogsberg <hogsberg@users.sf.net>"); MODULE_DESCRIPTION("Driver for Audio & Music Data Transmission Protocol " "on OHCI boards."); MODULE_SUPPORTED_DEVICE("amdtp"); MODULE_LICENSE("GPL"); static int __init amdtp_init_module (void) { cdev_init(&amdtp_cdev, &amdtp_fops); amdtp_cdev.owner = THIS_MODULE; kobject_set_name(&amdtp_cdev.kobj, "amdtp"); if (cdev_add(&amdtp_cdev, IEEE1394_AMDTP_DEV, 16)) { HPSB_ERR("amdtp: unable to add char device"); return -EIO; } devfs_mk_dir("amdtp"); hpsb_register_highlevel(&amdtp_highlevel); HPSB_INFO("Loaded AMDTP driver"); return 0; } static void __exit amdtp_exit_module (void) { hpsb_unregister_highlevel(&amdtp_highlevel); devfs_remove("amdtp"); cdev_del(&amdtp_cdev); HPSB_INFO("Unloaded AMDTP driver"); } module_init(amdtp_init_module); module_exit(amdtp_exit_module); MODULE_ALIAS_CHARDEV(IEEE1394_MAJOR, IEEE1394_MINOR_BLOCK_AMDTP * 16); |