Linux Audio

Check our new training course

Embedded Linux Audio

Check our new training course
with Creative Commons CC-BY-SA
lecture materials

Bootlin logo

Elixir Cross Referencer

Loading...
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
/* $Id: rawhdlc.c,v 1.5.6.2 2001/09/23 22:24:51 kai Exp $
 *
 * support routines for cards that don't support HDLC
 *
 * Author     Brent Baccala
 * Copyright  by Karsten Keil <keil@isdn4linux.de>
 *            by Brent Baccala <baccala@FreeSoft.org>
 *
 * This software may be used and distributed according to the terms
 * of the GNU General Public License, incorporated herein by reference.
 *
 *
 * Some passive ISDN cards, such as the Traverse NETJet and the AMD 7930,
 * don't perform HDLC encapsulation over the B channel.  Drivers for
 * such cards use support routines in this file to perform B channel HDLC.
 *
 * Bit-synchronous HDLC encapsulation is a means of encapsulating packets
 * over a continuously transmitting serial communications link.
 * It looks like this:
 *
 *      11111111101111110...........0111111011111111111
 *      iiiiiiiiiffffffffdddddddddddffffffffiiiiiiiiiii
 *
 *      i = idle     f = flag     d = data
 *
 * When idle, the channel sends a continuous string of ones (mark
 * idle; illustrated), or a continuous string of flag characters (flag
 * idle).  The beginning of a data frame is marked by a flag character
 * (01111110), then comes the actual data, followed by another flag
 * character, after which another frame may be sent immediately (a
 * single flag may serve as both the end of one frame and the start of
 * the next), or the link may return to idle.  Obviously, the flag
 * character can not appear anywhere in the data (or a false
 * end-of-frame would occur), so the transmitter performs
 * "bit-stuffing" - inserting a zero bit after every five one bits,
 * irregardless of the original bit after the five ones.  Byte
 * ordering is irrelevant at this point - the data is treated as a
 * string of bits, not bytes.  Since no more than 5 ones may now occur
 * in a row, the flag sequence, with its 6 ones, is unique.
 *
 * Upon reception, a zero bit that occur after 5 one bits is simply
 * discarded.  A series of 6 one bits is end-of-frame, and a series of
 * 7 one bits is an abort.  Once bit-stuffing has been corrected for,
 * an integer number of bytes should now be present.  The last two
 * of these bytes form the Frame Check Sequence, a CRC that is verified
 * and then discarded.  Note that bit-stuffing is performed on the FCS
 * just as if it were regular data.
 *
 *
 *
 * int make_raw_hdlc_data(u8 *src, u_int slen,
 *                        u8 *dst, u_int dsize)
 *
 *   Used for transmission.  Copies slen bytes from src to dst, performing
 *   HDLC encapsulation (flag bytes, bit-stuffing, CRC) in the process.
 *   dsize is size of destination buffer, and should be at least
 *   ((6*slen)/5)+5 bytes to ensure adequate space will be available.
 *   Function returns length (in bytes) of valid destination buffer, or
 *   0 upon destination overflow.
 *
 * void init_hdlc_state(struct hdlc_state *stateptr, int mode)
 *
 *   Initializes hdlc_state structure before first call to read_raw_hdlc_data
 *
 *   mode = 0: Sane mode
 *   mode = 1/2: 
 *             Insane mode; NETJet use a shared unsigned int memory block (
 * 	       with busmaster DMA), the bit pattern of every word is 
 *  	       <8 B1> <8 B2> <8 Mon> <2 D> <4 C/I> <MX> <MR>
 *	       according to Siemens IOM-2 interface, so we have to handle
 *             the src buffer as unsigned int and have to shift/mask the
 *             B-channel bytes.
 *             mode 1 -> B1  mode 2  -> B2 data is used
 *
 * int read_raw_hdlc_data(struct hdlc_state *saved_state,
 *                        u8 *src, u_int slen,
 *                        u8 *dst, u_int dsize)
 *
 *   Used for reception.  Scans source buffer bit-by-bit looking for
 *   valid HDLC frames, which are copied to destination buffer.  HDLC
 *   state information is stored in a structure, which allows this
 *   function to process frames spread across several blocks of raw
 *   HDLC data.  Part of the state information is bit offsets into
 *   the source and destination buffers.
 *
 *   A return value >0 indicates the length of a valid frame, now
 *   stored in the destination buffer.  In this case, the source
 *   buffer might not be completely processed, so this function should
 *   be called again with the same source buffer, possibly with a
 *   different destination buffer.
 *
 *   A return value of zero indicates that the source buffer was
 *   completely processed without finding a valid end-of-packet;
 *   however, we might be in the middle of packet reception, so
 *   the function should be called again with the next block of
 *   raw HDLC data and the same destination buffer.  It is NOT
 *   permitted to change the destination buffer in this case,
 *   since data may already have begun to be stored there.
 *
 *   A return value of -1 indicates some kind of error - destination
 *   buffer overflow, CRC check failed, frame not a multiple of 8
 *   bits.  Destination buffer probably contains invalid data, which
 *   should be discarded.  Call function again with same source buffer
 *   and a new (or same) destination buffer.
 *
 *   Suggested calling sequence:
 *
 *      init_hdlc_state(...);
 *      for (EACH_RAW_DATA_BLOCK) {
 *         while (len = read_raw_hdlc_data(...)) {
 *             if (len == -1) DISCARD_FRAME;
 *             else PROCESS_FRAME;
 *         }
 *      }
 *
 *
 * Test the code in this file as follows:
 *    gcc -DDEBUGME -o rawhdlctest rawhdlc.c
 *    ./rawhdlctest < rawdata
 *
 * The file "rawdata" can be easily generated from a HISAX B-channel
 * hex dump (CF CF CF 02 ...) using the following perl script:
 *
 * while(<>) {
 *     @hexlist = split ' ';
 *     while ($hexstr = shift(@hexlist)) {
 *         printf "%c", hex($hexstr);
 *     }
 * }
 *
 */

#ifdef DEBUGME
#include <stdio.h>
#endif

#include <linux/types.h>
#include <linux/ppp_defs.h>
#include "rawhdlc.h"

/* There's actually an identical copy of this table in the PPP code
 * (ppp_crc16_table), but I don't want this code dependent on PPP
 */

// static 
__u16 fcstab[256] =
{
	0x0000, 0x1189, 0x2312, 0x329b, 0x4624, 0x57ad, 0x6536, 0x74bf,
	0x8c48, 0x9dc1, 0xaf5a, 0xbed3, 0xca6c, 0xdbe5, 0xe97e, 0xf8f7,
	0x1081, 0x0108, 0x3393, 0x221a, 0x56a5, 0x472c, 0x75b7, 0x643e,
	0x9cc9, 0x8d40, 0xbfdb, 0xae52, 0xdaed, 0xcb64, 0xf9ff, 0xe876,
	0x2102, 0x308b, 0x0210, 0x1399, 0x6726, 0x76af, 0x4434, 0x55bd,
	0xad4a, 0xbcc3, 0x8e58, 0x9fd1, 0xeb6e, 0xfae7, 0xc87c, 0xd9f5,
	0x3183, 0x200a, 0x1291, 0x0318, 0x77a7, 0x662e, 0x54b5, 0x453c,
	0xbdcb, 0xac42, 0x9ed9, 0x8f50, 0xfbef, 0xea66, 0xd8fd, 0xc974,
	0x4204, 0x538d, 0x6116, 0x709f, 0x0420, 0x15a9, 0x2732, 0x36bb,
	0xce4c, 0xdfc5, 0xed5e, 0xfcd7, 0x8868, 0x99e1, 0xab7a, 0xbaf3,
	0x5285, 0x430c, 0x7197, 0x601e, 0x14a1, 0x0528, 0x37b3, 0x263a,
	0xdecd, 0xcf44, 0xfddf, 0xec56, 0x98e9, 0x8960, 0xbbfb, 0xaa72,
	0x6306, 0x728f, 0x4014, 0x519d, 0x2522, 0x34ab, 0x0630, 0x17b9,
	0xef4e, 0xfec7, 0xcc5c, 0xddd5, 0xa96a, 0xb8e3, 0x8a78, 0x9bf1,
	0x7387, 0x620e, 0x5095, 0x411c, 0x35a3, 0x242a, 0x16b1, 0x0738,
	0xffcf, 0xee46, 0xdcdd, 0xcd54, 0xb9eb, 0xa862, 0x9af9, 0x8b70,
	0x8408, 0x9581, 0xa71a, 0xb693, 0xc22c, 0xd3a5, 0xe13e, 0xf0b7,
	0x0840, 0x19c9, 0x2b52, 0x3adb, 0x4e64, 0x5fed, 0x6d76, 0x7cff,
	0x9489, 0x8500, 0xb79b, 0xa612, 0xd2ad, 0xc324, 0xf1bf, 0xe036,
	0x18c1, 0x0948, 0x3bd3, 0x2a5a, 0x5ee5, 0x4f6c, 0x7df7, 0x6c7e,
	0xa50a, 0xb483, 0x8618, 0x9791, 0xe32e, 0xf2a7, 0xc03c, 0xd1b5,
	0x2942, 0x38cb, 0x0a50, 0x1bd9, 0x6f66, 0x7eef, 0x4c74, 0x5dfd,
	0xb58b, 0xa402, 0x9699, 0x8710, 0xf3af, 0xe226, 0xd0bd, 0xc134,
	0x39c3, 0x284a, 0x1ad1, 0x0b58, 0x7fe7, 0x6e6e, 0x5cf5, 0x4d7c,
	0xc60c, 0xd785, 0xe51e, 0xf497, 0x8028, 0x91a1, 0xa33a, 0xb2b3,
	0x4a44, 0x5bcd, 0x6956, 0x78df, 0x0c60, 0x1de9, 0x2f72, 0x3efb,
	0xd68d, 0xc704, 0xf59f, 0xe416, 0x90a9, 0x8120, 0xb3bb, 0xa232,
	0x5ac5, 0x4b4c, 0x79d7, 0x685e, 0x1ce1, 0x0d68, 0x3ff3, 0x2e7a,
	0xe70e, 0xf687, 0xc41c, 0xd595, 0xa12a, 0xb0a3, 0x8238, 0x93b1,
	0x6b46, 0x7acf, 0x4854, 0x59dd, 0x2d62, 0x3ceb, 0x0e70, 0x1ff9,
	0xf78f, 0xe606, 0xd49d, 0xc514, 0xb1ab, 0xa022, 0x92b9, 0x8330,
	0x7bc7, 0x6a4e, 0x58d5, 0x495c, 0x3de3, 0x2c6a, 0x1ef1, 0x0f78
};

#define HDLC_ZERO_SEARCH 0
#define HDLC_FLAG_SEARCH 1
#define HDLC_FLAG_FOUND  2
#define HDLC_FRAME_FOUND 3
#define HDLC_NULL 4
#define HDLC_PART 5
#define HDLC_FULL 6

#define HDLC_FLAG_VALUE	0x7e


#define MAKE_RAW_BYTE for (j=0; j<8; j++) { \
			bitcnt++;\
			out_val >>= 1;\
			if (val & 1) {\
				s_one++;\
				out_val |= 0x80;\
			} else {\
				s_one = 0;\
				out_val &= 0x7f;\
			}\
			if (bitcnt==8) {\
				if (d_cnt == dsize) return 0;\
				dst[d_cnt++] = out_val;\
				bitcnt = 0;\
			}\
			if (s_one == 5) {\
				out_val >>= 1;\
				out_val &= 0x7f;\
				bitcnt++;\
				s_one = 0;\
			}\
			if (bitcnt==8) {\
				if (d_cnt == dsize) return 0;\
				dst[d_cnt++] = out_val;\
				bitcnt = 0;\
			}\
			val >>= 1;\
		}

/* Optimization suggestion: If needed, this function could be
 * dramatically sped up using a state machine.  Each state would
 * correspond to having seen N one bits, and being offset M bits into
 * the current output byte.  N ranges from 0 to 4, M from 0 to 7, so
 * we need 5*8 = 35 states.  Each state would have a table with 256
 * entries, one for each input character.  Each entry would contain
 * three output characters, an output state, an a byte increment
 * that's either 1 or 2.  All this could fit in four bytes; so we need
 * 4 bytes * 256 characters = 1 KB for each state (35 KB total).  Zero
 * the output buffer before you start.  For each character in your
 * input, you look it up in the current state's table and get three
 * bytes to be or'ed into the output at the current byte offset, and
 * an byte increment to move your pointer forward.  A simple Perl
 * script could generate the tables.  Given HDLC semantics, probably
 * would be better to set output to all 1s, then use ands instead of ors.
 * A smaller state machine could operate on nibbles instead of bytes.
 * A state machine for 32-bit architectures could use word offsets
 * instead of byte offsets, requiring 5*32 = 160 states; probably
 * best to work on nibbles in such a case.
 */


int make_raw_hdlc_data(u8 *src, u_int slen, u8 *dst, u_int dsize)
{
	register u_int i,d_cnt=0;
	register u8 j;
	register u8 val;
	register u8 s_one = 0;
	register u8 out_val = 0;
	register u8 bitcnt = 0;
	u_int fcs;
	
	
	dst[d_cnt++] = HDLC_FLAG_VALUE;
	fcs = PPP_INITFCS;
	for (i=0; i<slen; i++) {
		val = src[i];
		fcs = PPP_FCS (fcs, val);
		MAKE_RAW_BYTE;
	}
	fcs ^= 0xffff;
	val = fcs & 0xff;
	MAKE_RAW_BYTE;
	val = (fcs>>8) & 0xff;
	MAKE_RAW_BYTE;
	val = HDLC_FLAG_VALUE;
	for (j=0; j<8; j++) { 
		bitcnt++;
		out_val >>= 1;
		if (val & 1)
			out_val |= 0x80;
		else
			out_val &= 0x7f;
		if (bitcnt==8) {
			if (d_cnt == dsize) return 0;
			dst[d_cnt++] = out_val;
			bitcnt = 0;
		}
		val >>= 1;
	}
	if (bitcnt) {
		while (8>bitcnt++) {
			out_val >>= 1;
			out_val |= 0x80;
		}
		if (d_cnt == dsize) return 0;
		dst[d_cnt++] = out_val;
	}

	return d_cnt;
}

void init_hdlc_state(struct hdlc_state *stateptr, int mode)
{
	stateptr->state = HDLC_ZERO_SEARCH;
	stateptr->r_one = 0;
	stateptr->r_val = 0;
	stateptr->o_bitcnt = 0;
	stateptr->i_bitcnt = 0;
	stateptr->insane_mode = mode;
}

/* Optimization suggestion: A similar state machine could surely
 * be developed for this function as well.
 */

int read_raw_hdlc_data(struct hdlc_state *saved_state,
                       u8 *src, u_int slen, u8 *dst, u_int dsize)
{
	int retval=0;
	register u8 val;
	register u8 state = saved_state->state;
	register u8 r_one = saved_state->r_one;
	register u8 r_val = saved_state->r_val;
	register u_int o_bitcnt = saved_state->o_bitcnt;
	register u_int i_bitcnt = saved_state->i_bitcnt;
	register u_int fcs    = saved_state->fcs;
	register u_int *isrc = (u_int *) src;
        
	/* Use i_bitcnt (bit offset into source buffer) to reload "val"
	 * in case we're starting up again partway through a source buffer
	 */

	if ((i_bitcnt >> 3) < slen) {
		if (saved_state->insane_mode==1) {
			val = isrc[(i_bitcnt >> 3)] & 0xff;
		} else if (saved_state->insane_mode==2) {
			val = (isrc[i_bitcnt >> 3] >>8) & 0xff;
		} else {
			val = src[i_bitcnt >> 3];
		}
		val >>= i_bitcnt & 7;
	}

	/* One bit per loop.  Keep going until we've got something to
	 * report (retval != 0), or we exhaust the source buffer
	 */

	while ((retval == 0) && ((i_bitcnt >> 3) < slen)) {
		if ((i_bitcnt & 7) == 0) {
			if (saved_state->insane_mode==1) {
				val = isrc[(i_bitcnt >> 3)] & 0xff;
			} else if (saved_state->insane_mode==2) {
				val = (isrc[i_bitcnt >> 3] >>8) & 0xff;
			} else {
				val = src[i_bitcnt >> 3];
			}
#ifdef DEBUGME
			printf("Input byte %d: 0x%2x\n", i_bitcnt>>3, val);
#endif
			if (val == 0xff) {
				state = HDLC_ZERO_SEARCH;
				o_bitcnt = 0;
				r_one = 0;
				i_bitcnt += 8;
				continue;
			}
		}

#ifdef DEBUGME
		/* printf("Data bit=%d (%d/%d)\n", val&1, i_bitcnt>>3, i_bitcnt&7);*/
#endif

		if (state == HDLC_ZERO_SEARCH) {
			if (val & 1) {
				r_one++;
			} else {
				r_one=0;
				state= HDLC_FLAG_SEARCH;
			}
		} else if (state == HDLC_FLAG_SEARCH) { 
			if (val & 1) {
				r_one++;
				if (r_one>6) {
					state=HDLC_ZERO_SEARCH;
				}
			} else {
				if (r_one==6) {
					o_bitcnt=0;
					r_val=0;
					state=HDLC_FLAG_FOUND;
				}
				r_one=0;
			}
		} else if (state ==  HDLC_FLAG_FOUND) {
			if (val & 1) {
				r_one++;
				if (r_one>6) {
					state=HDLC_ZERO_SEARCH;
				} else {
					r_val >>= 1;
					r_val |= 0x80;
					o_bitcnt++;
				}
			} else {
				if (r_one==6) {
					o_bitcnt=0;
					r_val=0;
					r_one=0;
					i_bitcnt++;
					val >>= 1;
					continue;
				} else if (r_one!=5) {
					r_val >>= 1;
					r_val &= 0x7f;
					o_bitcnt++;
				}
				r_one=0;	
			}
			if ((state != HDLC_ZERO_SEARCH) &&
				!(o_bitcnt & 7)) {
#ifdef DEBUGME
				printf("HDLC_FRAME_FOUND at i_bitcnt:%d\n",i_bitcnt);
#endif
				state=HDLC_FRAME_FOUND;
				fcs = PPP_INITFCS;
				dst[0] = r_val;
				fcs = PPP_FCS (fcs, r_val);
			}
		} else if (state ==  HDLC_FRAME_FOUND) {
			if (val & 1) {
				r_one++;
				if (r_one>6) {
					state=HDLC_ZERO_SEARCH;
					o_bitcnt=0;
				} else {
					r_val >>= 1;
					r_val |= 0x80;
					o_bitcnt++;
				}
			} else {
				if (r_one==6) {
					r_val=0; 
					r_one=0;
					o_bitcnt++;
					if (o_bitcnt & 7) {
						/* Alignment error */
#ifdef DEBUGME
						printf("Alignment error\n");
#endif
						state=HDLC_FLAG_SEARCH;
						retval = -1;
					} else if (fcs==PPP_GOODFCS) {
						/* Valid frame */
						state=HDLC_FLAG_FOUND;
						retval = (o_bitcnt>>3)-3;
					} else {
						/* CRC error */
#ifdef DEBUGME
						printf("CRC error; fcs was 0x%x, should have been 0x%x\n", fcs, PPP_GOODFCS);
#endif
						state=HDLC_FLAG_FOUND;
						retval = -1;
					}
				} else if (r_one==5) {
					r_one=0;
					i_bitcnt++;
					val >>= 1;
					continue;
				} else {
					r_val >>= 1;
					r_val &= 0x7f;
					o_bitcnt++;
				}
				r_one=0;	
			}
			if ((state == HDLC_FRAME_FOUND) &&
				!(o_bitcnt & 7)) {
				if ((o_bitcnt>>3)>=dsize) {
					/* Buffer overflow error */
#ifdef DEBUGME
					printf("Buffer overflow error\n");
#endif
					r_val=0; 
					state=HDLC_FLAG_SEARCH;
					retval = -1;
				} else {
					dst[(o_bitcnt>>3)-1] = r_val;
					fcs = PPP_FCS (fcs, r_val);
#ifdef DEBUGME
					printf("Output byte %d: 0x%02x; FCS 0x%04x\n", (o_bitcnt>>3)-1, r_val, fcs);
#endif
				}
			}
		}
		i_bitcnt ++;
		val >>= 1;
	}

	/* We exhausted the source buffer before anything else happened
	 * (retval==0).  Reset i_bitcnt in expectation of a new source
	 * buffer.  Other, we either had an error or a valid frame, so
	 * reset o_bitcnt in expectation of a new destination buffer.
	 */

	if (retval == 0) {
		i_bitcnt = 0;
	} else {
		o_bitcnt = 0;
	}

	saved_state->state = state;
	saved_state->r_one = r_one;
	saved_state->r_val = r_val;
	saved_state->fcs = fcs;
	saved_state->o_bitcnt = o_bitcnt;
	saved_state->i_bitcnt = i_bitcnt;

	return (retval);
}



#ifdef DEBUGME

char buffer[1024];
char obuffer[1024];

main()
{
  int buflen=0;
  int len;
  struct hdlc_state hdlc_state;

  while((buffer[buflen] = getc(stdin)) != EOF && buflen<1024) buflen++;

  printf("buflen = %d\n", buflen);

  init_hdlc_state(&hdlc_state, 0);

  while (len = read_raw_hdlc_data(&hdlc_state,buffer,buflen,obuffer,1024)) {
    if (len == -1) printf("Error @ byte %d/bit %d\n",
			  hdlc_state.i_bitcnt>>3, hdlc_state.i_bitcnt & 7);
    else {
      printf("Frame received: len %d\n", len);
    }
  }

  printf("Done\n");
}

#endif