Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 | # # Character device configuration # menu "Character devices" config VT bool "Virtual terminal" if EMBEDDED select INPUT default y ---help--- If you say Y here, you will get support for terminal devices with display and keyboard devices. These are called "virtual" because you can run several virtual terminals (also called virtual consoles) on one physical terminal. This is rather useful, for example one virtual terminal can collect system messages and warnings, another one can be used for a text-mode user session, and a third could run an X session, all in parallel. Switching between virtual terminals is done with certain key combinations, usually Alt-<function key>. The setterm command ("man setterm") can be used to change the properties (such as colors or beeping) of a virtual terminal. The man page console_codes(4) ("man console_codes") contains the special character sequences that can be used to change those properties directly. The fonts used on virtual terminals can be changed with the setfont ("man setfont") command and the key bindings are defined with the loadkeys ("man loadkeys") command. You need at least one virtual terminal device in order to make use of your keyboard and monitor. Therefore, only people configuring an embedded system would want to say N here in order to save some memory; the only way to log into such a system is then via a serial or network connection. If unsure, say Y, or else you won't be able to do much with your new shiny Linux system :-) config VT_CONSOLE bool "Support for console on virtual terminal" if EMBEDDED depends on VT default y ---help--- The system console is the device which receives all kernel messages and warnings and which allows logins in single user mode. If you answer Y here, a virtual terminal (the device used to interact with a physical terminal) can be used as system console. This is the most common mode of operations, so you should say Y here unless you want the kernel messages be output only to a serial port (in which case you should say Y to "Console on serial port", below). If you do say Y here, by default the currently visible virtual terminal (/dev/tty0) will be used as system console. You can change that with a kernel command line option such as "console=tty3" which would use the third virtual terminal as system console. (Try "man bootparam" or see the documentation of your boot loader (lilo or loadlin) about how to pass options to the kernel at boot time.) If unsure, say Y. config HW_CONSOLE bool depends on VT && !S390 && !UM default y config SERIAL_NONSTANDARD bool "Non-standard serial port support" ---help--- Say Y here if you have any non-standard serial boards -- boards which aren't supported using the standard "dumb" serial driver. This includes intelligent serial boards such as Cyclades, Digiboards, etc. These are usually used for systems that need many serial ports because they serve many terminals or dial-in connections. Note that the answer to this question won't directly affect the kernel: saying N will just cause the configurator to skip all the questions about non-standard serial boards. Most people can say N here. config COMPUTONE tristate "Computone IntelliPort Plus serial support" depends on SERIAL_NONSTANDARD && BROKEN_ON_SMP ---help--- This driver supports the entire family of Intelliport II/Plus controllers with the exception of the MicroChannel controllers and products previous to the Intelliport II. These are multiport cards, which give you many serial ports. You would need something like this to connect more than two modems to your Linux box, for instance in order to become a dial-in server. If you have a card like that, say Y here and read <file:Documentation/computone.txt>. To compile this driver as modules, choose M here: the modules will be called ip2 and ip2main. config ROCKETPORT tristate "Comtrol RocketPort support" depends on SERIAL_NONSTANDARD help This driver supports Comtrol RocketPort and RocketModem PCI boards. These boards provide 2, 4, 8, 16, or 32 high-speed serial ports or modems. For information about the RocketPort/RocketModem boards and this driver read <file:Documentation/rocket.txt>. To compile this driver as a module, choose M here: the module will be called rocket. If you want to compile this driver into the kernel, say Y here. If you don't have a Comtrol RocketPort/RocketModem card installed, say N. config CYCLADES tristate "Cyclades async mux support" depends on SERIAL_NONSTANDARD && BROKEN_ON_SMP ---help--- This is a driver for a card that gives you many serial ports. You would need something like this to connect more than two modems to your Linux box, for instance in order to become a dial-in server. For information about the Cyclades-Z card, read <file:drivers/char/README.cycladesZ>. As of 1.3.9x kernels, this driver's minor numbers start at 0 instead of 32. To compile this driver as a module, choose M here: the module will be called cyclades. If you haven't heard about it, it's safe to say N. config CYZ_INTR bool "Cyclades-Z interrupt mode operation (EXPERIMENTAL)" depends on EXPERIMENTAL && CYCLADES help The Cyclades-Z family of multiport cards allows 2 (two) driver op modes: polling and interrupt. In polling mode, the driver will check the status of the Cyclades-Z ports every certain amount of time (which is called polling cycle and is configurable). In interrupt mode, it will use an interrupt line (IRQ) in order to check the status of the Cyclades-Z ports. The default op mode is polling. If unsure, say N. config DIGIEPCA tristate "Digiboard Intelligent Async Support" depends on SERIAL_NONSTANDARD && BROKEN_ON_SMP ---help--- This is a driver for Digi International's Xx, Xeve, and Xem series of cards which provide multiple serial ports. You would need something like this to connect more than two modems to your Linux box, for instance in order to become a dial-in server. This driver supports the original PC (ISA) boards as well as PCI, and EISA. If you have a card like this, say Y here and read the file <file:Documentation/digiepca.txt>. NOTE: There is another, separate driver for the Digiboard PC boards: "Digiboard PC/Xx Support" below. You should (and can) only select one of the two drivers. To compile this driver as a module, choose M here: the module will be called epca. config DIGI tristate "Digiboard PC/Xx Support" depends on SERIAL_NONSTANDARD && DIGIEPCA=n && BROKEN_ON_SMP help This is a driver for the Digiboard PC/Xe, PC/Xi, and PC/Xeve cards that give you many serial ports. You would need something like this to connect more than two modems to your Linux box, for instance in order to become a dial-in server. If you have a card like that, say Y here and read the file <file:Documentation/digiboard.txt>. To compile this driver as a module, choose M here: the module will be called pcxx. config ESPSERIAL tristate "Hayes ESP serial port support" depends on SERIAL_NONSTANDARD && ISA && BROKEN_ON_SMP help This is a driver which supports Hayes ESP serial ports. Both single port cards and multiport cards are supported. Make sure to read <file:Documentation/hayes-esp.txt>. To compile this driver as a module, choose M here: the module will be called esp. If unsure, say N. config MOXA_INTELLIO tristate "Moxa Intellio support" depends on SERIAL_NONSTANDARD && BROKEN_ON_SMP help Say Y here if you have a Moxa Intellio multiport serial card. To compile this driver as a module, choose M here: the module will be called moxa. config MOXA_SMARTIO tristate "Moxa SmartIO support" depends on SERIAL_NONSTANDARD && BROKEN_ON_SMP help Say Y here if you have a Moxa SmartIO multiport serial card. This driver can also be built as a module ( = code which can be inserted in and removed from the running kernel whenever you want). The module will be called mxser. If you want to do that, say M here. config ISI tristate "Multi-Tech multiport card support (EXPERIMENTAL)" depends on SERIAL_NONSTANDARD && EXPERIMENTAL && BROKEN_ON_SMP && m help This is a driver for the Multi-Tech cards which provide several serial ports. The driver is experimental and can currently only be built as a module. The module will be called isicom. If you want to do that, choose M here. config SYNCLINK tristate "Microgate SyncLink card support" depends on SERIAL_NONSTANDARD help Provides support for the SyncLink ISA and PCI multiprotocol serial adapters. These adapters support asynchronous and HDLC bit synchronous communication up to 10Mbps (PCI adapter). This driver can only be built as a module ( = code which can be inserted in and removed from the running kernel whenever you want). The module will be called synclink. If you want to do that, say M here. config SYNCLINKMP tristate "SyncLink Multiport support" depends on SERIAL_NONSTANDARD help Enable support for the SyncLink Multiport (2 or 4 ports) serial adapter, running asynchronous and HDLC communications up to 2.048Mbps. Each ports is independently selectable for RS-232, V.35, RS-449, RS-530, and X.21 This driver may be built as a module ( = code which can be inserted in and removed from the running kernel whenever you want). The module will be called synclinkmp. If you want to do that, say M here. config N_HDLC tristate "HDLC line discipline support" depends on SERIAL_NONSTANDARD help Allows synchronous HDLC communications with tty device drivers that support synchronous HDLC such as the Microgate SyncLink adapter. This driver can only be built as a module ( = code which can be inserted in and removed from the running kernel whenever you want). The module will be called n_hdlc. If you want to do that, say M here. config RISCOM8 tristate "SDL RISCom/8 card support" depends on SERIAL_NONSTANDARD && BROKEN_ON_SMP help This is a driver for the SDL Communications RISCom/8 multiport card, which gives you many serial ports. You would need something like this to connect more than two modems to your Linux box, for instance in order to become a dial-in server. If you have a card like that, say Y here and read the file <file:Documentation/riscom8.txt>. Also it's possible to say M here and compile this driver as kernel loadable module; the module will be called riscom8. config SPECIALIX tristate "Specialix IO8+ card support" depends on SERIAL_NONSTANDARD && BROKEN_ON_SMP help This is a driver for the Specialix IO8+ multiport card (both the ISA and the PCI version) which gives you many serial ports. You would need something like this to connect more than two modems to your Linux box, for instance in order to become a dial-in server. If you have a card like that, say Y here and read the file <file:Documentation/specialix.txt>. Also it's possible to say M here and compile this driver as kernel loadable module which will be called specialix. config SPECIALIX_RTSCTS bool "Specialix DTR/RTS pin is RTS" depends on SPECIALIX help The Specialix IO8+ card can only support either RTS or DTR. If you say N here, the driver will use the pin as "DTR" when the tty is in software handshake mode. If you say Y here or hardware handshake is on, it will always be RTS. Read the file <file:Documentation/specialix.txt> for more information. config SX tristate "Specialix SX (and SI) card support" depends on SERIAL_NONSTANDARD && BROKEN_ON_SMP help This is a driver for the SX and SI multiport serial cards. Please read the file <file:Documentation/sx.txt> for details. This driver can only be built as a module ( = code which can be inserted in and removed from the running kernel whenever you want). The module will be called sx. If you want to do that, say M here. config RIO tristate "Specialix RIO system support" depends on SERIAL_NONSTANDARD && BROKEN_ON_SMP help This is a driver for the Specialix RIO, a smart serial card which drives an outboard box that can support up to 128 ports. Product information is at <http://www.sphinxcst.co.uk/perle/multi.htm>. There are both ISA and PCI versions. config RIO_OLDPCI bool "Support really old RIO/PCI cards" depends on RIO help Older RIO PCI cards need some initialization-time configuration to determine the IRQ and some control addresses. If you have a RIO and this doesn't seem to work, try setting this to Y. config STALDRV bool "Stallion multiport serial support" depends on SERIAL_NONSTANDARD help Stallion cards give you many serial ports. You would need something like this to connect more than two modems to your Linux box, for instance in order to become a dial-in server. If you say Y here, you will be asked for your specific card model in the next questions. Make sure to read <file:Documentation/stallion.txt> in this case. If you have never heard about all this, it's safe to say N. config STALLION tristate "Stallion EasyIO or EC8/32 support" depends on STALDRV && BROKEN_ON_SMP help If you have an EasyIO or EasyConnection 8/32 multiport Stallion card, then this is for you; say Y. Make sure to read <file:Documentation/stallion.txt>. To compile this driver as a module, choose M here: the module will be called stallion. config ISTALLION tristate "Stallion EC8/64, ONboard, Brumby support" depends on STALDRV && BROKEN_ON_SMP help If you have an EasyConnection 8/64, ONboard, Brumby or Stallion serial multiport card, say Y here. Make sure to read <file:Documentation/stallion.txt>. To compile this driver as a module, choose M here: the module will be called istallion. config SERIAL_TX3912 bool "TMPTX3912/PR31700 serial port support" depends on SERIAL_NONSTANDARD && MIPS && BROKEN_ON_SMP help The TX3912 is a Toshiba RISC processor based o the MIPS 3900 core; see <http://www.toshiba.com/taec/components/Generic/risc/tx3912.htm>. Say Y here to enable kernel support for the on-board serial port. config SERIAL_TX3912_CONSOLE bool "Console on TMPTX3912/PR31700 serial port" depends on SERIAL_TX3912 help The TX3912 is a Toshiba RISC processor based o the MIPS 3900 core; see <http://www.toshiba.com/taec/components/Generic/risc/tx3912.htm>. Say Y here to direct console I/O to the on-board serial port. config AU1000_UART bool "Enable Au1000 UART Support" depends on SERIAL_NONSTANDARD && MIPS help If you have an Alchemy AU1000 processor (MIPS based) and you want to use serial ports, say Y. Otherwise, say N. config SGI_L1_SERIAL bool "SGI Altix L1 serial support" depends on SERIAL_NONSTANDARD && IA64 help If you have an SGI Altix and you want to use the serial port connected to the system controller (you want this!), say Y. Otherwise, say N. config SGI_L1_SERIAL_CONSOLE bool "SGI Altix L1 serial console support" depends on SGI_L1_SERIAL help If you have an SGI Altix and you would like to use the system controller serial port as your console (you want this!), say Y. Otherwise, say N. config AU1000_SERIAL_CONSOLE bool "Enable Au1000 serial console" depends on AU1000_UART help If you have an Alchemy AU1000 processor (MIPS based) and you want to use a console on a serial port, say Y. Otherwise, say N. config QTRONIX_KEYBOARD bool "Enable Qtronix 990P Keyboard Support" depends on IT8712 help Images of Qtronix keyboards are at <http://www.qtronix.com/keyboard.html>. config IT8172_CIR bool depends on QTRONIX_KEYBOARD default y config IT8172_SCR0 bool "Enable Smart Card Reader 0 Support " depends on IT8712 help Say Y here to support smart-card reader 0 (SCR0) on the Integrated Technology Express, Inc. ITE8172 SBC. Vendor page at <http://www.ite.com.tw/ia/brief_it8172bsp.htm>; picture of the board at <http://www.mvista.com/allies/semiconductor/ite.html>. config IT8172_SCR1 bool "Enable Smart Card Reader 1 Support " depends on IT8712 help Say Y here to support smart-card reader 1 (SCR1) on the Integrated Technology Express, Inc. ITE8172 SBC. Vendor page at <http://www.ite.com.tw/ia/brief_it8172bsp.htm>; picture of the board at <http://www.mvista.com/allies/semiconductor/ite.html>. config A2232 tristate "Commodore A2232 serial support (EXPERIMENTAL)" depends on EXPERIMENTAL && ZORRO && BROKEN_ON_SMP ---help--- This option supports the 2232 7-port serial card shipped with the Amiga 2000 and other Zorro-bus machines, dating from 1989. At a max of 19,200 bps, the ports are served by a 6551 ACIA UART chip each, plus a 8520 CIA, and a master 6502 CPU and buffer as well. The ports were connected with 8 pin DIN connectors on the card bracket, for which 8 pin to DB25 adapters were supplied. The card also had jumpers internally to toggle various pinning configurations. This driver can be built as a module; but then "generic_serial" will also be built as a module. This has to be loaded before "ser_a2232". If you want to do this, answer M here. source "drivers/serial/Kconfig" config UNIX98_PTYS bool "Unix98 PTY support" ---help--- A pseudo terminal (PTY) is a software device consisting of two halves: a master and a slave. The slave device behaves identical to a physical terminal; the master device is used by a process to read data from and write data to the slave, thereby emulating a terminal. Typical programs for the master side are telnet servers and xterms. Linux has traditionally used the BSD-like names /dev/ptyxx for masters and /dev/ttyxx for slaves of pseudo terminals. This scheme has a number of problems. The GNU C library glibc 2.1 and later, however, supports the Unix98 naming standard: in order to acquire a pseudo terminal, a process opens /dev/ptmx; the number of the pseudo terminal is then made available to the process and the pseudo terminal slave can be accessed as /dev/pts/<number>. What was traditionally /dev/ttyp2 will then be /dev/pts/2, for example. The entries in /dev/pts/ are created on the fly by a virtual file system; therefore, if you say Y here you should say Y to "/dev/pts file system for Unix98 PTYs" as well. If you want to say Y here, you need to have the C library glibc 2.1 or later (equal to libc-6.1, check with "ls -l /lib/libc.so.*"). Read the instructions in <file:Documentation/Changes> pertaining to pseudo terminals. It's safe to say N. config UNIX98_PTY_COUNT int "Maximum number of Unix98 PTYs in use (0-2048)" depends on UNIX98_PTYS default "256" help The maximum number of Unix98 PTYs that can be used at any one time. The default is 256, and should be enough for desktop systems. Server machines which support incoming telnet/rlogin/ssh connections and/or serve several X terminals may want to increase this: every incoming connection and every xterm uses up one PTY. When not in use, each additional set of 256 PTYs occupy approximately 8 KB of kernel memory on 32-bit architectures. config PRINTER tristate "Parallel printer support" depends on PARPORT ---help--- If you intend to attach a printer to the parallel port of your Linux box (as opposed to using a serial printer; if the connector at the printer has 9 or 25 holes ["female"], then it's serial), say Y. Also read the Printing-HOWTO, available from <http://www.tldp.org/docs.html#howto>. It is possible to share one parallel port among several devices (e.g. printer and ZIP drive) and it is safe to compile the corresponding drivers into the kernel. To compile this driver as a module, choose M here and read <file:Documentation/parport.txt>. The module will be called lp. If you have several parallel ports, you can specify which ports to use with the "lp" kernel command line option. (Try "man bootparam" or see the documentation of your boot loader (lilo or loadlin) about how to pass options to the kernel at boot time.) The syntax of the "lp" command line option can be found in <file:drivers/char/lp.c>. If you have more than 8 printers, you need to increase the LP_NO macro in lp.c and the PARPORT_MAX macro in parport.h. config LP_CONSOLE bool "Support for console on line printer" depends on PRINTER ---help--- If you want kernel messages to be printed out as they occur, you can have a console on the printer. This option adds support for doing that; to actually get it to happen you need to pass the option "console=lp0" to the kernel at boot time. If the printer is out of paper (or off, or unplugged, or too busy..) the kernel will stall until the printer is ready again. By defining CONSOLE_LP_STRICT to 0 (at your own risk) you can make the kernel continue when this happens, but it'll lose the kernel messages. If unsure, say N. config PPDEV tristate "Support for user-space parallel port device drivers" depends on PARPORT ---help--- Saying Y to this adds support for /dev/parport device nodes. This is needed for programs that want portable access to the parallel port, for instance deviceid (which displays Plug-and-Play device IDs). This is the parallel port equivalent of SCSI generic support (sg). It is safe to say N to this -- it is not needed for normal printing or parallel port CD-ROM/disk support. To compile this driver as a module, choose M here: the module will be called ppdev. If unsure, say N. config TIPAR tristate "Texas Instruments parallel link cable support" depends on PARPORT ---help--- If you own a Texas Instruments graphing calculator and use a parallel link cable, then you might be interested in this driver. If you enable this driver, you will be able to communicate with your calculator through a set of device nodes under /dev. The main advantage of this driver is that you don't have to be root to use this precise link cable (depending on the permissions on the device nodes, though). To compile this driver as a module, choose M here: the module will be called tipar. If you don't know what a parallel link cable is or what a Texas Instruments graphing calculator is, then you probably don't need this driver. If unsure, say N. config HVC_CONSOLE bool "pSeries Hypervisor Virtual Console support" depends on PPC_PSERIES help pSeries machines when partitioned support a hypervisor virtual console. This driver allows each pSeries partition to have a console which is accessed via the HMC. config PC9800_OLDLP tristate "NEC PC-9800 old-style printer port support" depends on X86_PC9800 && !PARPORT ---help--- If you intend to attach a printer to the parallel port of NEC PC-9801 /PC-9821 with OLD compatibility mode, Say Y. config PC9800_OLDLP_CONSOLE bool "Support for console on line printer" depends on PC9800_OLDLP source "drivers/i2c/Kconfig" menu "Mice" config BUSMOUSE tristate "Bus Mouse Support" ---help--- Say Y here if your machine has a bus mouse as opposed to a serial mouse. Most people have a regular serial MouseSystem or Microsoft mouse (made by Logitech) that plugs into a COM port (rectangular with 9 or 25 pins). These people say N here. If you have a laptop, you either have to check the documentation or experiment a bit to find out whether the trackball is a serial mouse or not; it's best to say Y here for you. This is the generic bus mouse driver code. If you have a bus mouse, you will have to say Y here and also to the specific driver for your mouse below. To compile this driver as a module, choose M here: the module will be called busmouse. endmenu config QIC02_TAPE tristate "QIC-02 tape support" help If you have a non-SCSI tape drive like that, say Y. To compile this driver as a module, choose M here: the module will be called tpqic02. config QIC02_DYNCONF bool "Do you want runtime configuration for QIC-02" depends on QIC02_TAPE help You can either configure this driver once and for all by editing a header file (<file:include/linux/tpqic02.h>), in which case you should say N, or you can fetch a program via anonymous FTP which is able to configure this driver during runtime. The program to do this is called 'qic02conf' and it is part of the tpqic02-support-X.Y.tar.gz support package. If you want to use the qic02conf program, say Y. comment "Edit configuration parameters in ./include/linux/tpqic02.h!" depends on QIC02_TAPE && !QIC02_DYNCONF comment "Setting runtime QIC-02 configuration is done with qic02conf" depends on QIC02_TAPE && QIC02_DYNCONF comment "from the tpqic02-support package. It is available at" depends on QIC02_TAPE && QIC02_DYNCONF comment "metalab.unc.edu or ftp://titus.cfw.com/pub/Linux/util/" depends on QIC02_TAPE && QIC02_DYNCONF source "drivers/char/ipmi/Kconfig" source "drivers/char/watchdog/Kconfig" config DS1620 tristate "NetWinder thermometer support" depends on ARCH_NETWINDER help Say Y here to include support for the thermal management hardware found in the NetWinder. This driver allows the user to control the temperature set points and to read the current temperature. It is also possible to say M here to build it as a module (ds1620) It is recommended to be used on a NetWinder, but it is not a necessity. config NWBUTTON tristate "NetWinder Button" depends on ARCH_NETWINDER ---help--- If you say Y here and create a character device node /dev/nwbutton with major and minor numbers 10 and 158 ("man mknod"), then every time the orange button is pressed a number of times, the number of times the button was pressed will be written to that device. This is most useful for applications, as yet unwritten, which perform actions based on how many times the button is pressed in a row. Do not hold the button down for too long, as the driver does not alter the behaviour of the hardware reset circuitry attached to the button; it will still execute a hard reset if the button is held down for longer than approximately five seconds. To compile this driver as a module, choose M here: the module will be called nwbutton. Most people will answer Y to this question and "Reboot Using Button" below to be able to initiate a system shutdown from the button. config NWBUTTON_REBOOT bool "Reboot Using Button" depends on NWBUTTON help If you say Y here, then you will be able to initiate a system shutdown and reboot by pressing the orange button a number of times. The number of presses to initiate the shutdown is two by default, but this can be altered by modifying the value of NUM_PRESSES_REBOOT in nwbutton.h and recompiling the driver or, if you compile the driver as a module, you can specify the number of presses at load time with "insmod button reboot_count=<something>". config NWFLASH tristate "NetWinder flash support" depends on ARCH_NETWINDER ---help--- If you say Y here and create a character device /dev/flash with major 10 and minor 160 you can manipulate the flash ROM containing the NetWinder firmware. Be careful as accidentally overwriting the flash contents can render your computer unbootable. On no account allow random users access to this device. :-) To compile this driver as a module, choose M here: the module will be called nwflash. If you're not sure, say N. config HW_RANDOM tristate "Intel/AMD/VIA HW Random Number Generator support" depends on (X86 || IA64) && PCI ---help--- This driver provides kernel-side support for the Random Number Generator hardware found on Intel i8xx-based motherboards, AMD 76x-based motherboards, and Via Nehemiah CPUs. Provides a character driver, used to read() entropy data. To compile this driver as a module, choose M here: the module will be called hw_random. If unsure, say N. config NVRAM tristate "/dev/nvram support" ---help--- If you say Y here and create a character special file /dev/nvram with major number 10 and minor number 144 using mknod ("man mknod"), you get read and write access to the extra bytes of non-volatile memory in the real time clock (RTC), which is contained in every PC and most Ataris. The actual number of bytes varies, depending on the nvram in the system, but is usually 114 (128-14 for the RTC). This memory is conventionally called "CMOS RAM" on PCs and "NVRAM" on Ataris. /dev/nvram may be used to view settings there, or to change them (with some utility). It could also be used to frequently save a few bits of very important data that may not be lost over power-off and for which writing to disk is too insecure. Note however that most NVRAM space in a PC belongs to the BIOS and you should NEVER idly tamper with it. See Ralf Brown's interrupt list for a guide to the use of CMOS bytes by your BIOS. On Atari machines, /dev/nvram is always configured and does not need to be selected. To compile this driver as a module, choose M here: the module will be called nvram. config RTC tristate "Enhanced Real Time Clock Support" depends on !PPC32 && !PARISC && !IA64 && !X86_PC9800 ---help--- If you say Y here and create a character special file /dev/rtc with major number 10 and minor number 135 using mknod ("man mknod"), you will get access to the real time clock (or hardware clock) built into your computer. Every PC has such a clock built in. It can be used to generate signals from as low as 1Hz up to 8192Hz, and can also be used as a 24 hour alarm. It reports status information via the file /proc/driver/rtc and its behaviour is set by various ioctls on /dev/rtc. If you run Linux on a multiprocessor machine and said Y to "Symmetric Multi Processing" above, you should say Y here to read and set the RTC in an SMP compatible fashion. If you think you have a use for such a device (such as periodic data sampling), then say Y here, and read <file:Documentation/rtc.txt> for details. To compile this driver as a module, choose M here: the module will be called rtc. config GEN_RTC tristate "Generic /dev/rtc emulation" depends on RTC!=y ---help--- If you say Y here and create a character special file /dev/rtc with major number 10 and minor number 135 using mknod ("man mknod"), you will get access to the real time clock (or hardware clock) built into your computer. It reports status information via the file /proc/driver/rtc and its behaviour is set by various ioctls on /dev/rtc. If you enable the "extended RTC operation" below it will also provide an emulation for RTC_UIE which is required by some programs and may improve precision in some cases. To compile this driver as a module, choose M here: the module will be called genrtc. To load the module automatically add 'alias char-major-10-135 genrtc' to your /etc/modules.conf config GEN_RTC_X bool "Extended RTC operation" depends on GEN_RTC help Provides an emulation for RTC_UIE which is required by some programs and may improve precision of the generic RTC support in some cases. config EFI_RTC bool "EFI Real Time Clock Services" depends on IA64 config RTC98 tristate "NEC PC-9800 Real Time Clock Support" depends on X86_PC9800 default y ---help--- If you say Y here and create a character special file /dev/rtc with major number 10 and minor number 135 using mknod ("man mknod"), you will get access to the real time clock (or hardware clock) built config H8 bool "Tadpole ANA H8 Support (OBSOLETE)" depends on OBSOLETE && ALPHA_BOOK1 help The Hitachi H8/337 is a microcontroller used to deal with the power and thermal environment. If you say Y here, you will be able to communicate with it via a character special device. If unsure, say N. config DTLK tristate "Double Talk PC internal speech card support" help This driver is for the DoubleTalk PC, a speech synthesizer manufactured by RC Systems (<http://www.rcsys.com/>). It is also called the `internal DoubleTalk'. To compile this driver as a module, choose M here: the module will be called dtlk. config R3964 tristate "Siemens R3964 line discipline" ---help--- This driver allows synchronous communication with devices using the Siemens R3964 packet protocol. Unless you are dealing with special hardware like PLCs, you are unlikely to need this. To compile this driver as a module, choose M here: the module will be called n_r3964. If unsure, say N. config APPLICOM tristate "Applicom intelligent fieldbus card support" ---help--- This driver provides the kernel-side support for the intelligent fieldbus cards made by Applicom International. More information about these cards can be found on the WWW at the address <http://www.applicom-int.com/>, or by email from David Woodhouse <dwmw2@infradead.org>. To compile this driver as a module, choose M here: the module will be called applicom. If unsure, say N. config SONYPI tristate "Sony Vaio Programmable I/O Control Device support (EXPERIMENTAL)" depends on EXPERIMENTAL && X86 && PCI && !64BIT ---help--- This driver enables access to the Sony Programmable I/O Control Device which can be found in many (all ?) Sony Vaio laptops. If you have one of those laptops, read <file:Documentation/sonypi.txt>, and say Y or M here. To compile this driver as a module, choose M here: the module will be called sonypi. menu "Ftape, the floppy tape device driver" config FTAPE tristate "Ftape (QIC-80/Travan) support" depends on BROKEN_ON_SMP ---help--- If you have a tape drive that is connected to your floppy controller, say Y here. Some tape drives (like the Seagate "Tape Store 3200" or the Iomega "Ditto 3200" or the Exabyte "Eagle TR-3") come with a "high speed" controller of their own. These drives (and their companion controllers) are also supported if you say Y here. If you have a special controller (such as the CMS FC-10, FC-20, Mountain Mach-II, or any controller that is based on the Intel 82078 FDC like the high speed controllers by Seagate and Exabyte and Iomega's "Ditto Dash") you must configure it by selecting the appropriate entries from the "Floppy tape controllers" sub-menu below and possibly modify the default values for the IRQ and DMA channel and the IO base in ftape's configuration menu. If you want to use your floppy tape drive on a PCI-bus based system, please read the file <file:drivers/char/ftape/README.PCI>. The ftape kernel driver is also available as a runtime loadable module. To compile this driver as a module, choose M here: the module will be called ftape. Note that the Ftape-HOWTO is out of date (sorry) and documents the older version 2.08 of this software but still contains useful information. There is a web page with more recent documentation at <http://www.instmath.rwth-aachen.de/~heine/ftape/>. This page always contains the latest release of the ftape driver and useful information (backup software, ftape related patches and documentation, FAQ). Note that the file system interface has changed quite a bit compared to previous versions of ftape. Please read <file:Documentation/ftape.txt>. source "drivers/char/ftape/Kconfig" endmenu source "drivers/char/agp/Kconfig" source "drivers/char/drm/Kconfig" source "drivers/char/pcmcia/Kconfig" config MWAVE tristate "ACP Modem (Mwave) support" depends on X86 select SERIAL_8250 ---help--- The ACP modem (Mwave) for Linux is a WinModem. It is composed of a kernel driver and a user level application. Together these components support direct attachment to public switched telephone networks (PSTNs) and support selected world wide countries. This version of the ACP Modem driver supports the IBM Thinkpad 600E, 600, and 770 that include on board ACP modem hardware. The modem also supports the standard communications port interface (ttySx) and is compatible with the Hayes AT Command Set. The user level application needed to use this driver can be found at the IBM Linux Technology Center (LTC) web site: <http://www.ibm.com/linux/ltc/>. If you own one of the above IBM Thinkpads which has the Mwave chipset in it, say Y. To compile this driver as a module, choose M here: the module will be called mwave. config SCx200_GPIO tristate "NatSemi SCx200 GPIO Support" depends on SCx200 help Give userspace access to the GPIO pins on the National Semiconductor SCx200 processors. If compiled as a module, it will be called scx200_gpio. config RAW_DRIVER tristate "RAW driver (/dev/raw/rawN)" help The raw driver permits block devices to be bound to /dev/raw/rawN. Once bound, I/O against /dev/raw/rawN uses efficient zero-copy I/O. See the raw(8) manpage for more details. config MAX_RAW_DEVS int "Maximum number of RAW devices to support (1-8192)" depends on RAW_DRIVER default "256" help The maximum number of RAW devices that are supported. Default is 256. Increase this number in case you need lots of raw devices. config HANGCHECK_TIMER tristate "Hangcheck timer" depends on X86_64 || X86 help The hangcheck-timer module detects when the system has gone out to lunch past a certain margin. It can reboot the system or merely print a warning. endmenu |