Linux Audio

Check our new training course

Embedded Linux Audio

Check our new training course
with Creative Commons CC-BY-SA
lecture materials

Bootlin logo

Elixir Cross Referencer

Loading...
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
#ifndef _PARISC_BITOPS_H
#define _PARISC_BITOPS_H

#include <linux/compiler.h>
#include <asm/system.h>
#include <asm/byteorder.h>
#include <asm/atomic.h>

/*
 * HP-PARISC specific bit operations
 * for a detailed description of the functions please refer
 * to include/asm-i386/bitops.h or kerneldoc
 */

#ifdef __LP64__
#   define SHIFT_PER_LONG 6
#ifndef BITS_PER_LONG
#   define BITS_PER_LONG 64
#endif
#else
#   define SHIFT_PER_LONG 5
#ifndef BITS_PER_LONG
#   define BITS_PER_LONG 32
#endif
#endif

#define CHOP_SHIFTCOUNT(x) ((x) & (BITS_PER_LONG - 1))


#define smp_mb__before_clear_bit()      smp_mb()
#define smp_mb__after_clear_bit()       smp_mb()

static __inline__ void set_bit(int nr, void * address)
{
	unsigned long mask;
	unsigned long *addr = (unsigned long *) address;
	unsigned long flags;

	addr += (nr >> SHIFT_PER_LONG);
	mask = 1L << CHOP_SHIFTCOUNT(nr);
	SPIN_LOCK_IRQSAVE(ATOMIC_HASH(addr), flags);
	*addr |= mask;
	SPIN_UNLOCK_IRQRESTORE(ATOMIC_HASH(addr), flags);
}

static __inline__ void __set_bit(int nr, void * address)
{
	unsigned long mask;
	unsigned long *addr = (unsigned long *) address;

	addr += (nr >> SHIFT_PER_LONG);
	mask = 1L << CHOP_SHIFTCOUNT(nr);
	*addr |= mask;
}

static __inline__ void clear_bit(int nr, void * address)
{
	unsigned long mask;
	unsigned long *addr = (unsigned long *) address;
	unsigned long flags;

	addr += (nr >> SHIFT_PER_LONG);
	mask = 1L << CHOP_SHIFTCOUNT(nr);
	SPIN_LOCK_IRQSAVE(ATOMIC_HASH(addr), flags);
	*addr &= ~mask;
	SPIN_UNLOCK_IRQRESTORE(ATOMIC_HASH(addr), flags);
}

static __inline__ void __clear_bit(unsigned long nr, volatile void * address)
{
	unsigned long mask;
	unsigned long *addr = (unsigned long *) address;

	addr += (nr >> SHIFT_PER_LONG);
	mask = 1L << CHOP_SHIFTCOUNT(nr);
	*addr &= ~mask;
}

static __inline__ void change_bit(int nr, void * address)
{
	unsigned long mask;
	unsigned long *addr = (unsigned long *) address;
	unsigned long flags;

	addr += (nr >> SHIFT_PER_LONG);
	mask = 1L << CHOP_SHIFTCOUNT(nr);
	SPIN_LOCK_IRQSAVE(ATOMIC_HASH(addr), flags);
	*addr ^= mask;
	SPIN_UNLOCK_IRQRESTORE(ATOMIC_HASH(addr), flags);
}

static __inline__ void __change_bit(int nr, void * address)
{
	unsigned long mask;
	unsigned long *addr = (unsigned long *) address;

	addr += (nr >> SHIFT_PER_LONG);
	mask = 1L << CHOP_SHIFTCOUNT(nr);
	*addr ^= mask;
}

static __inline__ int test_and_set_bit(int nr, void * address)
{
	unsigned long mask;
	unsigned long *addr = (unsigned long *) address;
	int oldbit;
	unsigned long flags;

	addr += (nr >> SHIFT_PER_LONG);
	mask = 1L << CHOP_SHIFTCOUNT(nr);
	SPIN_LOCK_IRQSAVE(ATOMIC_HASH(addr), flags);
	oldbit = (*addr & mask) ? 1 : 0;
	*addr |= mask;
	SPIN_UNLOCK_IRQRESTORE(ATOMIC_HASH(addr), flags);

	return oldbit;
}

static __inline__ int __test_and_set_bit(int nr, void * address)
{
	unsigned long mask;
	unsigned long *addr = (unsigned long *) address;
	int oldbit;

	addr += (nr >> SHIFT_PER_LONG);
	mask = 1L << CHOP_SHIFTCOUNT(nr);
	oldbit = (*addr & mask) ? 1 : 0;
	*addr |= mask;

	return oldbit;
}

static __inline__ int test_and_clear_bit(int nr, void * address)
{
	unsigned long mask;
	unsigned long *addr = (unsigned long *) address;
	int oldbit;
	unsigned long flags;

	addr += (nr >> SHIFT_PER_LONG);
	mask = 1L << CHOP_SHIFTCOUNT(nr);
	SPIN_LOCK_IRQSAVE(ATOMIC_HASH(addr), flags);
	oldbit = (*addr & mask) ? 1 : 0;
	*addr &= ~mask;
	SPIN_UNLOCK_IRQRESTORE(ATOMIC_HASH(addr), flags);

	return oldbit;
}

static __inline__ int __test_and_clear_bit(int nr, void * address)
{
	unsigned long mask;
	unsigned long *addr = (unsigned long *) address;
	int oldbit;

	addr += (nr >> SHIFT_PER_LONG);
	mask = 1L << CHOP_SHIFTCOUNT(nr);
	oldbit = (*addr & mask) ? 1 : 0;
	*addr &= ~mask;

	return oldbit;
}

static __inline__ int test_and_change_bit(int nr, void * address)
{
	unsigned long mask;
	unsigned long *addr = (unsigned long *) address;
	int oldbit;
	unsigned long flags;

	addr += (nr >> SHIFT_PER_LONG);
	mask = 1L << CHOP_SHIFTCOUNT(nr);
	SPIN_LOCK_IRQSAVE(ATOMIC_HASH(addr), flags);
	oldbit = (*addr & mask) ? 1 : 0;
	*addr ^= mask;
	SPIN_UNLOCK_IRQRESTORE(ATOMIC_HASH(addr), flags);

	return oldbit;
}

static __inline__ int __test_and_change_bit(int nr, void * address)
{
	unsigned long mask;
	unsigned long *addr = (unsigned long *) address;
	int oldbit;

	addr += (nr >> SHIFT_PER_LONG);
	mask = 1L << CHOP_SHIFTCOUNT(nr);
	oldbit = (*addr & mask) ? 1 : 0;
	*addr ^= mask;

	return oldbit;
}

static __inline__ int test_bit(int nr, const void *address)
{
	unsigned long mask;
	unsigned long *addr = (unsigned long *) address;
	
	addr += (nr >> SHIFT_PER_LONG);
	mask = 1L << CHOP_SHIFTCOUNT(nr);
	
	return !!(*addr & mask);
}

extern __inline__ unsigned long ffz(unsigned long word)
{
	unsigned long result;

	result = 0;
	while (word & 1) {
		result++;
		word >>= 1;
	}

	return result;
}

#ifdef __KERNEL__

/**
 * __ffs - find first bit in word.
 * @word: The word to search
 *
 * Undefined if no bit exists, so code should check against 0 first.
 */
static __inline__ unsigned long __ffs(unsigned long word)
{
	unsigned long result = 0;

	while (!(word & 1UL)) {
		result++;
		word >>= 1;
	}
	return result;
}

/*
 * ffs: find first bit set. This is defined the same way as
 * the libc and compiler builtin ffs routines, therefore
 * differs in spirit from the above ffz (man ffs).
 */
static __inline__ int ffs(int x)
{
	if (!x)
		return 0;
	return __ffs((unsigned long)x);
}

/*
 * fls: find last bit set.
 */

#define fls(x) generic_fls(x)

/*
 * hweightN: returns the hamming weight (i.e. the number
 * of bits set) of a N-bit word
 */
#define hweight64(x)						\
({								\
	unsigned long __x = (x);				\
	unsigned int __w;					\
	__w = generic_hweight32((unsigned int) __x);		\
	__w += generic_hweight32((unsigned int) (__x>>32));	\
	__w;							\
})
#define hweight32(x) generic_hweight32(x)
#define hweight16(x) generic_hweight16(x)
#define hweight8(x) generic_hweight8(x)

/*
 * Every architecture must define this function. It's the fastest
 * way of searching a 140-bit bitmap where the first 100 bits are
 * unlikely to be set. It's guaranteed that at least one of the 140
 * bits is cleared.
 */
static inline int sched_find_first_bit(unsigned long *b)
{
#ifndef __LP64__
	if (unlikely(b[0]))
		return __ffs(b[0]);
	if (unlikely(b[1]))
		return __ffs(b[1]) + 32;
	if (unlikely(b[2]))
		return __ffs(b[2]) + 64;
	if (b[3])
		return __ffs(b[3]) + 96;
	return __ffs(b[4]) + 128;
#else
	if (unlikely(b[0]))
		return __ffs(b[0]);
	if (unlikely(((unsigned int)b[1])))
		return __ffs(b[1]) + 64;
	if (b[1] >> 32)
		return __ffs(b[1] >> 32) + 96;
	return __ffs(b[2]) + 128;
#endif
}

#endif /* __KERNEL__ */

/*
 * This implementation of find_{first,next}_zero_bit was stolen from
 * Linus' asm-alpha/bitops.h.
 */
#define find_first_zero_bit(addr, size) \
	find_next_zero_bit((addr), (size), 0)

static __inline__ unsigned long find_next_zero_bit(void * addr, unsigned long size, unsigned long offset)
{
	unsigned long * p = ((unsigned long *) addr) + (offset >> SHIFT_PER_LONG);
	unsigned long result = offset & ~(BITS_PER_LONG-1);
	unsigned long tmp;

	if (offset >= size)
		return size;
	size -= result;
	offset &= (BITS_PER_LONG-1);
	if (offset) {
		tmp = *(p++);
		tmp |= ~0UL >> (BITS_PER_LONG-offset);
		if (size < BITS_PER_LONG)
			goto found_first;
		if (~tmp)
			goto found_middle;
		size -= BITS_PER_LONG;
		result += BITS_PER_LONG;
	}
	while (size & ~(BITS_PER_LONG -1)) {
		if (~(tmp = *(p++)))
			goto found_middle;
		result += BITS_PER_LONG;
		size -= BITS_PER_LONG;
	}
	if (!size)
		return result;
	tmp = *p;
found_first:
	tmp |= ~0UL << size;
found_middle:
	return result + ffz(tmp);
}

static __inline__ unsigned long find_next_bit(unsigned long *addr, unsigned long size, unsigned long offset)
{
	unsigned long *p = addr + (offset >> 6);
	unsigned long result = offset & ~(BITS_PER_LONG-1);
	unsigned long tmp;

	if (offset >= size)
		return size;
	size -= result;
	offset &= (BITS_PER_LONG-1);
	if (offset) {
		tmp = *(p++);
		tmp &= (~0UL << offset);
		if (size < BITS_PER_LONG)
			goto found_first;
		if (tmp)
			goto found_middle;
		size -= BITS_PER_LONG;
		result += BITS_PER_LONG;
	}
	while (size & ~(BITS_PER_LONG-1)) {
		if ((tmp = *(p++)))
			goto found_middle;
		result += BITS_PER_LONG;
		size -= BITS_PER_LONG;
	}
	if (!size)
		return result;
	tmp = *p;

found_first:
	tmp &= (~0UL >> (BITS_PER_LONG - size));
	if (tmp == 0UL)        /* Are any bits set? */
		return result + size; /* Nope. */
found_middle:
	return result + __ffs(tmp);
}

#define _EXT2_HAVE_ASM_BITOPS_

#ifdef __KERNEL__
/*
 * test_and_{set,clear}_bit guarantee atomicity without
 * disabling interrupts.
 */
#ifdef __LP64__
#define ext2_set_bit(nr, addr)		test_and_set_bit((nr) ^ 0x38, addr)
#define ext2_set_bit_atomic(l,nr,addr)  test_and_set_bit((nr) ^ 0x38, addr)
#define ext2_clear_bit(nr, addr)	test_and_clear_bit((nr) ^ 0x38, addr)
#define ext2_clear_bit_atomic(l,nr,addr) test_and_clear_bit((nr) ^ 0x38, addr)
#else
#define ext2_set_bit(nr, addr)		test_and_set_bit((nr) ^ 0x18, addr)
#define ext2_set_bit_atomic(l,nr,addr)  test_and_set_bit((nr) ^ 0x18, addr)
#define ext2_clear_bit(nr, addr)	test_and_clear_bit((nr) ^ 0x18, addr)
#define ext2_clear_bit_atomic(l,nr,addr) test_and_clear_bit((nr) ^ 0x18, addr)
#endif

#endif	/* __KERNEL__ */

static __inline__ int ext2_test_bit(int nr, __const__ void * addr)
{
	__const__ unsigned char	*ADDR = (__const__ unsigned char *) addr;

	return (ADDR[nr >> 3] >> (nr & 7)) & 1;
}

/*
 * This implementation of ext2_find_{first,next}_zero_bit was stolen from
 * Linus' asm-alpha/bitops.h and modified for a big-endian machine.
 */

#define ext2_find_first_zero_bit(addr, size) \
        ext2_find_next_zero_bit((addr), (size), 0)

extern __inline__ unsigned long ext2_find_next_zero_bit(void *addr,
	unsigned long size, unsigned long offset)
{
	unsigned int *p = ((unsigned int *) addr) + (offset >> 5);
	unsigned int result = offset & ~31UL;
	unsigned int tmp;

	if (offset >= size)
		return size;
	size -= result;
	offset &= 31UL;
	if (offset) {
		tmp = cpu_to_le32p(p++);
		tmp |= ~0UL >> (32-offset);
		if (size < 32)
			goto found_first;
		if (tmp != ~0U)
			goto found_middle;
		size -= 32;
		result += 32;
	}
	while (size >= 32) {
		if ((tmp = cpu_to_le32p(p++)) != ~0U)
			goto found_middle;
		result += 32;
		size -= 32;
	}
	if (!size)
		return result;
	tmp = cpu_to_le32p(p);
found_first:
	tmp |= ~0U << size;
found_middle:
	return result + ffz(tmp);
}

/* Bitmap functions for the minix filesystem.  */
#define minix_test_and_set_bit(nr,addr) ext2_set_bit(nr,addr)
#define minix_set_bit(nr,addr) ((void)ext2_set_bit(nr,addr))
#define minix_test_and_clear_bit(nr,addr) ext2_clear_bit(nr,addr)
#define minix_test_bit(nr,addr) ext2_test_bit(nr,addr)
#define minix_find_first_zero_bit(addr,size) ext2_find_first_zero_bit(addr,size)

#endif /* _PARISC_BITOPS_H */