Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ MOTOROLA MICROPROCESSOR & MEMORY TECHNOLOGY GROUP M68000 Hi-Performance Microprocessor Division M68060 Software Package Production Release P1.00 -- October 10, 1994 M68060 Software Package Copyright © 1993, 1994 Motorola Inc. All rights reserved. THE SOFTWARE is provided on an "AS IS" basis and without warranty. To the maximum extent permitted by applicable law, MOTOROLA DISCLAIMS ALL WARRANTIES WHETHER EXPRESS OR IMPLIED, INCLUDING IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE and any warranty against infringement with regard to the SOFTWARE (INCLUDING ANY MODIFIED VERSIONS THEREOF) and any accompanying written materials. To the maximum extent permitted by applicable law, IN NO EVENT SHALL MOTOROLA BE LIABLE FOR ANY DAMAGES WHATSOEVER (INCLUDING WITHOUT LIMITATION, DAMAGES FOR LOSS OF BUSINESS PROFITS, BUSINESS INTERRUPTION, LOSS OF BUSINESS INFORMATION, OR OTHER PECUNIARY LOSS) ARISING OF THE USE OR INABILITY TO USE THE SOFTWARE. Motorola assumes no responsibility for the maintenance and support of the SOFTWARE. You are hereby granted a copyright license to use, modify, and distribute the SOFTWARE so long as this entire notice is retained without alteration in any modified and/or redistributed versions, and that such modified versions are clearly identified as such. No licenses are granted by implication, estoppel or otherwise under any patents or trademarks of Motorola, Inc. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # litop.s: # This file is appended to the top of the 060FPLSP package # and contains the entry points into the package. The user, in # effect, branches to one of the branch table entries located here. # bra.l _060LSP__idivs64_ short 0x0000 bra.l _060LSP__idivu64_ short 0x0000 bra.l _060LSP__imuls64_ short 0x0000 bra.l _060LSP__imulu64_ short 0x0000 bra.l _060LSP__cmp2_Ab_ short 0x0000 bra.l _060LSP__cmp2_Aw_ short 0x0000 bra.l _060LSP__cmp2_Al_ short 0x0000 bra.l _060LSP__cmp2_Db_ short 0x0000 bra.l _060LSP__cmp2_Dw_ short 0x0000 bra.l _060LSP__cmp2_Dl_ short 0x0000 # leave room for future possible aditions. align 0x200 ######################################################################### # XDEF **************************************************************** # # _060LSP__idivu64_(): Emulate 64-bit unsigned div instruction. # # _060LSP__idivs64_(): Emulate 64-bit signed div instruction. # # # # This is the library version which is accessed as a subroutine # # and therefore does not work exactly like the 680X0 div{s,u}.l # # 64-bit divide instruction. # # # # XREF **************************************************************** # # None. # # # # INPUT *************************************************************** # # 0x4(sp) = divisor # # 0x8(sp) = hi(dividend) # # 0xc(sp) = lo(dividend) # # 0x10(sp) = pointer to location to place quotient/remainder # # # # OUTPUT ************************************************************** # # 0x10(sp) = points to location of remainder/quotient. # # remainder is in first longword, quotient is in 2nd. # # # # ALGORITHM *********************************************************** # # If the operands are signed, make them unsigned and save the # # sign info for later. Separate out special cases like divide-by-zero # # or 32-bit divides if possible. Else, use a special math algorithm # # to calculate the result. # # Restore sign info if signed instruction. Set the condition # # codes before performing the final "rts". If the divisor was equal to # # zero, then perform a divide-by-zero using a 16-bit implemented # # divide instruction. This way, the operating system can record that # # the event occurred even though it may not point to the correct place. # # # ######################################################################### set POSNEG, -1 set NDIVISOR, -2 set NDIVIDEND, -3 set DDSECOND, -4 set DDNORMAL, -8 set DDQUOTIENT, -12 set DIV64_CC, -16 ########## # divs.l # ########## global _060LSP__idivs64_ _060LSP__idivs64_: # PROLOGUE BEGIN ######################################################## link.w %a6,&-16 movm.l &0x3f00,-(%sp) # save d2-d7 # fmovm.l &0x0,-(%sp) # save no fpregs # PROLOGUE END ########################################################## mov.w %cc,DIV64_CC(%a6) st POSNEG(%a6) # signed operation bra.b ldiv64_cont ########## # divu.l # ########## global _060LSP__idivu64_ _060LSP__idivu64_: # PROLOGUE BEGIN ######################################################## link.w %a6,&-16 movm.l &0x3f00,-(%sp) # save d2-d7 # fmovm.l &0x0,-(%sp) # save no fpregs # PROLOGUE END ########################################################## mov.w %cc,DIV64_CC(%a6) sf POSNEG(%a6) # unsigned operation ldiv64_cont: mov.l 0x8(%a6),%d7 # fetch divisor beq.w ldiv64eq0 # divisor is = 0!!! mov.l 0xc(%a6), %d5 # get dividend hi mov.l 0x10(%a6), %d6 # get dividend lo # separate signed and unsigned divide tst.b POSNEG(%a6) # signed or unsigned? beq.b ldspecialcases # use positive divide # save the sign of the divisor # make divisor unsigned if it's negative tst.l %d7 # chk sign of divisor slt NDIVISOR(%a6) # save sign of divisor bpl.b ldsgndividend neg.l %d7 # complement negative divisor # save the sign of the dividend # make dividend unsigned if it's negative ldsgndividend: tst.l %d5 # chk sign of hi(dividend) slt NDIVIDEND(%a6) # save sign of dividend bpl.b ldspecialcases mov.w &0x0, %cc # clear 'X' cc bit negx.l %d6 # complement signed dividend negx.l %d5 # extract some special cases: # - is (dividend == 0) ? # - is (hi(dividend) == 0 && (divisor <= lo(dividend))) ? (32-bit div) ldspecialcases: tst.l %d5 # is (hi(dividend) == 0) bne.b ldnormaldivide # no, so try it the long way tst.l %d6 # is (lo(dividend) == 0), too beq.w lddone # yes, so (dividend == 0) cmp.l %d7,%d6 # is (divisor <= lo(dividend)) bls.b ld32bitdivide # yes, so use 32 bit divide exg %d5,%d6 # q = 0, r = dividend bra.w ldivfinish # can't divide, we're done. ld32bitdivide: tdivu.l %d7, %d5:%d6 # it's only a 32/32 bit div! bra.b ldivfinish ldnormaldivide: # last special case: # - is hi(dividend) >= divisor ? if yes, then overflow cmp.l %d7,%d5 bls.b lddovf # answer won't fit in 32 bits # perform the divide algorithm: bsr.l ldclassical # do int divide # separate into signed and unsigned finishes. ldivfinish: tst.b POSNEG(%a6) # do divs, divu separately beq.b lddone # divu has no processing!!! # it was a divs.l, so ccode setting is a little more complicated... tst.b NDIVIDEND(%a6) # remainder has same sign beq.b ldcc # as dividend. neg.l %d5 # sgn(rem) = sgn(dividend) ldcc: mov.b NDIVISOR(%a6), %d0 eor.b %d0, NDIVIDEND(%a6) # chk if quotient is negative beq.b ldqpos # branch to quot positive # 0x80000000 is the largest number representable as a 32-bit negative # number. the negative of 0x80000000 is 0x80000000. cmpi.l %d6, &0x80000000 # will (-quot) fit in 32 bits? bhi.b lddovf neg.l %d6 # make (-quot) 2's comp bra.b lddone ldqpos: btst &0x1f, %d6 # will (+quot) fit in 32 bits? bne.b lddovf lddone: # if the register numbers are the same, only the quotient gets saved. # so, if we always save the quotient second, we save ourselves a cmp&beq andi.w &0x10,DIV64_CC(%a6) mov.w DIV64_CC(%a6),%cc tst.l %d6 # may set 'N' ccode bit # here, the result is in d1 and d0. the current strategy is to save # the values at the location pointed to by a0. # use movm here to not disturb the condition codes. ldexit: movm.l &0x0060,([0x14,%a6]) # save result # EPILOGUE BEGIN ######################################################## # fmovm.l (%sp)+,&0x0 # restore no fpregs movm.l (%sp)+,&0x00fc # restore d2-d7 unlk %a6 # EPILOGUE END ########################################################## rts # the result should be the unchanged dividend lddovf: mov.l 0xc(%a6), %d5 # get dividend hi mov.l 0x10(%a6), %d6 # get dividend lo andi.w &0x1c,DIV64_CC(%a6) ori.w &0x02,DIV64_CC(%a6) # set 'V' ccode bit mov.w DIV64_CC(%a6),%cc bra.b ldexit ldiv64eq0: mov.l 0xc(%a6),([0x14,%a6]) mov.l 0x10(%a6),([0x14,%a6],0x4) mov.w DIV64_CC(%a6),%cc # EPILOGUE BEGIN ######################################################## # fmovm.l (%sp)+,&0x0 # restore no fpregs movm.l (%sp)+,&0x00fc # restore d2-d7 unlk %a6 # EPILOGUE END ########################################################## divu.w &0x0,%d0 # force a divbyzero exception rts ########################################################################### ######################################################################### # This routine uses the 'classical' Algorithm D from Donald Knuth's # # Art of Computer Programming, vol II, Seminumerical Algorithms. # # For this implementation b=2**16, and the target is U1U2U3U4/V1V2, # # where U,V are words of the quadword dividend and longword divisor, # # and U1, V1 are the most significant words. # # # # The most sig. longword of the 64 bit dividend must be in %d5, least # # in %d6. The divisor must be in the variable ddivisor, and the # # signed/unsigned flag ddusign must be set (0=unsigned,1=signed). # # The quotient is returned in %d6, remainder in %d5, unless the # # v (overflow) bit is set in the saved %ccr. If overflow, the dividend # # is unchanged. # ######################################################################### ldclassical: # if the divisor msw is 0, use simpler algorithm then the full blown # one at ddknuth: cmpi.l %d7, &0xffff bhi.b lddknuth # go use D. Knuth algorithm # Since the divisor is only a word (and larger than the mslw of the dividend), # a simpler algorithm may be used : # In the general case, four quotient words would be created by # dividing the divisor word into each dividend word. In this case, # the first two quotient words must be zero, or overflow would occur. # Since we already checked this case above, we can treat the most significant # longword of the dividend as (0) remainder (see Knuth) and merely complete # the last two divisions to get a quotient longword and word remainder: clr.l %d1 swap %d5 # same as r*b if previous step rqd swap %d6 # get u3 to lsw position mov.w %d6, %d5 # rb + u3 divu.w %d7, %d5 mov.w %d5, %d1 # first quotient word swap %d6 # get u4 mov.w %d6, %d5 # rb + u4 divu.w %d7, %d5 swap %d1 mov.w %d5, %d1 # 2nd quotient 'digit' clr.w %d5 swap %d5 # now remainder mov.l %d1, %d6 # and quotient rts lddknuth: # In this algorithm, the divisor is treated as a 2 digit (word) number # which is divided into a 3 digit (word) dividend to get one quotient # digit (word). After subtraction, the dividend is shifted and the # process repeated. Before beginning, the divisor and quotient are # 'normalized' so that the process of estimating the quotient digit # will yield verifiably correct results.. clr.l DDNORMAL(%a6) # count of shifts for normalization clr.b DDSECOND(%a6) # clear flag for quotient digits clr.l %d1 # %d1 will hold trial quotient lddnchk: btst &31, %d7 # must we normalize? first word of bne.b lddnormalized # divisor (V1) must be >= 65536/2 addq.l &0x1, DDNORMAL(%a6) # count normalization shifts lsl.l &0x1, %d7 # shift the divisor lsl.l &0x1, %d6 # shift u4,u3 with overflow to u2 roxl.l &0x1, %d5 # shift u1,u2 bra.w lddnchk lddnormalized: # Now calculate an estimate of the quotient words (msw first, then lsw). # The comments use subscripts for the first quotient digit determination. mov.l %d7, %d3 # divisor mov.l %d5, %d2 # dividend mslw swap %d2 swap %d3 cmp.w %d2, %d3 # V1 = U1 ? bne.b lddqcalc1 mov.w &0xffff, %d1 # use max trial quotient word bra.b lddadj0 lddqcalc1: mov.l %d5, %d1 divu.w %d3, %d1 # use quotient of mslw/msw andi.l &0x0000ffff, %d1 # zero any remainder lddadj0: # now test the trial quotient and adjust. This step plus the # normalization assures (according to Knuth) that the trial # quotient will be at worst 1 too large. mov.l %d6, -(%sp) clr.w %d6 # word u3 left swap %d6 # in lsw position lddadj1: mov.l %d7, %d3 mov.l %d1, %d2 mulu.w %d7, %d2 # V2q swap %d3 mulu.w %d1, %d3 # V1q mov.l %d5, %d4 # U1U2 sub.l %d3, %d4 # U1U2 - V1q swap %d4 mov.w %d4,%d0 mov.w %d6,%d4 # insert lower word (U3) tst.w %d0 # is upper word set? bne.w lddadjd1 # add.l %d6, %d4 # (U1U2 - V1q) + U3 cmp.l %d2, %d4 bls.b lddadjd1 # is V2q > (U1U2-V1q) + U3 ? subq.l &0x1, %d1 # yes, decrement and recheck bra.b lddadj1 lddadjd1: # now test the word by multiplying it by the divisor (V1V2) and comparing # the 3 digit (word) result with the current dividend words mov.l %d5, -(%sp) # save %d5 (%d6 already saved) mov.l %d1, %d6 swap %d6 # shift answer to ms 3 words mov.l %d7, %d5 bsr.l ldmm2 mov.l %d5, %d2 # now %d2,%d3 are trial*divisor mov.l %d6, %d3 mov.l (%sp)+, %d5 # restore dividend mov.l (%sp)+, %d6 sub.l %d3, %d6 subx.l %d2, %d5 # subtract double precision bcc ldd2nd # no carry, do next quotient digit subq.l &0x1, %d1 # q is one too large # need to add back divisor longword to current ms 3 digits of dividend # - according to Knuth, this is done only 2 out of 65536 times for random # divisor, dividend selection. clr.l %d2 mov.l %d7, %d3 swap %d3 clr.w %d3 # %d3 now ls word of divisor add.l %d3, %d6 # aligned with 3rd word of dividend addx.l %d2, %d5 mov.l %d7, %d3 clr.w %d3 # %d3 now ms word of divisor swap %d3 # aligned with 2nd word of dividend add.l %d3, %d5 ldd2nd: tst.b DDSECOND(%a6) # both q words done? bne.b lddremain # first quotient digit now correct. store digit and shift the # (subtracted) dividend mov.w %d1, DDQUOTIENT(%a6) clr.l %d1 swap %d5 swap %d6 mov.w %d6, %d5 clr.w %d6 st DDSECOND(%a6) # second digit bra.w lddnormalized lddremain: # add 2nd word to quotient, get the remainder. mov.w %d1, DDQUOTIENT+2(%a6) # shift down one word/digit to renormalize remainder. mov.w %d5, %d6 swap %d6 swap %d5 mov.l DDNORMAL(%a6), %d7 # get norm shift count beq.b lddrn subq.l &0x1, %d7 # set for loop count lddnlp: lsr.l &0x1, %d5 # shift into %d6 roxr.l &0x1, %d6 dbf %d7, lddnlp lddrn: mov.l %d6, %d5 # remainder mov.l DDQUOTIENT(%a6), %d6 # quotient rts ldmm2: # factors for the 32X32->64 multiplication are in %d5 and %d6. # returns 64 bit result in %d5 (hi) %d6(lo). # destroys %d2,%d3,%d4. # multiply hi,lo words of each factor to get 4 intermediate products mov.l %d6, %d2 mov.l %d6, %d3 mov.l %d5, %d4 swap %d3 swap %d4 mulu.w %d5, %d6 # %d6 <- lsw*lsw mulu.w %d3, %d5 # %d5 <- msw-dest*lsw-source mulu.w %d4, %d2 # %d2 <- msw-source*lsw-dest mulu.w %d4, %d3 # %d3 <- msw*msw # now use swap and addx to consolidate to two longwords clr.l %d4 swap %d6 add.w %d5, %d6 # add msw of l*l to lsw of m*l product addx.w %d4, %d3 # add any carry to m*m product add.w %d2, %d6 # add in lsw of other m*l product addx.w %d4, %d3 # add any carry to m*m product swap %d6 # %d6 is low 32 bits of final product clr.w %d5 clr.w %d2 # lsw of two mixed products used, swap %d5 # now use msws of longwords swap %d2 add.l %d2, %d5 add.l %d3, %d5 # %d5 now ms 32 bits of final product rts ######################################################################### # XDEF **************************************************************** # # _060LSP__imulu64_(): Emulate 64-bit unsigned mul instruction # # _060LSP__imuls64_(): Emulate 64-bit signed mul instruction. # # # # This is the library version which is accessed as a subroutine # # and therefore does not work exactly like the 680X0 mul{s,u}.l # # 64-bit multiply instruction. # # # # XREF **************************************************************** # # None # # # # INPUT *************************************************************** # # 0x4(sp) = multiplier # # 0x8(sp) = multiplicand # # 0xc(sp) = pointer to location to place 64-bit result # # # # OUTPUT ************************************************************** # # 0xc(sp) = points to location of 64-bit result # # # # ALGORITHM *********************************************************** # # Perform the multiply in pieces using 16x16->32 unsigned # # multiplies and "add" instructions. # # Set the condition codes as appropriate before performing an # # "rts". # # # ######################################################################### set MUL64_CC, -4 global _060LSP__imulu64_ _060LSP__imulu64_: # PROLOGUE BEGIN ######################################################## link.w %a6,&-4 movm.l &0x3800,-(%sp) # save d2-d4 # fmovm.l &0x0,-(%sp) # save no fpregs # PROLOGUE END ########################################################## mov.w %cc,MUL64_CC(%a6) # save incoming ccodes mov.l 0x8(%a6),%d0 # store multiplier in d0 beq.w mulu64_zero # handle zero separately mov.l 0xc(%a6),%d1 # get multiplicand in d1 beq.w mulu64_zero # handle zero separately ######################################################################### # 63 32 0 # # ---------------------------- # # | hi(mplier) * hi(mplicand)| # # ---------------------------- # # ----------------------------- # # | hi(mplier) * lo(mplicand) | # # ----------------------------- # # ----------------------------- # # | lo(mplier) * hi(mplicand) | # # ----------------------------- # # | ----------------------------- # # --|-- | lo(mplier) * lo(mplicand) | # # | ----------------------------- # # ======================================================== # # -------------------------------------------------------- # # | hi(result) | lo(result) | # # -------------------------------------------------------- # ######################################################################### mulu64_alg: # load temp registers with operands mov.l %d0,%d2 # mr in d2 mov.l %d0,%d3 # mr in d3 mov.l %d1,%d4 # md in d4 swap %d3 # hi(mr) in lo d3 swap %d4 # hi(md) in lo d4 # complete necessary multiplies: mulu.w %d1,%d0 # [1] lo(mr) * lo(md) mulu.w %d3,%d1 # [2] hi(mr) * lo(md) mulu.w %d4,%d2 # [3] lo(mr) * hi(md) mulu.w %d4,%d3 # [4] hi(mr) * hi(md) # add lo portions of [2],[3] to hi portion of [1]. # add carries produced from these adds to [4]. # lo([1]) is the final lo 16 bits of the result. clr.l %d4 # load d4 w/ zero value swap %d0 # hi([1]) <==> lo([1]) add.w %d1,%d0 # hi([1]) + lo([2]) addx.l %d4,%d3 # [4] + carry add.w %d2,%d0 # hi([1]) + lo([3]) addx.l %d4,%d3 # [4] + carry swap %d0 # lo([1]) <==> hi([1]) # lo portions of [2],[3] have been added in to final result. # now, clear lo, put hi in lo reg, and add to [4] clr.w %d1 # clear lo([2]) clr.w %d2 # clear hi([3]) swap %d1 # hi([2]) in lo d1 swap %d2 # hi([3]) in lo d2 add.l %d2,%d1 # [4] + hi([2]) add.l %d3,%d1 # [4] + hi([3]) # now, grab the condition codes. only one that can be set is 'N'. # 'N' CAN be set if the operation is unsigned if bit 63 is set. mov.w MUL64_CC(%a6),%d4 andi.b &0x10,%d4 # keep old 'X' bit tst.l %d1 # may set 'N' bit bpl.b mulu64_ddone ori.b &0x8,%d4 # set 'N' bit mulu64_ddone: mov.w %d4,%cc # here, the result is in d1 and d0. the current strategy is to save # the values at the location pointed to by a0. # use movm here to not disturb the condition codes. mulu64_end: exg %d1,%d0 movm.l &0x0003,([0x10,%a6]) # save result # EPILOGUE BEGIN ######################################################## # fmovm.l (%sp)+,&0x0 # restore no fpregs movm.l (%sp)+,&0x001c # restore d2-d4 unlk %a6 # EPILOGUE END ########################################################## rts # one or both of the operands is zero so the result is also zero. # save the zero result to the register file and set the 'Z' ccode bit. mulu64_zero: clr.l %d0 clr.l %d1 mov.w MUL64_CC(%a6),%d4 andi.b &0x10,%d4 ori.b &0x4,%d4 mov.w %d4,%cc # set 'Z' ccode bit bra.b mulu64_end ########## # muls.l # ########## global _060LSP__imuls64_ _060LSP__imuls64_: # PROLOGUE BEGIN ######################################################## link.w %a6,&-4 movm.l &0x3c00,-(%sp) # save d2-d5 # fmovm.l &0x0,-(%sp) # save no fpregs # PROLOGUE END ########################################################## mov.w %cc,MUL64_CC(%a6) # save incoming ccodes mov.l 0x8(%a6),%d0 # store multiplier in d0 beq.b mulu64_zero # handle zero separately mov.l 0xc(%a6),%d1 # get multiplicand in d1 beq.b mulu64_zero # handle zero separately clr.b %d5 # clear sign tag tst.l %d0 # is multiplier negative? bge.b muls64_chk_md_sgn # no neg.l %d0 # make multiplier positive ori.b &0x1,%d5 # save multiplier sgn # the result sign is the exclusive or of the operand sign bits. muls64_chk_md_sgn: tst.l %d1 # is multiplicand negative? bge.b muls64_alg # no neg.l %d1 # make multiplicand positive eori.b &0x1,%d5 # calculate correct sign ######################################################################### # 63 32 0 # # ---------------------------- # # | hi(mplier) * hi(mplicand)| # # ---------------------------- # # ----------------------------- # # | hi(mplier) * lo(mplicand) | # # ----------------------------- # # ----------------------------- # # | lo(mplier) * hi(mplicand) | # # ----------------------------- # # | ----------------------------- # # --|-- | lo(mplier) * lo(mplicand) | # # | ----------------------------- # # ======================================================== # # -------------------------------------------------------- # # | hi(result) | lo(result) | # # -------------------------------------------------------- # ######################################################################### muls64_alg: # load temp registers with operands mov.l %d0,%d2 # mr in d2 mov.l %d0,%d3 # mr in d3 mov.l %d1,%d4 # md in d4 swap %d3 # hi(mr) in lo d3 swap %d4 # hi(md) in lo d4 # complete necessary multiplies: mulu.w %d1,%d0 # [1] lo(mr) * lo(md) mulu.w %d3,%d1 # [2] hi(mr) * lo(md) mulu.w %d4,%d2 # [3] lo(mr) * hi(md) mulu.w %d4,%d3 # [4] hi(mr) * hi(md) # add lo portions of [2],[3] to hi portion of [1]. # add carries produced from these adds to [4]. # lo([1]) is the final lo 16 bits of the result. clr.l %d4 # load d4 w/ zero value swap %d0 # hi([1]) <==> lo([1]) add.w %d1,%d0 # hi([1]) + lo([2]) addx.l %d4,%d3 # [4] + carry add.w %d2,%d0 # hi([1]) + lo([3]) addx.l %d4,%d3 # [4] + carry swap %d0 # lo([1]) <==> hi([1]) # lo portions of [2],[3] have been added in to final result. # now, clear lo, put hi in lo reg, and add to [4] clr.w %d1 # clear lo([2]) clr.w %d2 # clear hi([3]) swap %d1 # hi([2]) in lo d1 swap %d2 # hi([3]) in lo d2 add.l %d2,%d1 # [4] + hi([2]) add.l %d3,%d1 # [4] + hi([3]) tst.b %d5 # should result be signed? beq.b muls64_done # no # result should be a signed negative number. # compute 2's complement of the unsigned number: # -negate all bits and add 1 muls64_neg: not.l %d0 # negate lo(result) bits not.l %d1 # negate hi(result) bits addq.l &1,%d0 # add 1 to lo(result) addx.l %d4,%d1 # add carry to hi(result) muls64_done: mov.w MUL64_CC(%a6),%d4 andi.b &0x10,%d4 # keep old 'X' bit tst.l %d1 # may set 'N' bit bpl.b muls64_ddone ori.b &0x8,%d4 # set 'N' bit muls64_ddone: mov.w %d4,%cc # here, the result is in d1 and d0. the current strategy is to save # the values at the location pointed to by a0. # use movm here to not disturb the condition codes. muls64_end: exg %d1,%d0 movm.l &0x0003,([0x10,%a6]) # save result at (a0) # EPILOGUE BEGIN ######################################################## # fmovm.l (%sp)+,&0x0 # restore no fpregs movm.l (%sp)+,&0x003c # restore d2-d5 unlk %a6 # EPILOGUE END ########################################################## rts # one or both of the operands is zero so the result is also zero. # save the zero result to the register file and set the 'Z' ccode bit. muls64_zero: clr.l %d0 clr.l %d1 mov.w MUL64_CC(%a6),%d4 andi.b &0x10,%d4 ori.b &0x4,%d4 mov.w %d4,%cc # set 'Z' ccode bit bra.b muls64_end ######################################################################### # XDEF **************************************************************** # # _060LSP__cmp2_Ab_(): Emulate "cmp2.b An,<ea>". # # _060LSP__cmp2_Aw_(): Emulate "cmp2.w An,<ea>". # # _060LSP__cmp2_Al_(): Emulate "cmp2.l An,<ea>". # # _060LSP__cmp2_Db_(): Emulate "cmp2.b Dn,<ea>". # # _060LSP__cmp2_Dw_(): Emulate "cmp2.w Dn,<ea>". # # _060LSP__cmp2_Dl_(): Emulate "cmp2.l Dn,<ea>". # # # # This is the library version which is accessed as a subroutine # # and therefore does not work exactly like the 680X0 "cmp2" # # instruction. # # # # XREF **************************************************************** # # None # # # # INPUT *************************************************************** # # 0x4(sp) = Rn # # 0x8(sp) = pointer to boundary pair # # # # OUTPUT ************************************************************** # # cc = condition codes are set correctly # # # # ALGORITHM *********************************************************** # # In the interest of simplicity, all operands are converted to # # longword size whether the operation is byte, word, or long. The # # bounds are sign extended accordingly. If Rn is a data regsiter, Rn is # # also sign extended. If Rn is an address register, it need not be sign # # extended since the full register is always used. # # The condition codes are set correctly before the final "rts". # # # ######################################################################### set CMP2_CC, -4 global _060LSP__cmp2_Ab_ _060LSP__cmp2_Ab_: # PROLOGUE BEGIN ######################################################## link.w %a6,&-4 movm.l &0x3800,-(%sp) # save d2-d4 # fmovm.l &0x0,-(%sp) # save no fpregs # PROLOGUE END ########################################################## mov.w %cc,CMP2_CC(%a6) mov.l 0x8(%a6), %d2 # get regval mov.b ([0xc,%a6],0x0),%d0 mov.b ([0xc,%a6],0x1),%d1 extb.l %d0 # sign extend lo bnd extb.l %d1 # sign extend hi bnd bra.w l_cmp2_cmp # go do the compare emulation global _060LSP__cmp2_Aw_ _060LSP__cmp2_Aw_: # PROLOGUE BEGIN ######################################################## link.w %a6,&-4 movm.l &0x3800,-(%sp) # save d2-d4 # fmovm.l &0x0,-(%sp) # save no fpregs # PROLOGUE END ########################################################## mov.w %cc,CMP2_CC(%a6) mov.l 0x8(%a6), %d2 # get regval mov.w ([0xc,%a6],0x0),%d0 mov.w ([0xc,%a6],0x2),%d1 ext.l %d0 # sign extend lo bnd ext.l %d1 # sign extend hi bnd bra.w l_cmp2_cmp # go do the compare emulation global _060LSP__cmp2_Al_ _060LSP__cmp2_Al_: # PROLOGUE BEGIN ######################################################## link.w %a6,&-4 movm.l &0x3800,-(%sp) # save d2-d4 # fmovm.l &0x0,-(%sp) # save no fpregs # PROLOGUE END ########################################################## mov.w %cc,CMP2_CC(%a6) mov.l 0x8(%a6), %d2 # get regval mov.l ([0xc,%a6],0x0),%d0 mov.l ([0xc,%a6],0x4),%d1 bra.w l_cmp2_cmp # go do the compare emulation global _060LSP__cmp2_Db_ _060LSP__cmp2_Db_: # PROLOGUE BEGIN ######################################################## link.w %a6,&-4 movm.l &0x3800,-(%sp) # save d2-d4 # fmovm.l &0x0,-(%sp) # save no fpregs # PROLOGUE END ########################################################## mov.w %cc,CMP2_CC(%a6) mov.l 0x8(%a6), %d2 # get regval mov.b ([0xc,%a6],0x0),%d0 mov.b ([0xc,%a6],0x1),%d1 extb.l %d0 # sign extend lo bnd extb.l %d1 # sign extend hi bnd # operation is a data register compare. # sign extend byte to long so we can do simple longword compares. extb.l %d2 # sign extend data byte bra.w l_cmp2_cmp # go do the compare emulation global _060LSP__cmp2_Dw_ _060LSP__cmp2_Dw_: # PROLOGUE BEGIN ######################################################## link.w %a6,&-4 movm.l &0x3800,-(%sp) # save d2-d4 # fmovm.l &0x0,-(%sp) # save no fpregs # PROLOGUE END ########################################################## mov.w %cc,CMP2_CC(%a6) mov.l 0x8(%a6), %d2 # get regval mov.w ([0xc,%a6],0x0),%d0 mov.w ([0xc,%a6],0x2),%d1 ext.l %d0 # sign extend lo bnd ext.l %d1 # sign extend hi bnd # operation is a data register compare. # sign extend word to long so we can do simple longword compares. ext.l %d2 # sign extend data word bra.w l_cmp2_cmp # go emulate compare global _060LSP__cmp2_Dl_ _060LSP__cmp2_Dl_: # PROLOGUE BEGIN ######################################################## link.w %a6,&-4 movm.l &0x3800,-(%sp) # save d2-d4 # fmovm.l &0x0,-(%sp) # save no fpregs # PROLOGUE END ########################################################## mov.w %cc,CMP2_CC(%a6) mov.l 0x8(%a6), %d2 # get regval mov.l ([0xc,%a6],0x0),%d0 mov.l ([0xc,%a6],0x4),%d1 # # To set the ccodes correctly: # (1) save 'Z' bit from (Rn - lo) # (2) save 'Z' and 'N' bits from ((hi - lo) - (Rn - hi)) # (3) keep 'X', 'N', and 'V' from before instruction # (4) combine ccodes # l_cmp2_cmp: sub.l %d0, %d2 # (Rn - lo) mov.w %cc, %d3 # fetch resulting ccodes andi.b &0x4, %d3 # keep 'Z' bit sub.l %d0, %d1 # (hi - lo) cmp.l %d1,%d2 # ((hi - lo) - (Rn - hi)) mov.w %cc, %d4 # fetch resulting ccodes or.b %d4, %d3 # combine w/ earlier ccodes andi.b &0x5, %d3 # keep 'Z' and 'N' mov.w CMP2_CC(%a6), %d4 # fetch old ccodes andi.b &0x1a, %d4 # keep 'X','N','V' bits or.b %d3, %d4 # insert new ccodes mov.w %d4,%cc # save new ccodes # EPILOGUE BEGIN ######################################################## # fmovm.l (%sp)+,&0x0 # restore no fpregs movm.l (%sp)+,&0x001c # restore d2-d4 unlk %a6 # EPILOGUE END ########################################################## rts |