Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 | /* * arch/sh/drivers/dma/dma-api.c * * SuperH-specific DMA management API * * Copyright (C) 2003, 2004 Paul Mundt * * This file is subject to the terms and conditions of the GNU General Public * License. See the file "COPYING" in the main directory of this archive * for more details. */ #include <linux/init.h> #include <linux/module.h> #include <linux/interrupt.h> #include <linux/spinlock.h> #include <linux/proc_fs.h> #include <linux/list.h> #include <asm/dma.h> spinlock_t dma_spin_lock = SPIN_LOCK_UNLOCKED; static LIST_HEAD(registered_dmac_list); /* * A brief note about the reasons for this API as it stands. * * For starters, the old ISA DMA API didn't work for us for a number of * reasons, for one, the vast majority of channels on the SH DMAC are * dual-address mode only, and both the new and the old DMA APIs are after the * concept of managing a DMA buffer, which doesn't overly fit this model very * well. In addition to which, the new API is largely geared at IOMMUs and * GARTs, and doesn't even support the channel notion very well. * * The other thing that's a marginal issue, is the sheer number of random DMA * engines that are present (ie, in boards like the Dreamcast), some of which * cascade off of the SH DMAC, and others do not. As such, there was a real * need for a scalable subsystem that could deal with both single and * dual-address mode usage, in addition to interoperating with cascaded DMACs. * * There really isn't any reason why this needs to be SH specific, though I'm * not aware of too many other processors (with the exception of some MIPS) * that have the same concept of a dual address mode, or any real desire to * actually make use of the DMAC even if such a subsystem were exposed * elsewhere. * * The idea for this was derived from the ARM port, which acted as an excellent * reference when trying to address these issues. * * It should also be noted that the decision to add Yet Another DMA API(tm) to * the kernel wasn't made easily, and was only decided upon after conferring * with jejb with regards to the state of the old and new APIs as they applied * to these circumstances. Philip Blundell was also a great help in figuring * out some single-address mode DMA semantics that were otherwise rather * confusing. */ struct dma_info *get_dma_info(unsigned int chan) { struct list_head *pos, *tmp; unsigned int total = 0; /* * Look for each DMAC's range to determine who the owner of * the channel is. */ list_for_each_safe(pos, tmp, ®istered_dmac_list) { struct dma_info *info = list_entry(pos, struct dma_info, list); total += info->nr_channels; if (chan > total) continue; return info; } return NULL; } struct dma_channel *get_dma_channel(unsigned int chan) { struct dma_info *info = get_dma_info(chan); if (!info) return ERR_PTR(-EINVAL); return info->channels + chan; } int get_dma_residue(unsigned int chan) { struct dma_info *info = get_dma_info(chan); struct dma_channel *channel = &info->channels[chan]; if (info->ops->get_residue) return info->ops->get_residue(channel); return 0; } int request_dma(unsigned int chan, const char *dev_id) { struct dma_info *info = get_dma_info(chan); struct dma_channel *channel = &info->channels[chan]; down(&channel->sem); if (!info->ops || chan >= MAX_DMA_CHANNELS) { up(&channel->sem); return -EINVAL; } atomic_set(&channel->busy, 1); strlcpy(channel->dev_id, dev_id, sizeof(channel->dev_id)); up(&channel->sem); if (info->ops->request) return info->ops->request(channel); return 0; } void free_dma(unsigned int chan) { struct dma_info *info = get_dma_info(chan); struct dma_channel *channel = &info->channels[chan]; if (info->ops->free) info->ops->free(channel); atomic_set(&channel->busy, 0); } void dma_wait_for_completion(unsigned int chan) { struct dma_info *info = get_dma_info(chan); struct dma_channel *channel = &info->channels[chan]; if (channel->flags & DMA_TEI_CAPABLE) { wait_event(channel->wait_queue, (info->ops->get_residue(channel) == 0)); return; } while (info->ops->get_residue(channel)) cpu_relax(); } void dma_configure_channel(unsigned int chan, unsigned long flags) { struct dma_info *info = get_dma_info(chan); struct dma_channel *channel = &info->channels[chan]; if (info->ops->configure) info->ops->configure(channel, flags); } int dma_xfer(unsigned int chan, unsigned long from, unsigned long to, size_t size, unsigned int mode) { struct dma_info *info = get_dma_info(chan); struct dma_channel *channel = &info->channels[chan]; channel->sar = from; channel->dar = to; channel->count = size; channel->mode = mode; return info->ops->xfer(channel); } #ifdef CONFIG_PROC_FS static int dma_read_proc(char *buf, char **start, off_t off, int len, int *eof, void *data) { struct list_head *pos, *tmp; char *p = buf; if (list_empty(®istered_dmac_list)) return 0; /* * Iterate over each registered DMAC */ list_for_each_safe(pos, tmp, ®istered_dmac_list) { struct dma_info *info = list_entry(pos, struct dma_info, list); int i; /* * Iterate over each channel */ for (i = 0; i < info->nr_channels; i++) { struct dma_channel *channel = info->channels + i; if (!(channel->flags & DMA_CONFIGURED)) continue; p += sprintf(p, "%2d: %14s %s\n", i, info->name, channel->dev_id); } } return p - buf; } #endif int __init register_dmac(struct dma_info *info) { int i; INIT_LIST_HEAD(&info->list); printk(KERN_INFO "DMA: Registering %s handler (%d channel%s).\n", info->name, info->nr_channels, info->nr_channels > 1 ? "s" : ""); BUG_ON((info->flags & DMAC_CHANNELS_CONFIGURED) && !info->channels); /* * Don't touch pre-configured channels */ if (!(info->flags & DMAC_CHANNELS_CONFIGURED)) { unsigned int size; size = sizeof(struct dma_channel) * info->nr_channels; info->channels = kmalloc(size, GFP_KERNEL); if (!info->channels) return -ENOMEM; memset(info->channels, 0, size); } for (i = 0; i < info->nr_channels; i++) { struct dma_channel *chan = info->channels + i; chan->chan = i; memcpy(chan->dev_id, "Unused", 7); if (info->flags & DMAC_CHANNELS_TEI_CAPABLE) chan->flags |= DMA_TEI_CAPABLE; init_MUTEX(&chan->sem); init_waitqueue_head(&chan->wait_queue); #ifdef CONFIG_SYSFS dma_create_sysfs_files(chan); #endif } list_add(&info->list, ®istered_dmac_list); return 0; } void __exit unregister_dmac(struct dma_info *info) { if (!(info->flags & DMAC_CHANNELS_CONFIGURED)) kfree(info->channels); list_del(&info->list); } static int __init dma_api_init(void) { printk("DMA: Registering DMA API.\n"); #ifdef CONFIG_PROC_FS create_proc_read_entry("dma", 0, 0, dma_read_proc, 0); #endif return 0; } subsys_initcall(dma_api_init); MODULE_AUTHOR("Paul Mundt <lethal@linux-sh.org>"); MODULE_DESCRIPTION("DMA API for SuperH"); MODULE_LICENSE("GPL"); EXPORT_SYMBOL(request_dma); EXPORT_SYMBOL(free_dma); EXPORT_SYMBOL(register_dmac); EXPORT_SYMBOL(get_dma_residue); EXPORT_SYMBOL(get_dma_info); EXPORT_SYMBOL(get_dma_channel); EXPORT_SYMBOL(dma_xfer); EXPORT_SYMBOL(dma_wait_for_completion); EXPORT_SYMBOL(dma_configure_channel); |