Linux Audio

Check our new training course

Embedded Linux Audio

Check our new training course
with Creative Commons CC-BY-SA
lecture materials

Bootlin logo

Elixir Cross Referencer

Loading...
   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
/* -*- c-basic-offset: 8 -*-
 *
 * amdtp.c - Audio and Music Data Transmission Protocol Driver
 * Copyright (C) 2001 Kristian Høgsberg
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software Foundation,
 * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
 */

/* OVERVIEW
 * --------
 *
 * The AMDTP driver is designed to expose the IEEE1394 bus as a
 * regular OSS soundcard, i.e. you can link /dev/dsp to /dev/amdtp and
 * then your favourite MP3 player, game or whatever sound program will
 * output to an IEEE1394 isochronous channel.  The signal destination
 * could be a set of IEEE1394 loudspeakers (if and when such things
 * become available) or an amplifier with IEEE1394 input (like the
 * Sony STR-LSA1).  The driver only handles the actual streaming, some
 * connection management is also required for this to actually work.
 * That is outside the scope of this driver, and furthermore it is not
 * really standardized yet.
 *
 * The Audio and Music Data Tranmission Protocol is available at
 *
 *     http://www.1394ta.org/Download/Technology/Specifications/2001/AM20Final-jf2.pdf
 *
 *
 * TODO
 * ----
 *
 * - We should be able to change input sample format between LE/BE, as
 *   we already shift the bytes around when we construct the iso
 *   packets.
 *
 * - Fix DMA stop after bus reset!
 *
 * - Clean up iso context handling in ohci1394.
 *
 *
 * MAYBE TODO
 * ----------
 *
 * - Receive data for local playback or recording.  Playback requires
 *   soft syncing with the sound card.
 *
 * - Signal processing, i.e. receive packets, do some processing, and
 *   transmit them again using the same packet structure and timestamps
 *   offset by processing time.
 *
 * - Maybe make an ALSA interface, that is, create a file_ops
 *   implementation that recognizes ALSA ioctls and uses defaults for
 *   things that can't be controlled through ALSA (iso channel).
 *
 *   Changes:
 *
 * - Audit copy_from_user in amdtp_write.
 *                           Daniele Bellucci <bellucda@tiscali.it>
 *
 */

#include <linux/module.h>
#include <linux/list.h>
#include <linux/sched.h>
#include <linux/types.h>
#include <linux/fs.h>
#include <linux/ioctl.h>
#include <linux/wait.h>
#include <linux/pci.h>
#include <linux/interrupt.h>
#include <linux/poll.h>
#include <linux/ioctl32.h>
#include <linux/compat.h>
#include <linux/cdev.h>
#include <asm/uaccess.h>
#include <asm/atomic.h>

#include "hosts.h"
#include "highlevel.h"
#include "ieee1394.h"
#include "ieee1394_core.h"
#include "ohci1394.h"

#include "amdtp.h"
#include "cmp.h"

#define FMT_AMDTP 0x10
#define FDF_AM824 0x00
#define FDF_SFC_32KHZ   0x00
#define FDF_SFC_44K1HZ  0x01
#define FDF_SFC_48KHZ   0x02
#define FDF_SFC_88K2HZ  0x03
#define FDF_SFC_96KHZ   0x04
#define FDF_SFC_176K4HZ 0x05
#define FDF_SFC_192KHZ  0x06

struct descriptor_block {
	struct output_more_immediate {
		u32 control;
		u32 pad0;
		u32 skip;
		u32 pad1;
		u32 header[4];
	} header_desc;

	struct output_last {
		u32 control;
		u32 data_address;
		u32 branch;
		u32 status;
	} payload_desc;
};

struct packet {
	struct descriptor_block *db;
	dma_addr_t db_bus;
	struct iso_packet *payload;
	dma_addr_t payload_bus;
};

#include <asm/byteorder.h>

#if defined __BIG_ENDIAN_BITFIELD

struct iso_packet {
	/* First quadlet */
	unsigned int dbs      : 8;
	unsigned int eoh0     : 2;
	unsigned int sid      : 6;

	unsigned int dbc      : 8;
	unsigned int fn       : 2;
	unsigned int qpc      : 3;
	unsigned int sph      : 1;
	unsigned int reserved : 2;

	/* Second quadlet */
	unsigned int fdf      : 8;
	unsigned int eoh1     : 2;
	unsigned int fmt      : 6;

	unsigned int syt      : 16;

        quadlet_t data[0];
};

#elif defined __LITTLE_ENDIAN_BITFIELD

struct iso_packet {
	/* First quadlet */
	unsigned int sid      : 6;
	unsigned int eoh0     : 2;
	unsigned int dbs      : 8;

	unsigned int reserved : 2;
	unsigned int sph      : 1;
	unsigned int qpc      : 3;
	unsigned int fn       : 2;
	unsigned int dbc      : 8;

	/* Second quadlet */
	unsigned int fmt      : 6;
	unsigned int eoh1     : 2;
	unsigned int fdf      : 8;

	unsigned int syt      : 16;

	quadlet_t data[0];
};

#else

#error Unknown bitfield type

#endif

struct fraction {
	int integer;
	int numerator;
	int denominator;
};

#define PACKET_LIST_SIZE 256
#define MAX_PACKET_LISTS 4

struct packet_list {
	struct list_head link;
	int last_cycle_count;
	struct packet packets[PACKET_LIST_SIZE];
};

#define BUFFER_SIZE 128

/* This implements a circular buffer for incoming samples. */

struct buffer {
	size_t head, tail, length, size;
	unsigned char data[0];
};

struct stream {
	int iso_channel;
	int format;
	int rate;
	int dimension;
	int fdf;
	int mode;
	int sample_format;
	struct cmp_pcr *opcr;

	/* Input samples are copied here. */
	struct buffer *input;

	/* ISO Packer state */
	unsigned char dbc;
	struct packet_list *current_packet_list;
	int current_packet;
	struct fraction ready_samples, samples_per_cycle;

	/* We use these to generate control bits when we are packing
	 * iec958 data.
	 */
	int iec958_frame_count;
	int iec958_rate_code;

	/* The cycle_count and cycle_offset fields are used for the
	 * synchronization timestamps (syt) in the cip header.  They
	 * are incremented by at least a cycle every time we put a
	 * time stamp in a packet.  As we don't time stamp all
	 * packages, cycle_count isn't updated in every cycle, and
	 * sometimes it's incremented by 2.  Thus, we have
	 * cycle_count2, which is simply incremented by one with each
	 * packet, so we can compare it to the transmission time
	 * written back in the dma programs.
	 */
	atomic_t cycle_count, cycle_count2;
	struct fraction cycle_offset, ticks_per_syt_offset;
	int syt_interval;
	int stale_count;

	/* Theses fields control the sample output to the DMA engine.
	 * The dma_packet_lists list holds packet lists currently
	 * queued for dma; the head of the list is currently being
	 * processed.  The last program in a packet list generates an
	 * interrupt, which removes the head from dma_packet_lists and
	 * puts it back on the free list.
	 */
	struct list_head dma_packet_lists;
	struct list_head free_packet_lists;
        wait_queue_head_t packet_list_wait;
	spinlock_t packet_list_lock;
	struct ohci1394_iso_tasklet iso_tasklet;
	struct pci_pool *descriptor_pool, *packet_pool;

	/* Streams at a host controller are chained through this field. */
	struct list_head link;
	struct amdtp_host *host;
};

struct amdtp_host {
	struct hpsb_host *host;
	struct ti_ohci *ohci;
	struct list_head stream_list;
	spinlock_t stream_list_lock;
};

static struct hpsb_highlevel amdtp_highlevel;


/* FIXME: This doesn't belong here... */

#define OHCI1394_CONTEXT_CYCLE_MATCH 0x80000000
#define OHCI1394_CONTEXT_RUN         0x00008000
#define OHCI1394_CONTEXT_WAKE        0x00001000
#define OHCI1394_CONTEXT_DEAD        0x00000800
#define OHCI1394_CONTEXT_ACTIVE      0x00000400

void ohci1394_start_it_ctx(struct ti_ohci *ohci, int ctx,
			   dma_addr_t first_cmd, int z, int cycle_match)
{
	reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, 1 << ctx);
	reg_write(ohci, OHCI1394_IsoXmitCommandPtr + ctx * 16, first_cmd | z);
	reg_write(ohci, OHCI1394_IsoXmitContextControlClear + ctx * 16, ~0);
	wmb();
	reg_write(ohci, OHCI1394_IsoXmitContextControlSet + ctx * 16,
		  OHCI1394_CONTEXT_CYCLE_MATCH | (cycle_match << 16) |
		  OHCI1394_CONTEXT_RUN);
}

void ohci1394_wake_it_ctx(struct ti_ohci *ohci, int ctx)
{
	reg_write(ohci, OHCI1394_IsoXmitContextControlSet + ctx * 16,
		  OHCI1394_CONTEXT_WAKE);
}

void ohci1394_stop_it_ctx(struct ti_ohci *ohci, int ctx, int synchronous)
{
	u32 control;
	int wait;

	reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, 1 << ctx);
	reg_write(ohci, OHCI1394_IsoXmitContextControlClear + ctx * 16,
		  OHCI1394_CONTEXT_RUN);
	wmb();

	if (synchronous) {
		for (wait = 0; wait < 5; wait++) {
			control = reg_read(ohci, OHCI1394_IsoXmitContextControlSet + ctx * 16);
			if ((control & OHCI1394_CONTEXT_ACTIVE) == 0)
				break;

			set_current_state(TASK_INTERRUPTIBLE);
			schedule_timeout(1);
		}
	}
}

/* Note: we can test if free_packet_lists is empty without aquiring
 * the packet_list_lock.  The interrupt handler only adds to the free
 * list, there is no race condition between testing the list non-empty
 * and acquiring the lock.
 */

static struct packet_list *stream_get_free_packet_list(struct stream *s)
{
	struct packet_list *pl;
	unsigned long flags;

	if (list_empty(&s->free_packet_lists))
		return NULL;

	spin_lock_irqsave(&s->packet_list_lock, flags);
	pl = list_entry(s->free_packet_lists.next, struct packet_list, link);
	list_del(&pl->link);
	spin_unlock_irqrestore(&s->packet_list_lock, flags);

	return pl;
}

static void stream_start_dma(struct stream *s, struct packet_list *pl)
{
	u32 syt_cycle, cycle_count, start_cycle;

	cycle_count = reg_read(s->host->ohci,
			       OHCI1394_IsochronousCycleTimer) >> 12;
	syt_cycle = (pl->last_cycle_count - PACKET_LIST_SIZE + 1) & 0x0f;

	/* We program the DMA controller to start transmission at
	 * least 17 cycles from now - this happens when the lower four
	 * bits of cycle_count is 0x0f and syt_cycle is 0, in this
	 * case the start cycle is cycle_count - 15 + 32. */
	start_cycle = (cycle_count & ~0x0f) + 32 + syt_cycle;
	if ((start_cycle & 0x1fff) >= 8000)
		start_cycle = start_cycle - 8000 + 0x2000;

	ohci1394_start_it_ctx(s->host->ohci, s->iso_tasklet.context,
			      pl->packets[0].db_bus, 3,
			      start_cycle & 0x7fff);
}

static void stream_put_dma_packet_list(struct stream *s,
				       struct packet_list *pl)
{
	unsigned long flags;
	struct packet_list *prev;

	/* Remember the cycle_count used for timestamping the last packet. */
	pl->last_cycle_count = atomic_read(&s->cycle_count2) - 1;
	pl->packets[PACKET_LIST_SIZE - 1].db->payload_desc.branch = 0;

	spin_lock_irqsave(&s->packet_list_lock, flags);
	list_add_tail(&pl->link, &s->dma_packet_lists);
	spin_unlock_irqrestore(&s->packet_list_lock, flags);

	prev = list_entry(pl->link.prev, struct packet_list, link);
	if (pl->link.prev != &s->dma_packet_lists) {
		struct packet *last = &prev->packets[PACKET_LIST_SIZE - 1];
		last->db->payload_desc.branch = pl->packets[0].db_bus | 3;
		last->db->header_desc.skip = pl->packets[0].db_bus | 3;
		ohci1394_wake_it_ctx(s->host->ohci, s->iso_tasklet.context);
	}
	else
		stream_start_dma(s, pl);
}

static void stream_shift_packet_lists(unsigned long l)
{
	struct stream *s = (struct stream *) l;
	struct packet_list *pl;
	struct packet *last;
	int diff;

	if (list_empty(&s->dma_packet_lists)) {
		HPSB_ERR("empty dma_packet_lists in %s", __FUNCTION__);
		return;
	}

	/* Now that we know the list is non-empty, we can get the head
	 * of the list without locking, because the process context
	 * only adds to the tail.
	 */
	pl = list_entry(s->dma_packet_lists.next, struct packet_list, link);
	last = &pl->packets[PACKET_LIST_SIZE - 1];

	/* This is weird... if we stop dma processing in the middle of
	 * a packet list, the dma context immediately generates an
	 * interrupt if we enable it again later.  This only happens
	 * when amdtp_release is interrupted while waiting for dma to
	 * complete, though.  Anyway, we detect this by seeing that
	 * the status of the dma descriptor that we expected an
	 * interrupt from is still 0.
	 */
	if (last->db->payload_desc.status == 0) {
		HPSB_INFO("weird interrupt...");
		return;
	}

	/* If the last descriptor block does not specify a branch
	 * address, we have a sample underflow.
	 */
	if (last->db->payload_desc.branch == 0)
		HPSB_INFO("FIXME: sample underflow...");

	/* Here we check when (which cycle) the last packet was sent
	 * and compare it to what the iso packer was using at the
	 * time.  If there is a mismatch, we adjust the cycle count in
	 * the iso packer.  However, there are still up to
	 * MAX_PACKET_LISTS packet lists queued with bad time stamps,
	 * so we disable time stamp monitoring for the next
	 * MAX_PACKET_LISTS packet lists.
	 */
	diff = (last->db->payload_desc.status - pl->last_cycle_count) & 0xf;
	if (diff > 0 && s->stale_count == 0) {
		atomic_add(diff, &s->cycle_count);
		atomic_add(diff, &s->cycle_count2);
		s->stale_count = MAX_PACKET_LISTS;
	}

	if (s->stale_count > 0)
		s->stale_count--;

	/* Finally, we move the packet list that was just processed
	 * back to the free list, and notify any waiters.
	 */
	spin_lock(&s->packet_list_lock);
	list_del(&pl->link);
	list_add_tail(&pl->link, &s->free_packet_lists);
	spin_unlock(&s->packet_list_lock);

	wake_up_interruptible(&s->packet_list_wait);
}

static struct packet *stream_current_packet(struct stream *s)
{
	if (s->current_packet_list == NULL &&
	    (s->current_packet_list = stream_get_free_packet_list(s)) == NULL)
		return NULL;

	return &s->current_packet_list->packets[s->current_packet];
}

static void stream_queue_packet(struct stream *s)
{
	s->current_packet++;
	if (s->current_packet == PACKET_LIST_SIZE) {
		stream_put_dma_packet_list(s, s->current_packet_list);
		s->current_packet_list = NULL;
		s->current_packet = 0;
	}
}

/* Integer fractional math.  When we transmit a 44k1Hz signal we must
 * send 5 41/80 samples per isochronous cycle, as these occur 8000
 * times a second.  Of course, we must send an integral number of
 * samples in a packet, so we use the integer math to alternate
 * between sending 5 and 6 samples per packet.
 */

static void fraction_init(struct fraction *f, int numerator, int denominator)
{
	f->integer = numerator / denominator;
	f->numerator = numerator % denominator;
	f->denominator = denominator;
}

static __inline__ void fraction_add(struct fraction *dst,
				    struct fraction *src1,
				    struct fraction *src2)
{
	/* assert: src1->denominator == src2->denominator */

	int sum, denom;

	/* We use these two local variables to allow gcc to optimize
	 * the division and the modulo into only one division. */

	sum = src1->numerator + src2->numerator;
	denom = src1->denominator;
	dst->integer = src1->integer + src2->integer + sum / denom;
	dst->numerator = sum % denom;
	dst->denominator = denom;
}

static __inline__ void fraction_sub_int(struct fraction *dst,
					struct fraction *src, int integer)
{
	dst->integer = src->integer - integer;
	dst->numerator = src->numerator;
	dst->denominator = src->denominator;
}

static __inline__ int fraction_floor(struct fraction *frac)
{
	return frac->integer;
}

static __inline__ int fraction_ceil(struct fraction *frac)
{
	return frac->integer + (frac->numerator > 0 ? 1 : 0);
}

void packet_initialize(struct packet *p, struct packet *next)
{
	/* Here we initialize the dma descriptor block for
	 * transferring one iso packet.  We use two descriptors per
	 * packet: an OUTPUT_MORE_IMMMEDIATE descriptor for the
	 * IEEE1394 iso packet header and an OUTPUT_LAST descriptor
	 * for the payload.
	 */

	p->db->header_desc.control =
		DMA_CTL_OUTPUT_MORE | DMA_CTL_IMMEDIATE | 8;

	if (next) {
		p->db->payload_desc.control =
			DMA_CTL_OUTPUT_LAST | DMA_CTL_BRANCH;
		p->db->payload_desc.branch = next->db_bus | 3;
		p->db->header_desc.skip = next->db_bus | 3;
	}
	else {
		p->db->payload_desc.control =
			DMA_CTL_OUTPUT_LAST | DMA_CTL_BRANCH |
			DMA_CTL_UPDATE | DMA_CTL_IRQ;
		p->db->payload_desc.branch = 0;
		p->db->header_desc.skip = 0;
	}
	p->db->payload_desc.data_address = p->payload_bus;
	p->db->payload_desc.status = 0;
}

struct packet_list *packet_list_alloc(struct stream *s)
{
	int i;
	struct packet_list *pl;
	struct packet *next;

	pl = kmalloc(sizeof *pl, SLAB_KERNEL);
	if (pl == NULL)
		return NULL;

	for (i = 0; i < PACKET_LIST_SIZE; i++) {
		struct packet *p = &pl->packets[i];
		p->db = pci_pool_alloc(s->descriptor_pool, SLAB_KERNEL,
				       &p->db_bus);
		p->payload = pci_pool_alloc(s->packet_pool, SLAB_KERNEL,
					    &p->payload_bus);
	}

	for (i = 0; i < PACKET_LIST_SIZE; i++) {
		if (i < PACKET_LIST_SIZE - 1)
			next = &pl->packets[i + 1];
		else
			next = NULL;
		packet_initialize(&pl->packets[i], next);
	}

	return pl;
}

void packet_list_free(struct packet_list *pl, struct stream *s)
{
	int i;

	for (i = 0; i < PACKET_LIST_SIZE; i++) {
		struct packet *p = &pl->packets[i];
		pci_pool_free(s->descriptor_pool, p->db, p->db_bus);
		pci_pool_free(s->packet_pool, p->payload, p->payload_bus);
	}
	kfree(pl);
}

static struct buffer *buffer_alloc(int size)
{
	struct buffer *b;

	b = kmalloc(sizeof *b + size, SLAB_KERNEL);
	if (b == NULL)
		return NULL;
	b->head = 0;
	b->tail = 0;
	b->length = 0;
	b->size = size;

	return b;
}

static unsigned char *buffer_get_bytes(struct buffer *buffer, int size)
{
	unsigned char *p;

	if (buffer->head + size > buffer->size)
		BUG();

	p = &buffer->data[buffer->head];
	buffer->head += size;
	if (buffer->head == buffer->size)
		buffer->head = 0;
	buffer->length -= size;

	return p;
}

static unsigned char *buffer_put_bytes(struct buffer *buffer,
				       size_t max, size_t *actual)
{
	size_t length;
	unsigned char *p;

	p = &buffer->data[buffer->tail];
	length = min(buffer->size - buffer->length, max);
	if (buffer->tail + length < buffer->size) {
		*actual = length;
		buffer->tail += length;
	}
	else {
		*actual = buffer->size - buffer->tail;
		 buffer->tail = 0;
	}

	buffer->length += *actual;
	return p;
}

static u32 get_iec958_header_bits(struct stream *s, int sub_frame, u32 sample)
{
	int csi, parity, shift;
	int block_start;
	u32 bits;

	switch (s->iec958_frame_count) {
	case 1:
		csi = s->format == AMDTP_FORMAT_IEC958_AC3;
		break;
	case 2:
	case 9:
		csi = 1;
		break;
	case 24 ... 27:
		csi = (s->iec958_rate_code >> (27 - s->iec958_frame_count)) & 0x01;
		break;
	default:
		csi = 0;
		break;
	}

	block_start = (s->iec958_frame_count == 0 && sub_frame == 0);

	/* The parity bit is the xor of the sample bits and the
	 * channel status info bit. */
	for (shift = 16, parity = sample ^ csi; shift > 0; shift >>= 1)
		parity ^= (parity >> shift);

	bits =  (block_start << 5) |		/* Block start bit */
		((sub_frame == 0) << 4) |	/* Subframe bit */
		((parity & 1) << 3) |		/* Parity bit */
		(csi << 2);			/* Channel status info bit */

	return bits;
}

static u32 get_header_bits(struct stream *s, int sub_frame, u32 sample)
{
	switch (s->format) {
	case AMDTP_FORMAT_IEC958_PCM:
	case AMDTP_FORMAT_IEC958_AC3:
		return get_iec958_header_bits(s, sub_frame, sample);

	case AMDTP_FORMAT_RAW:
		return 0x40;

	default:
		return 0;
	}
}

static void fill_payload_le16(struct stream *s, quadlet_t *data, int nevents)
{
	quadlet_t *event, sample, bits;
	unsigned char *p;
	int i, j;

	for (i = 0, event = data; i < nevents; i++) {

		for (j = 0; j < s->dimension; j++) {
			p = buffer_get_bytes(s->input, 2);
			sample = (p[1] << 16) | (p[0] << 8);
			bits = get_header_bits(s, j, sample);
			event[j] = cpu_to_be32((bits << 24) | sample);
		}

		event += s->dimension;
		if (++s->iec958_frame_count == 192)
			s->iec958_frame_count = 0;
	}
}

static void fill_packet(struct stream *s, struct packet *packet, int nevents)
{
	int syt_index, syt, size;
	u32 control;

	size = (nevents * s->dimension + 2) * sizeof(quadlet_t);

	/* Update DMA descriptors */
	packet->db->payload_desc.status = 0;
	control = packet->db->payload_desc.control & 0xffff0000;
	packet->db->payload_desc.control = control | size;

	/* Fill IEEE1394 headers */
	packet->db->header_desc.header[0] =
		(IEEE1394_SPEED_100 << 16) | (0x01 << 14) |
		(s->iso_channel << 8) | (TCODE_ISO_DATA << 4);
	packet->db->header_desc.header[1] = size << 16;

	/* Calculate synchronization timestamp (syt). First we
	 * determine syt_index, that is, the index in the packet of
	 * the sample for which the timestamp is valid. */
	syt_index = (s->syt_interval - s->dbc) & (s->syt_interval - 1);
	if (syt_index < nevents) {
		syt = ((atomic_read(&s->cycle_count) << 12) |
		       s->cycle_offset.integer) & 0xffff;
		fraction_add(&s->cycle_offset,
			     &s->cycle_offset, &s->ticks_per_syt_offset);

		/* This next addition should be modulo 8000 (0x1f40),
		 * but we only use the lower 4 bits of cycle_count, so
		 * we don't need the modulo. */
		atomic_add(s->cycle_offset.integer / 3072, &s->cycle_count);
		s->cycle_offset.integer %= 3072;
	}
	else
		syt = 0xffff;

	atomic_inc(&s->cycle_count2);

	/* Fill cip header */
	packet->payload->eoh0 = 0;
	packet->payload->sid = s->host->host->node_id & 0x3f;
	packet->payload->dbs = s->dimension;
	packet->payload->fn = 0;
	packet->payload->qpc = 0;
	packet->payload->sph = 0;
	packet->payload->reserved = 0;
	packet->payload->dbc = s->dbc;
	packet->payload->eoh1 = 2;
	packet->payload->fmt = FMT_AMDTP;
	packet->payload->fdf = s->fdf;
	packet->payload->syt = cpu_to_be16(syt);

	switch (s->sample_format) {
	case AMDTP_INPUT_LE16:
		fill_payload_le16(s, packet->payload->data, nevents);
		break;
	}

	s->dbc += nevents;
}

static void stream_flush(struct stream *s)
{
	struct packet *p;
	int nevents;
	struct fraction next;

	/* The AMDTP specifies two transmission modes: blocking and
	 * non-blocking.  In blocking mode you always transfer
	 * syt_interval or zero samples, whereas in non-blocking mode
	 * you send as many samples as you have available at transfer
	 * time.
	 *
	 * The fraction samples_per_cycle specifies the number of
	 * samples that become available per cycle.  We add this to
	 * the fraction ready_samples, which specifies the number of
	 * leftover samples from the previous transmission.  The sum,
	 * stored in the fraction next, specifies the number of
	 * samples available for transmission, and from this we
	 * determine the number of samples to actually transmit.
	 */

	while (1) {
		fraction_add(&next, &s->ready_samples, &s->samples_per_cycle);
		if (s->mode == AMDTP_MODE_BLOCKING) {
			if (fraction_floor(&next) >= s->syt_interval)
				nevents = s->syt_interval;
			else
				nevents = 0;
		}
		else
			nevents = fraction_floor(&next);

		p = stream_current_packet(s);
		if (s->input->length < nevents * s->dimension * 2 || p == NULL)
			break;

		fill_packet(s, p, nevents);
		stream_queue_packet(s);

		/* Now that we have successfully queued the packet for
		 * transmission, we update the fraction ready_samples. */
		fraction_sub_int(&s->ready_samples, &next, nevents);
	}
}

static int stream_alloc_packet_lists(struct stream *s)
{
	int max_nevents, max_packet_size, i;

	if (s->mode == AMDTP_MODE_BLOCKING)
		max_nevents = s->syt_interval;
	else
		max_nevents = fraction_ceil(&s->samples_per_cycle);

	max_packet_size = max_nevents * s->dimension * 4 + 8;
	s->packet_pool = pci_pool_create("packet pool", s->host->ohci->dev,
					 max_packet_size, 0, 0);

	if (s->packet_pool == NULL)
		return -1;

	INIT_LIST_HEAD(&s->free_packet_lists);
	INIT_LIST_HEAD(&s->dma_packet_lists);
	for (i = 0; i < MAX_PACKET_LISTS; i++) {
		struct packet_list *pl = packet_list_alloc(s);
		if (pl == NULL)
			break;
		list_add_tail(&pl->link, &s->free_packet_lists);
	}

	return i < MAX_PACKET_LISTS ? -1 : 0;
}

static void stream_free_packet_lists(struct stream *s)
{
	struct packet_list *packet_l, *packet_l_next;

	if (s->current_packet_list != NULL)
		packet_list_free(s->current_packet_list, s);
	list_for_each_entry_safe(packet_l, packet_l_next, &s->dma_packet_lists, link)
		packet_list_free(packet_l, s);
	list_for_each_entry_safe(packet_l, packet_l_next, &s->free_packet_lists, link)
		packet_list_free(packet_l, s);
	if (s->packet_pool != NULL)
		pci_pool_destroy(s->packet_pool);

	s->current_packet_list = NULL;
	INIT_LIST_HEAD(&s->free_packet_lists);
	INIT_LIST_HEAD(&s->dma_packet_lists);
	s->packet_pool = NULL;
}

static void plug_update(struct cmp_pcr *plug, void *data)
{
	struct stream *s = data;

	HPSB_INFO("plug update: p2p_count=%d, channel=%d",
		  plug->p2p_count, plug->channel);
	s->iso_channel = plug->channel;
	if (plug->p2p_count > 0) {
		struct packet_list *pl;

		pl = list_entry(s->dma_packet_lists.next, struct packet_list, link);
		stream_start_dma(s, pl);
	}
	else {
		ohci1394_stop_it_ctx(s->host->ohci, s->iso_tasklet.context, 0);
	}
}

static int stream_configure(struct stream *s, int cmd, struct amdtp_ioctl *cfg)
{
	const int transfer_delay = 9000;

	if (cfg->format <= AMDTP_FORMAT_IEC958_AC3)
		s->format = cfg->format;
	else
		return -EINVAL;

	switch (cfg->rate) {
	case 32000:
		s->syt_interval = 8;
		s->fdf = FDF_SFC_32KHZ;
		s->iec958_rate_code = 0x0c;
		break;
	case 44100:
		s->syt_interval = 8;
		s->fdf = FDF_SFC_44K1HZ;
		s->iec958_rate_code = 0x00;
		break;
	case 48000:
		s->syt_interval = 8;
		s->fdf = FDF_SFC_48KHZ;
		s->iec958_rate_code = 0x04;
		break;
	case 88200:
		s->syt_interval = 16;
		s->fdf = FDF_SFC_88K2HZ;
		s->iec958_rate_code = 0x00;
		break;
	case 96000:
		s->syt_interval = 16;
		s->fdf = FDF_SFC_96KHZ;
		s->iec958_rate_code = 0x00;
		break;
	case 176400:
		s->syt_interval = 32;
		s->fdf = FDF_SFC_176K4HZ;
		s->iec958_rate_code = 0x00;
		break;
	case 192000:
		s->syt_interval = 32;
		s->fdf = FDF_SFC_192KHZ;
		s->iec958_rate_code = 0x00;
		break;

	default:
		return -EINVAL;
	}

	s->rate = cfg->rate;
	fraction_init(&s->samples_per_cycle, s->rate, 8000);
	fraction_init(&s->ready_samples, 0, 8000);

	/* The ticks_per_syt_offset is initialized to the number of
	 * ticks between syt_interval events.  The number of ticks per
	 * second is 24.576e6, so the number of ticks between
	 * syt_interval events is 24.576e6 * syt_interval / rate.
	 */
	fraction_init(&s->ticks_per_syt_offset,
		      24576000 * s->syt_interval, s->rate);
	fraction_init(&s->cycle_offset, (transfer_delay % 3072) * s->rate, s->rate);
	atomic_set(&s->cycle_count, transfer_delay / 3072);
	atomic_set(&s->cycle_count2, 0);

	s->mode = cfg->mode;
	s->sample_format = AMDTP_INPUT_LE16;

	/* When using the AM824 raw subformat we can stream signals of
	 * any dimension.  The IEC958 subformat, however, only
	 * supports 2 channels.
	 */
	if (s->format == AMDTP_FORMAT_RAW || cfg->dimension == 2)
		s->dimension = cfg->dimension;
	else
		return -EINVAL;

	if (s->opcr != NULL) {
		cmp_unregister_opcr(s->host->host, s->opcr);
		s->opcr = NULL;
	}

	switch(cmd) {
	case AMDTP_IOC_PLUG:
		s->opcr = cmp_register_opcr(s->host->host, cfg->u.plug,
					   /*payload*/ 12, plug_update, s);
		if (s->opcr == NULL)
			return -EINVAL;
		s->iso_channel = s->opcr->channel;
		break;

	case AMDTP_IOC_CHANNEL:
		if (cfg->u.channel >= 0 && cfg->u.channel < 64)
			s->iso_channel = cfg->u.channel;
		else
			return -EINVAL;
		break;
	}

	/* The ioctl settings were all valid, so we realloc the packet
	 * lists to make sure the packet size is big enough.
	 */
	if (s->packet_pool != NULL)
		stream_free_packet_lists(s);

	if (stream_alloc_packet_lists(s) < 0) {
		stream_free_packet_lists(s);
		return -ENOMEM;
	}

	return 0;
}

struct stream *stream_alloc(struct amdtp_host *host)
{
	struct stream *s;
	unsigned long flags;

        s = kmalloc(sizeof(struct stream), SLAB_KERNEL);
        if (s == NULL)
                return NULL;

        memset(s, 0, sizeof(struct stream));
	s->host = host;

	s->input = buffer_alloc(BUFFER_SIZE);
	if (s->input == NULL) {
		kfree(s);
		return NULL;
	}

	s->descriptor_pool = pci_pool_create("descriptor pool", host->ohci->dev,
					     sizeof(struct descriptor_block),
					     16, 0);

	if (s->descriptor_pool == NULL) {
		kfree(s->input);
		kfree(s);
		return NULL;
	}

	INIT_LIST_HEAD(&s->free_packet_lists);
	INIT_LIST_HEAD(&s->dma_packet_lists);

        init_waitqueue_head(&s->packet_list_wait);
        spin_lock_init(&s->packet_list_lock);

	ohci1394_init_iso_tasklet(&s->iso_tasklet, OHCI_ISO_TRANSMIT,
				  stream_shift_packet_lists,
				  (unsigned long) s);

	if (ohci1394_register_iso_tasklet(host->ohci, &s->iso_tasklet) < 0) {
		pci_pool_destroy(s->descriptor_pool);
		kfree(s->input);
		kfree(s);
		return NULL;
	}

	spin_lock_irqsave(&host->stream_list_lock, flags);
	list_add_tail(&s->link, &host->stream_list);
	spin_unlock_irqrestore(&host->stream_list_lock, flags);

	return s;
}

void stream_free(struct stream *s)
{
	unsigned long flags;

	/* Stop the DMA.  We wait for the dma packet list to become
	 * empty and let the dma controller run out of programs.  This
	 * seems to be more reliable than stopping it directly, since
	 * that sometimes generates an it transmit interrupt if we
	 * later re-enable the context.
	 */
	wait_event_interruptible(s->packet_list_wait,
				 list_empty(&s->dma_packet_lists));

	ohci1394_stop_it_ctx(s->host->ohci, s->iso_tasklet.context, 1);
	ohci1394_unregister_iso_tasklet(s->host->ohci, &s->iso_tasklet);

	if (s->opcr != NULL)
		cmp_unregister_opcr(s->host->host, s->opcr);

	spin_lock_irqsave(&s->host->stream_list_lock, flags);
	list_del(&s->link);
	spin_unlock_irqrestore(&s->host->stream_list_lock, flags);

	kfree(s->input);

	stream_free_packet_lists(s);
	pci_pool_destroy(s->descriptor_pool);

	kfree(s);
}

/* File operations */

static ssize_t amdtp_write(struct file *file, const char __user *buffer, size_t count,
			   loff_t *offset_is_ignored)
{
	struct stream *s = file->private_data;
	unsigned char *p;
	int i;
	size_t length;

	if (s->packet_pool == NULL)
		return -EBADFD;

	/* Fill the circular buffer from the input buffer and call the
	 * iso packer when the buffer is full.  The iso packer may
	 * leave bytes in the buffer for two reasons: either the
	 * remaining bytes wasn't enough to build a new packet, or
	 * there were no free packet lists.  In the first case we
	 * re-fill the buffer and call the iso packer again or return
	 * if we used all the data from userspace.  In the second
	 * case, the wait_event_interruptible will block until the irq
	 * handler frees a packet list.
	 */

	for (i = 0; i < count; i += length) {
		p = buffer_put_bytes(s->input, count - i, &length);
		if (copy_from_user(p, buffer + i, length))
			return -EFAULT;
		if (s->input->length < s->input->size)
			continue;

		stream_flush(s);

		if (s->current_packet_list != NULL)
			continue;

		if (file->f_flags & O_NONBLOCK)
			return i + length > 0 ? i + length : -EAGAIN;

		if (wait_event_interruptible(s->packet_list_wait,
					     !list_empty(&s->free_packet_lists)))
			return -EINTR;
	}

	return count;
}

static long amdtp_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
{
	struct stream *s = file->private_data;
	struct amdtp_ioctl cfg;
	int err;
	lock_kernel();
	switch(cmd)
	{
	case AMDTP_IOC_PLUG:
	case AMDTP_IOC_CHANNEL:
		if (copy_from_user(&cfg, (struct amdtp_ioctl __user *) arg, sizeof cfg))
			err = -EFAULT;
		else
			err = stream_configure(s, cmd, &cfg);
		break;

	default:
		err = -EINVAL;
		break;
	}
	unlock_kernel();
	return err;
}

static unsigned int amdtp_poll(struct file *file, poll_table *pt)
{
	struct stream *s = file->private_data;

	poll_wait(file, &s->packet_list_wait, pt);

	if (!list_empty(&s->free_packet_lists))
		return POLLOUT | POLLWRNORM;
	else
		return 0;
}

static int amdtp_open(struct inode *inode, struct file *file)
{
	struct amdtp_host *host;
	int i = ieee1394_file_to_instance(file);

	host = hpsb_get_hostinfo_bykey(&amdtp_highlevel, i);
	if (host == NULL)
		return -ENODEV;

	file->private_data = stream_alloc(host);
	if (file->private_data == NULL)
		return -ENOMEM;

	return 0;
}

static int amdtp_release(struct inode *inode, struct file *file)
{
	struct stream *s = file->private_data;

	stream_free(s);

	return 0;
}

static struct cdev amdtp_cdev;
static struct file_operations amdtp_fops =
{
	.owner =	THIS_MODULE,
	.write =	amdtp_write,
	.poll =		amdtp_poll,
	.unlocked_ioctl = amdtp_ioctl,
	.compat_ioctl = amdtp_ioctl, /* All amdtp ioctls are compatible */
	.open =		amdtp_open,
	.release =	amdtp_release
};

/* IEEE1394 Subsystem functions */

static void amdtp_add_host(struct hpsb_host *host)
{
	struct amdtp_host *ah;
	int minor;

	if (strcmp(host->driver->name, OHCI1394_DRIVER_NAME) != 0)
		return;

	ah = hpsb_create_hostinfo(&amdtp_highlevel, host, sizeof(*ah));
	if (!ah) {
		HPSB_ERR("amdtp: Unable able to alloc hostinfo");
		return;
	}

	ah->host = host;
	ah->ohci = host->hostdata;

	hpsb_set_hostinfo_key(&amdtp_highlevel, host, ah->host->id);

	minor = IEEE1394_MINOR_BLOCK_AMDTP * 16 + ah->host->id;

	INIT_LIST_HEAD(&ah->stream_list);
	spin_lock_init(&ah->stream_list_lock);

	devfs_mk_cdev(MKDEV(IEEE1394_MAJOR, minor),
			S_IFCHR|S_IRUSR|S_IWUSR, "amdtp/%d", ah->host->id);
}

static void amdtp_remove_host(struct hpsb_host *host)
{
	struct amdtp_host *ah = hpsb_get_hostinfo(&amdtp_highlevel, host);

	if (ah)
		devfs_remove("amdtp/%d", ah->host->id);

	return;
}

static struct hpsb_highlevel amdtp_highlevel = {
	.name =		"amdtp",
	.add_host =	amdtp_add_host,
	.remove_host =	amdtp_remove_host,
};

/* Module interface */

MODULE_AUTHOR("Kristian Hogsberg <hogsberg@users.sf.net>");
MODULE_DESCRIPTION("Driver for Audio & Music Data Transmission Protocol "
		   "on OHCI boards.");
MODULE_SUPPORTED_DEVICE("amdtp");
MODULE_LICENSE("GPL");

static int __init amdtp_init_module (void)
{
	cdev_init(&amdtp_cdev, &amdtp_fops);
	amdtp_cdev.owner = THIS_MODULE;
	kobject_set_name(&amdtp_cdev.kobj, "amdtp");
	if (cdev_add(&amdtp_cdev, IEEE1394_AMDTP_DEV, 16)) {
		HPSB_ERR("amdtp: unable to add char device");
 		return -EIO;
 	}

	devfs_mk_dir("amdtp");

	hpsb_register_highlevel(&amdtp_highlevel);

	HPSB_INFO("Loaded AMDTP driver");

	return 0;
}

static void __exit amdtp_exit_module (void)
{
        hpsb_unregister_highlevel(&amdtp_highlevel);
	devfs_remove("amdtp");
	cdev_del(&amdtp_cdev);

	HPSB_INFO("Unloaded AMDTP driver");
}

module_init(amdtp_init_module);
module_exit(amdtp_exit_module);
MODULE_ALIAS_CHARDEV(IEEE1394_MAJOR, IEEE1394_MINOR_BLOCK_AMDTP * 16);