Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 | # $Id: config.in,v 1.158 2002/01/24 22:14:44 davem Exp $ # For a description of the syntax of this configuration file, # see the Configure script. # mainmenu "Linux/UltraSPARC Kernel Configuration" config MMU bool default y source "init/Kconfig" menu "General setup" config BBC_I2C tristate "UltraSPARC-III bootbus i2c controller driver" help The BBC devices on the UltraSPARC III have two I2C controllers. The first I2C controller connects mainly to configuration PROMs (NVRAM, CPU configuration, DIMM types, etc.). The second I2C controller connects to environmental control devices such as fans and temperature sensors. The second controller also connects to the smartcard reader, if present. Say Y to enable support for these. config VT bool default y ---help--- If you say Y here, you will get support for terminal devices with display and keyboard devices. These are called "virtual" because you can run several virtual terminals (also called virtual consoles) on one physical terminal. This is rather useful, for example one virtual terminal can collect system messages and warnings, another one can be used for a text-mode user session, and a third could run an X session, all in parallel. Switching between virtual terminals is done with certain key combinations, usually Alt-<function key>. The setterm command ("man setterm") can be used to change the properties (such as colors or beeping) of a virtual terminal. The man page console_codes(4) ("man console_codes") contains the special character sequences that can be used to change those properties directly. The fonts used on virtual terminals can be changed with the setfont ("man setfont") command and the key bindings are defined with the loadkeys ("man loadkeys") command. You need at least one virtual terminal device in order to make use of your keyboard and monitor. Therefore, only people configuring an embedded system would want to say N here in order to save some memory; the only way to log into such a system is then via a serial or network connection. If unsure, say Y, or else you won't be able to do much with your new shiny Linux system :-) config VT_CONSOLE bool default y ---help--- The system console is the device which receives all kernel messages and warnings and which allows logins in single user mode. If you answer Y here, a virtual terminal (the device used to interact with a physical terminal) can be used as system console. This is the most common mode of operations, so you should say Y here unless you want the kernel messages be output only to a serial port (in which case you should say Y to "Console on serial port", below). If you do say Y here, by default the currently visible virtual terminal (/dev/tty0) will be used as system console. You can change that with a kernel command line option such as "console=tty3" which would use the third virtual terminal as system console. (Try "man bootparam" or see the documentation of your boot loader (lilo or loadlin) about how to pass options to the kernel at boot time.) If unsure, say Y. config HW_CONSOLE bool default y config HUGETLB_PAGE bool "SPARC64 Huge TLB Page Support" help This enables support for huge pages. User space applications can make use of this support with the sys_alloc_hugepages and sys_free_hugepages system calls. If your applications are huge page aware, then say Y here. Otherwise, say N. config SMP bool "Symmetric multi-processing support" ---help--- This enables support for systems with more than one CPU. If you have a system with only one CPU, like most personal computers, say N. If you have a system with more than one CPU, say Y. If you say N here, the kernel will run on single and multiprocessor machines, but will use only one CPU of a multiprocessor machine. If you say Y here, the kernel will run on many, but not all, singleprocessor machines. On a singleprocessor machine, the kernel will run faster if you say N here. Note that if you say Y here and choose architecture "586" or "Pentium" under "Processor family", the kernel will not work on 486 architectures. Similarly, multiprocessor kernels for the "PPro" architecture may not work on all Pentium based boards. People using multiprocessor machines who say Y here should also say Y to "Enhanced Real Time Clock Support", below. The "Advanced Power Management" code will be disabled if you say Y here. See also the <file:Documentation/smp.tex>, <file:Documentation/smp.txt>, <file:Documentation/i386/IO-APIC.txt>, <file:Documentation/nmi_watchdog.txt> and the SMP-HOWTO available at <http://www.tldp.org/docs.html#howto>. If you don't know what to do here, say N. config PREEMPT bool "Preemptible Kernel" help This option reduces the latency of the kernel when reacting to real-time or interactive events by allowing a low priority process to be preempted even if it is in kernel mode executing a system call. This allows applications to run more reliably even when the system is under load. Say Y here if you are building a kernel for a desktop, embedded or real-time system. Say N if you are unsure. config NR_CPUS int "Maximum number of CPUs (2-64)" depends on SMP default "64" config CPU_FREQ bool "CPU Frequency scaling" help Clock scaling allows you to change the clock speed of CPUs on the fly. Currently there are only sparc64 drivers for UltraSPARC-III and UltraSPARC-IIe processors. For details, take a look at linux/Documentation/cpufreq. If in doubt, say N. config CPU_FREQ_TABLE tristate "CPU frequency table helpers" depends on CPU_FREQ default y help Many CPUFreq drivers use these helpers, so only say N here if the CPUFreq driver of your choice doesn't need these helpers. If in doubt, say Y. config US3_FREQ tristate "UltraSPARC-III CPU Frequency driver" depends on CPU_FREQ_TABLE help This adds the CPUFreq driver for UltraSPARC-III processors. For details, take a look at linux/Documentation/cpufreq. If in doubt, say N. config US2E_FREQ tristate "UltraSPARC-IIe CPU Frequency driver" depends on CPU_FREQ_TABLE help This adds the CPUFreq driver for UltraSPARC-IIe processors. For details, take a look at linux/Documentation/cpufreq. If in doubt, say N. source "drivers/cpufreq/Kconfig" # Identify this as a Sparc64 build config SPARC64 bool default y help SPARC is a family of RISC microprocessors designed and marketed by Sun Microsystems, incorporated. This port covers the newer 64-bit UltraSPARC. The UltraLinux project maintains both the SPARC32 and SPARC64 ports; its web page is available at <http://www.ultralinux.org/>. config HOTPLUG bool "Support for hot-pluggable devices" ---help--- Say Y here if you want to plug devices into your computer while the system is running, and be able to use them quickly. In many cases, the devices can likewise be unplugged at any time too. One well known example of this is PCMCIA- or PC-cards, credit-card size devices such as network cards, modems or hard drives which are plugged into slots found on all modern laptop computers. Another example, used on modern desktops as well as laptops, is USB. Enable HOTPLUG and KMOD, and build a modular kernel. Get agent software (at <http://linux-hotplug.sourceforge.net/>) and install it. Then your kernel will automatically call out to a user mode "policy agent" (/sbin/hotplug) to load modules and set up software needed to use devices as you hotplug them. # Global things across all Sun machines. config HAVE_DEC_LOCK bool default y config RWSEM_GENERIC_SPINLOCK bool config RWSEM_XCHGADD_ALGORITHM bool default y config GENERIC_ISA_DMA bool default y config ISA bool help Find out whether you have ISA slots on your motherboard. ISA is the name of a bus system, i.e. the way the CPU talks to the other stuff inside your box. Other bus systems are PCI, EISA, MicroChannel (MCA) or VESA. ISA is an older system, now being displaced by PCI; newer boards don't support it. If you have ISA, say Y, otherwise N. config ISAPNP bool help Say Y here if you would like support for ISA Plug and Play devices. Some information is in <file:Documentation/isapnp.txt>. This support is also available as a module called isapnp ( = code which can be inserted in and removed from the running kernel whenever you want). If you want to compile it as a module, say M here and read <file:Documentation/modules.txt>. If unsure, say Y. config EISA bool ---help--- The Extended Industry Standard Architecture (EISA) bus was developed as an open alternative to the IBM MicroChannel bus. The EISA bus provided some of the features of the IBM MicroChannel bus while maintaining backward compatibility with cards made for the older ISA bus. The EISA bus saw limited use between 1988 and 1995 when it was made obsolete by the PCI bus. Say Y here if you are building a kernel for an EISA-based machine. Otherwise, say N. config MCA bool help MicroChannel Architecture is found in some IBM PS/2 machines and laptops. It is a bus system similar to PCI or ISA. See <file:Documentation/mca.txt> (and especially the web page given there) before attempting to build an MCA bus kernel. config PCMCIA tristate ---help--- Say Y here if you want to attach PCMCIA- or PC-cards to your Linux computer. These are credit-card size devices such as network cards, modems or hard drives often used with laptops computers. There are actually two varieties of these cards: the older 16 bit PCMCIA cards and the newer 32 bit CardBus cards. If you want to use CardBus cards, you need to say Y here and also to "CardBus support" below. To use your PC-cards, you will need supporting software from David Hinds' pcmcia-cs package (see the file <file:Documentation/Changes> for location). Please also read the PCMCIA-HOWTO, available from <http://www.tldp.org/docs.html#howto>. This driver is also available as a module ( = code which can be inserted in and removed from the running kernel whenever you want). When compiled this way, there will be modules called pcmcia_core and ds. If you want to compile it as a module, say M here and read <file:Documentation/modules.txt>. config SBUS bool default y config SBUSCHAR bool default y config SUN_AUXIO bool default y config SUN_IO bool default y config PCI bool "PCI support" help Find out whether you have a PCI motherboard. PCI is the name of a bus system, i.e. the way the CPU talks to the other stuff inside your box. Other bus systems are ISA, EISA, MicroChannel (MCA) or VESA. If you have PCI, say Y, otherwise N. The PCI-HOWTO, available from <http://www.tldp.org/docs.html#howto>, contains valuable information about which PCI hardware does work under Linux and which doesn't. config PCI_DOMAINS bool default PCI config RTC tristate depends on PCI default y ---help--- If you say Y here and create a character special file /dev/rtc with major number 10 and minor number 135 using mknod ("man mknod"), you will get access to the real time clock (or hardware clock) built into your computer. Every PC has such a clock built in. It can be used to generate signals from as low as 1Hz up to 8192Hz, and can also be used as a 24 hour alarm. It reports status information via the file /proc/driver/rtc and its behaviour is set by various ioctls on /dev/rtc. If you run Linux on a multiprocessor machine and said Y to "Symmetric Multi Processing" above, you should say Y here to read and set the RTC in an SMP compatible fashion. If you think you have a use for such a device (such as periodic data sampling), then say Y here, and read <file:Documentation/rtc.txt> for details. This driver is also available as a module ( = code which can be inserted in and removed from the running kernel whenever you want). The module is called rtc. If you want to compile it as a module, say M here and read <file:Documentation/modules.txt>. source "drivers/pci/Kconfig" config SUN_OPENPROMFS tristate "Openprom tree appears in /proc/openprom" help If you say Y, the OpenPROM device tree will be available as a virtual file system, which you can mount to /proc/openprom by "mount -t openpromfs none /proc/openprom". If you want to compile the /proc/openprom support as a module ( = code which can be inserted in and removed from the running kernel whenever you want), say M here and read <file:Documentation/modules.txt>. The module will be called openpromfs. If unsure, say M. config KCORE_ELF bool depends on PROC_FS default y ---help--- If you enabled support for /proc file system then the file /proc/kcore will contain the kernel core image. This can be used in gdb: $ cd /usr/src/linux ; gdb vmlinux /proc/kcore You have two choices here: ELF and A.OUT. Selecting ELF will make /proc/kcore appear in ELF core format as defined by the Executable and Linking Format specification. Selecting A.OUT will choose the old "a.out" format which may be necessary for some old versions of binutils or on some architectures. This is especially useful if you have compiled the kernel with the "-g" option to preserve debugging information. It is mainly used for examining kernel data structures on the live kernel so if you don't understand what this means or are not a kernel hacker, just leave it at its default value ELF. config SPARC32_COMPAT bool "Kernel support for Linux/Sparc 32bit binary compatibility" help This allows you to run 32-bit binaries on your Ultra. Everybody wants this; say Y. config COMPAT bool depends on SPARC32_COMPAT default y config BINFMT_ELF32 tristate "Kernel support for 32-bit ELF binaries" depends on SPARC32_COMPAT help This allows you to run 32-bit Linux/ELF binaries on your Ultra. Everybody wants this; say Y. config BINFMT_AOUT32 bool "Kernel support for 32-bit (ie. SunOS) a.out binaries" depends on SPARC32_COMPAT help This allows you to run 32-bit a.out format binaries on your Ultra. If you want to run SunOS binaries (see SunOS binary emulation below) or other a.out binaries, say Y. If unsure, say N. source "fs/Kconfig.binfmt" config SUNOS_EMUL bool "SunOS binary emulation" help This allows you to run most SunOS binaries. If you want to do this, say Y here and place appropriate files in /usr/gnemul/sunos. See <http://www.ultralinux.org/faq.html> for more information. If you want to run SunOS binaries on an Ultra you must also say Y to "Kernel support for 32-bit a.out binaries" above. config SOLARIS_EMUL tristate "Solaris binary emulation (EXPERIMENTAL)" depends on EXPERIMENTAL help This is experimental code which will enable you to run (many) Solaris binaries on your SPARC Linux machine. This code is also available as a module ( = code which can be inserted in and removed from the running kernel whenever you want). The module will be called solaris. If you want to compile it as a module, say M here and read <file:Documentation/modules.txt>. source "drivers/parport/Kconfig" config PRINTER tristate "Parallel printer support" depends on PARPORT ---help--- If you intend to attach a printer to the parallel port of your Linux box (as opposed to using a serial printer; if the connector at the printer has 9 or 25 holes ["female"], then it's serial), say Y. Also read the Printing-HOWTO, available from <http://www.tldp.org/docs.html#howto>. It is possible to share one parallel port among several devices (e.g. printer and ZIP drive) and it is safe to compile the corresponding drivers into the kernel. If you want to compile this driver as a module however ( = code which can be inserted in and removed from the running kernel whenever you want), say M here and read <file:Documentation/modules.txt> and <file:Documentation/parport.txt>. The module will be called lp. If you have several parallel ports, you can specify which ports to use with the "lp" kernel command line option. (Try "man bootparam" or see the documentation of your boot loader (lilo or loadlin) about how to pass options to the kernel at boot time.) The syntax of the "lp" command line option can be found in <file:drivers/char/lp.c>. If you have more than 8 printers, you need to increase the LP_NO macro in lp.c and the PARPORT_MAX macro in parport.h. config ENVCTRL tristate "SUNW, envctrl support" depends on PCI help Kernel support for temperature and fan monitoring on Sun SME machines. This code is also available as a module ( = code which can be inserted in and removed from the running kernel whenever you want). The module will be called envctrl. If you want to compile it as a module, say M here and read <file:Documentation/modules.txt>. config DISPLAY7SEG tristate "7-Segment Display support" depends on PCI ---help--- This is the driver for the 7-segment display and LED present on Sun Microsystems CompactPCI models CP1400 and CP1500. This driver is also available as a module ( = code which can be inserted in and removed from the running kernel whenever you want). The module will be called display7seg. If you want to compile it as a module, say M here and read <file:Documentation/modules.txt>. If you do not have a CompactPCI model CP1400 or CP1500, or another UltraSPARC-IIi-cEngine boardset with a 7-segment display, you should say N to this option. config WATCHDOG_CP1XXX tristate "CP1XXX Hardware Watchdog support" depends on PCI ---help--- This is the driver for the hardware watchdog timers present on Sun Microsystems CompactPCI models CP1400 and CP1500. This driver is also available as a module ( = code which can be inserted in and removed from the running kernel whenever you want). The module will be called cpwatchdog. If you want to compile it as a module, say M here and read <file:Documentation/modules.txt>. If you do not have a CompactPCI model CP1400 or CP1500, or another UltraSPARC-IIi-cEngine boardset with hardware watchdog, you should say N to this option. config WATCHDOG_RIO tristate "RIO Hardware Watchdog support" depends on PCI help Say Y here to support the hardware watchdog capability on Sun RIO machines. The watchdog timeout period is normally one minute but can be changed with a boot-time parameter. endmenu source "drivers/base/Kconfig" source "drivers/video/Kconfig" source "drivers/serial/Kconfig" source "drivers/sbus/char/Kconfig" source "drivers/mtd/Kconfig" menu "Block devices" config BLK_DEV_FD bool "Normal floppy disk support" ---help--- If you want to use the floppy disk drive(s) of your PC under Linux, say Y. Information about this driver, especially important for IBM Thinkpad users, is contained in <file:Documentation/floppy.txt>. That file also contains the location of the Floppy driver FAQ as well as location of the fdutils package used to configure additional parameters of the driver at run time. This driver is also available as a module ( = code which can be inserted in and removed from the running kernel whenever you want). The module will be called floppy. If you want to compile it as a module, say M here and read <file:Documentation/modules.txt>. config BLK_DEV_LOOP tristate "Loopback device support" ---help--- Saying Y here will allow you to use a regular file as a block device; you can then create a file system on that block device and mount it just as you would mount other block devices such as hard drive partitions, CD-ROM drives or floppy drives. The loop devices are block special device files with major number 7 and typically called /dev/loop0, /dev/loop1 etc. This is useful if you want to check an ISO 9660 file system before burning the CD, or if you want to use floppy images without first writing them to floppy. Furthermore, some Linux distributions avoid the need for a dedicated Linux partition by keeping their complete root file system inside a DOS FAT file using this loop device driver. The loop device driver can also be used to "hide" a file system in a disk partition, floppy, or regular file, either using encryption (scrambling the data) or steganography (hiding the data in the low bits of, say, a sound file). This is also safe if the file resides on a remote file server. If you want to do this, you will first have to acquire and install a kernel patch from <ftp://ftp.kerneli.org/pub/kerneli/>, and then you need to say Y to this option. Note that alternative ways to use encrypted file systems are provided by the cfs package, which can be gotten from <ftp://ftp.kerneli.org/pub/kerneli/net-source/>, and the newer tcfs package, available at <http://tcfs.dia.unisa.it/>. You do not need to say Y here if you want to use one of these. However, using cfs requires saying Y to "NFS file system support" below while using tcfs requires applying a kernel patch. An alternative steganography solution is provided by StegFS, also available from <ftp://ftp.kerneli.org/pub/kerneli/net-source/>. To use the loop device, you need the losetup utility and a recent version of the mount program, both contained in the util-linux package. The location and current version number of util-linux is contained in the file <file:Documentation/Changes>. Note that this loop device has nothing to do with the loopback device used for network connections from the machine to itself. If you want to compile this driver as a module ( = code which can be inserted in and removed from the running kernel whenever you want), say M here and read <file:Documentation/modules.txt>. The module will be called loop. Most users will answer N here. config BLK_DEV_NBD tristate "Network block device support" depends on NET ---help--- Saying Y here will allow your computer to be a client for network block devices, i.e. it will be able to use block devices exported by servers (mount file systems on them etc.). Communication between client and server works over TCP/IP networking, but to the client program this is hidden: it looks like a regular local file access to a block device special file such as /dev/nd0. Network block devices also allows you to run a block-device in userland (making server and client physically the same computer, communicating using the loopback network device). Read <file:Documentation/nbd.txt> for more information, especially about where to find the server code, which runs in user space and does not need special kernel support. Note that this has nothing to do with the network file systems NFS or Coda; you can say N here even if you intend to use NFS or Coda. If you want to compile this driver as a module ( = code which can be inserted in and removed from the running kernel whenever you want), say M here and read <file:Documentation/modules.txt>. The module will be called nbd. If unsure, say N. source "drivers/md/Kconfig" config BLK_DEV_RAM tristate "RAM disk support" ---help--- Saying Y here will allow you to use a portion of your RAM memory as a block device, so that you can make file systems on it, read and write to it and do all the other things that you can do with normal block devices (such as hard drives). It is usually used to load and store a copy of a minimal root file system off of a floppy into RAM during the initial install of Linux. Note that the kernel command line option "ramdisk=XX" is now obsolete. For details, read <file:Documentation/ramdisk.txt>. If you want to compile this as a module ( = code which can be inserted in and removed from the running kernel whenever you want), say M and read <file:Documentation/modules.txt>. The module will be called rd. Most normal users won't need the RAM disk functionality, and can thus say N here. config BLK_DEV_RAM_SIZE int "Default RAM disk size" depends on BLK_DEV_RAM default "4096" help The default value is 4096. Only change this if you know what are you doing. If you are using IBM S/390, then set this to 8192. config BLK_DEV_INITRD bool "Initial RAM disk (initrd) support" depends on BLK_DEV_RAM=y help The initial RAM disk is a RAM disk that is loaded by the boot loader (loadlin or lilo) and that is mounted as root before the normal boot procedure. It is typically used to load modules needed to mount the "real" root file system, etc. See <file:Documentation/initrd.txt> for details. endmenu source "drivers/ide/Kconfig" source "drivers/scsi/Kconfig" source "drivers/fc4/Kconfig" if PCI source "drivers/message/fusion/Kconfig" endif source "drivers/ieee1394/Kconfig" source "net/Kconfig" source "net/ax25/Kconfig" source "net/irda/Kconfig" source "drivers/isdn/Kconfig" source "drivers/telephony/Kconfig" # This one must be before the filesystem configs. -DaveM menu "Unix 98 PTY support" config UNIX98_PTYS bool "Unix98 PTY support" ---help--- A pseudo terminal (PTY) is a software device consisting of two halves: a master and a slave. The slave device behaves identical to a physical terminal; the master device is used by a process to read data from and write data to the slave, thereby emulating a terminal. Typical programs for the master side are telnet servers and xterms. Linux has traditionally used the BSD-like names /dev/ptyxx for masters and /dev/ttyxx for slaves of pseudo terminals. This scheme has a number of problems. The GNU C library glibc 2.1 and later, however, supports the Unix98 naming standard: in order to acquire a pseudo terminal, a process opens /dev/ptmx; the number of the pseudo terminal is then made available to the process and the pseudo terminal slave can be accessed as /dev/pts/<number>. What was traditionally /dev/ttyp2 will then be /dev/pts/2, for example. The entries in /dev/pts/ are created on the fly by a virtual file system; therefore, if you say Y here you should say Y to "/dev/pts file system for Unix98 PTYs" as well. If you want to say Y here, you need to have the C library glibc 2.1 or later (equal to libc-6.1, check with "ls -l /lib/libc.so.*"). Read the instructions in <file:Documentation/Changes> pertaining to pseudo terminals. It's safe to say N. config UNIX98_PTY_COUNT int "Maximum number of Unix98 PTYs in use (0-2048)" depends on UNIX98_PTYS default "256" help The maximum number of Unix98 PTYs that can be used at any one time. The default is 256, and should be enough for desktop systems. Server machines which support incoming telnet/rlogin/ssh connections and/or serve several X terminals may want to increase this: every incoming connection and every xterm uses up one PTY. When not in use, each additional set of 256 PTYs occupy approximately 8 KB of kernel memory on 32-bit architectures. endmenu menu "Video For Linux" config VIDEO_DEV tristate "Video For Linux" ---help--- Support for audio/video capture and overlay devices and FM radio cards. The exact capabilities of each device vary. User tools for this are available from <ftp://ftp.uk.linux.org/pub/linux/video4linux/>. If you are interested in writing a driver for such an audio/video device or user software interacting with such a driver, please read the file <file:Documentation/video4linux/API.html>. This driver is also available as a module called videodev ( = code which can be inserted in and removed from the running kernel whenever you want). If you want to compile it as a module, say M here and read <file:Documentation/modules.txt>. config VIDEO_BT848 tristate "BT848 Video For Linux" depends on PCI && VIDEO_DEV ---help--- Support for BT848 based frame grabber/overlay boards. This includes the Miro, Hauppauge and STB boards. Please read the material in <file:Documentation/video4linux/bttv> for more information. If you say Y or M here, you need to say Y or M to "I2C support" and "I2C bit-banging interfaces" in the character device section. This driver is available as a module called bttv ( = code which can be inserted in and removed from the running kernel whenever you want). If you want to compile it as a module, say M here and read <file:Documentation/modules.txt>. endmenu menu "XFree86 DRI support" config DRM bool "Direct Rendering Manager (XFree86 DRI support)" help Kernel-level support for the Direct Rendering Infrastructure (DRI) introduced in XFree86 4.0. If you say Y here, you need to select the module that's right for your graphics card from the list below. These modules provide support for synchronization, security, and DMA transfers. Please see <http://dri.sourceforge.net/> for more details. You should also select and configure AGP (/dev/agpgart) support. config DRM_FFB tristate "Creator/Creator3D" depends on DRM help Choose this option if you have one of Sun's Creator3D-based graphics and frame buffer cards. Product page at <http://www.sun.com/desktop/products/Graphics/creator3d.html>. config DRM_TDFX tristate "3dfx Banshee/Voodoo3+" depends on DRM help Choose this option if you have a 3dfx Banshee or Voodoo3 (or later), graphics card. If M is selected, the module will be called tdfx. config DRM_R128 tristate "ATI Rage 128" depends on DRM help Choose this option if you have an ATI Rage 128 graphics card. If M is selected, the module will be called r128. AGP support for this card is strongly suggested (unless you have a PCI version). endmenu source "drivers/input/Kconfig" source "fs/Kconfig" menu "Sound" config SOUND tristate "Sound card support" ---help--- If you have a sound card in your computer, i.e. if it can say more than an occasional beep, say Y. Be sure to have all the information about your sound card and its configuration down (I/O port, interrupt and DMA channel), because you will be asked for it. You want to read the Sound-HOWTO, available from <http://www.tldp.org/docs.html#howto>. General information about the modular sound system is contained in the files <file:Documentation/sound/Introduction>. The file <file:Documentation/sound/README.OSS> contains some slightly outdated but still useful information as well. If you have a PnP sound card and you want to configure it at boot time using the ISA PnP tools (read <http://www.roestock.demon.co.uk/isapnptools/>), then you need to compile the sound card support as a module ( = code which can be inserted in and removed from the running kernel whenever you want) and load that module after the PnP configuration is finished. To do this, say M here and read <file:Documentation/modules.txt> as well as <file:Documentation/sound/README.modules>; the module will be called soundcore. I'm told that even without a sound card, you can make your computer say more than an occasional beep, by programming the PC speaker. Kernel patches and supporting utilities to do that are in the pcsp package, available at <ftp://ftp.infradead.org/pub/pcsp/>. source "sound/Kconfig" endmenu source "drivers/usb/Kconfig" source "net/bluetooth/Kconfig" menu "Watchdog" config SOFT_WATCHDOG tristate "Software watchdog" help A software monitoring watchdog. This will fail to reboot your system from some situations that the hardware watchdog will recover from. Equally it's a lot cheaper to install. This driver is also available as a module ( = code which can be inserted in and removed from the running kernel whenever you want). If you want to compile it as a module, say M here and read <file:Documentation/modules.txt>. The module will be called softdog. endmenu source "arch/sparc64/oprofile/Kconfig" menu "Kernel hacking" config DEBUG_KERNEL bool "Kernel debugging" help Say Y here if you are developing drivers or trying to debug and identify kernel problems. config DEBUG_SLAB bool "Debug memory allocations" depends on DEBUG_KERNEL help Say Y here to have the kernel do limited verification on memory allocation as well as poisoning memory on free to catch use of freed memory. config MAGIC_SYSRQ bool "Magic SysRq key" depends on DEBUG_KERNEL help If you say Y here, you will have some control over the system even if the system crashes for example during kernel debugging (e.g., you will be able to flush the buffer cache to disk, reboot the system immediately or dump some status information). This is accomplished by pressing various keys while holding SysRq (Alt+PrintScreen). It also works on a serial console (on PC hardware at least), if you send a BREAK and then within 5 seconds a command keypress. The keys are documented in <file:Documentation/sysrq.txt>. Don't say Y unless you really know what this hack does. config DEBUG_SPINLOCK bool "Spinlock debugging" depends on DEBUG_KERNEL help Say Y here and build SMP to catch missing spinlock initialization and certain other kinds of spinlock errors commonly made. This is best used in conjunction with the NMI watchdog so that spinlock deadlocks are also debuggable. config DEBUG_SPINLOCK_SLEEP bool "Sleep-inside-spinlock checking" help If you say Y here, various routines which may sleep will become very noisy if they are called with a spinlock held. config DEBUG_BUGVERBOSE bool "Verbose BUG() reporting (adds 70K)" depends on DEBUG_KERNEL help Say Y here to make BUG() panics output the file name and line number of the BUG call as well as the EIP and oops trace. This aids debugging but costs about 70-100K of memory. config DEBUG_DCFLUSH bool "D-cache flush debugging" depends on DEBUG_KERNEL config STACK_DEBUG bool "Stack Overflow Detection Support" config MCOUNT bool depends on STACK_DEBUG default y endmenu source "security/Kconfig" source "crypto/Kconfig" source "lib/Kconfig" |