Linux Audio

Check our new training course

Embedded Linux Audio

Check our new training course
with Creative Commons CC-BY-SA
lecture materials

Bootlin logo

Elixir Cross Referencer

Loading...
#ifndef _ASM_CRIS_IO_H
#define _ASM_CRIS_IO_H

#include <asm/page.h>   /* for __va, __pa */
#include <asm/svinto.h>
#include <linux/config.h>

/* Console I/O for simulated etrax100.  Use #ifdef so erroneous
   use will be evident. */
#ifdef CONFIG_SVINTO_SIM
  /* Let's use the ucsim interface since it lets us do write(2, ...) */
#define SIMCOUT(s,len)							\
  asm ("moveq 4,$r9	\n\t"						\
       "moveq 2,$r10	\n\t"						\
       "move.d %0,$r11	\n\t"						\
       "move.d %1,$r12	\n\t"						\
       "push $irp	\n\t"						\
       "move 0f,$irp	\n\t"						\
       "jump -6809	\n"						\
       "0:		\n\t"						\
       "pop $irp"							\
       : : "rm" (s), "rm" (len) : "r9","r10","r11","r12","memory")
#define TRACE_ON() __extension__ \
 ({ int _Foofoo; __asm__ volatile ("bmod [%0],%0" : "=r" (_Foofoo) : "0" \
			       (255)); _Foofoo; })

#define TRACE_OFF() do { __asm__ volatile ("bmod [%0],%0" :: "r" (254)); } while (0)
#define SIM_END() do { __asm__ volatile ("bmod [%0],%0" :: "r" (28)); } while (0)
#define CRIS_CYCLES() __extension__ \
 ({ unsigned long c; asm ("bmod [%1],%0" : "=r" (c) : "r" (27)); c;})
#else  /* ! defined CONFIG_SVINTO_SIM */
/* FIXME: Is there a reliable cycle counter available in some chip?  Use
   that then. */
#define CRIS_CYCLES() 0
#endif /* ! defined CONFIG_SVINTO_SIM */

/* Etrax shadow registers - which live in arch/cris/kernel/shadows.c */

extern unsigned long port_g_data_shadow;
extern unsigned char port_pa_dir_shadow;
extern unsigned char port_pa_data_shadow;
extern unsigned char port_pb_i2c_shadow;
extern unsigned char port_pb_config_shadow;
extern unsigned char port_pb_dir_shadow;
extern unsigned char port_pb_data_shadow;
extern unsigned long r_timer_ctrl_shadow;

extern unsigned long port_cse1_shadow;
extern unsigned long port_csp0_shadow;
extern unsigned long port_csp4_shadow;

extern volatile unsigned long *port_cse1_addr;
extern volatile unsigned long *port_csp0_addr;
extern volatile unsigned long *port_csp4_addr;

/* macro for setting regs through a shadow - 
 * r = register name (like R_PORT_PA_DATA)
 * s = shadow name (like port_pa_data_shadow)
 * b = bit number
 * v = value (0 or 1)
 */

#define REG_SHADOW_SET(r,s,b,v) *r = s = (s & ~(1 << (b))) | ((v) << (b))

/* The LED's on various Etrax-based products are set differently. */

#if defined(CONFIG_ETRAX_NO_LEDS) || defined(CONFIG_SVINTO_SIM)
#undef CONFIG_ETRAX_PA_LEDS
#undef CONFIG_ETRAX_PB_LEDS
#undef CONFIG_ETRAX_CSP0_LEDS
#define LED_NETWORK_SET_G(x)
#define LED_NETWORK_SET_R(x)
#define LED_ACTIVE_SET_G(x)
#define LED_ACTIVE_SET_R(x)
#define LED_DISK_WRITE(x)
#define LED_DISK_READ(x)
#endif

#if !defined(CONFIG_ETRAX_CSP0_LEDS)
#define LED_BIT_SET(x)
#define LED_BIT_CLR(x)
#endif

#define LED_OFF    0x00
#define LED_GREEN  0x01
#define LED_RED    0x02
#define LED_ORANGE (LED_GREEN | LED_RED)

#if CONFIG_ETRAX_LED1G == CONFIG_ETRAX_LED1R 
#define LED_NETWORK_SET(x)                          \
	do {                                        \
		LED_NETWORK_SET_G((x) & LED_GREEN); \
	} while (0)
#else
#define LED_NETWORK_SET(x)                          \
	do {                                        \
		LED_NETWORK_SET_G((x) & LED_GREEN); \
		LED_NETWORK_SET_R((x) & LED_RED);   \
	} while (0)
#endif
#if CONFIG_ETRAX_LED2G == CONFIG_ETRAX_LED2R 
#define LED_ACTIVE_SET(x)                           \
	do {                                        \
		LED_ACTIVE_SET_G((x) & LED_GREEN);  \
	} while (0)
#else
#define LED_ACTIVE_SET(x)                           \
	do {                                        \
		LED_ACTIVE_SET_G((x) & LED_GREEN);  \
		LED_ACTIVE_SET_R((x) & LED_RED);    \
	} while (0)
#endif

#ifdef CONFIG_ETRAX_PA_LEDS
#define LED_NETWORK_SET_G(x) \
         REG_SHADOW_SET(R_PORT_PA_DATA, port_pa_data_shadow, CONFIG_ETRAX_LED1G, !(x))
#define LED_NETWORK_SET_R(x) \
         REG_SHADOW_SET(R_PORT_PA_DATA, port_pa_data_shadow, CONFIG_ETRAX_LED1R, !(x))
#define LED_ACTIVE_SET_G(x) \
         REG_SHADOW_SET(R_PORT_PA_DATA, port_pa_data_shadow, CONFIG_ETRAX_LED2G, !(x))
#define LED_ACTIVE_SET_R(x) \
         REG_SHADOW_SET(R_PORT_PA_DATA, port_pa_data_shadow, CONFIG_ETRAX_LED2R, !(x))
#define LED_DISK_WRITE(x) \
         do{\
                REG_SHADOW_SET(R_PORT_PA_DATA, port_pa_data_shadow, CONFIG_ETRAX_LED3G, !(x));\
                REG_SHADOW_SET(R_PORT_PA_DATA, port_pa_data_shadow, CONFIG_ETRAX_LED3R, !(x));\
        }while(0)
#define LED_DISK_READ(x) \
         REG_SHADOW_SET(R_PORT_PA_DATA, port_pa_data_shadow, CONFIG_ETRAX_LED3G, !(x)) 
#endif

#ifdef CONFIG_ETRAX_PB_LEDS
#define LED_NETWORK_SET_G(x) \
         REG_SHADOW_SET(R_PORT_PB_DATA, port_pb_data_shadow, CONFIG_ETRAX_LED1G, !(x))
#define LED_NETWORK_SET_R(x) \
         REG_SHADOW_SET(R_PORT_PB_DATA, port_pb_data_shadow, CONFIG_ETRAX_LED1R, !(x))
#define LED_ACTIVE_SET_G(x) \
         REG_SHADOW_SET(R_PORT_PB_DATA, port_pb_data_shadow, CONFIG_ETRAX_LED2G, !(x))
#define LED_ACTIVE_SET_R(x) \
         REG_SHADOW_SET(R_PORT_PB_DATA, port_pb_data_shadow, CONFIG_ETRAX_LED2R, !(x))
#define LED_DISK_WRITE(x) \
        do{\
                REG_SHADOW_SET(R_PORT_PB_DATA, port_pb_data_shadow, CONFIG_ETRAX_LED3G, !(x));\
                REG_SHADOW_SET(R_PORT_PB_DATA, port_pb_data_shadow, CONFIG_ETRAX_LED3R, !(x));\
        }while(0)
#define LED_DISK_READ(x) \
         REG_SHADOW_SET(R_PORT_PB_DATA, port_pb_data_shadow, CONFIG_ETRAX_LED3G, !(x))     
#endif

#ifdef CONFIG_ETRAX_CSP0_LEDS
#define CONFIGURABLE_LEDS\
        ((1 << CONFIG_ETRAX_LED1G ) | (1 << CONFIG_ETRAX_LED1R ) |\
         (1 << CONFIG_ETRAX_LED2G ) | (1 << CONFIG_ETRAX_LED2R ) |\
         (1 << CONFIG_ETRAX_LED3G ) | (1 << CONFIG_ETRAX_LED3R ) |\
         (1 << CONFIG_ETRAX_LED4G ) | (1 << CONFIG_ETRAX_LED4R ) |\
         (1 << CONFIG_ETRAX_LED5G ) | (1 << CONFIG_ETRAX_LED5R ) |\
         (1 << CONFIG_ETRAX_LED6G ) | (1 << CONFIG_ETRAX_LED6R ) |\
         (1 << CONFIG_ETRAX_LED7G ) | (1 << CONFIG_ETRAX_LED7R ) |\
         (1 << CONFIG_ETRAX_LED8Y ) | (1 << CONFIG_ETRAX_LED9Y ) |\
         (1 << CONFIG_ETRAX_LED10Y ) |(1 << CONFIG_ETRAX_LED11Y )|\
         (1 << CONFIG_ETRAX_LED12R ))

#define LED_NETWORK_SET_G(x) \
         REG_SHADOW_SET(port_csp0_addr, port_csp0_shadow, CONFIG_ETRAX_LED1G, !(x))
#define LED_NETWORK_SET_R(x) \
         REG_SHADOW_SET(port_csp0_addr, port_csp0_shadow, CONFIG_ETRAX_LED1R, !(x))
#define LED_ACTIVE_SET_G(x) \
         REG_SHADOW_SET(port_csp0_addr, port_csp0_shadow, CONFIG_ETRAX_LED2G, !(x))
#define LED_ACTIVE_SET_R(x) \
         REG_SHADOW_SET(port_csp0_addr, port_csp0_shadow, CONFIG_ETRAX_LED2R, !(x))
#define LED_DISK_WRITE(x) \
        do{\
                REG_SHADOW_SET(port_csp0_addr, port_csp0_shadow, CONFIG_ETRAX_LED3G, !(x));\
                REG_SHADOW_SET(port_csp0_addr, port_csp0_shadow, CONFIG_ETRAX_LED3R, !(x));\
        }while(0)
#define LED_DISK_READ(x) \
         REG_SHADOW_SET(port_csp0_addr, port_csp0_shadow, CONFIG_ETRAX_LED3G, !(x))
#define LED_BIT_SET(x)\
        do{\
                if((( 1 << x) & CONFIGURABLE_LEDS)  != 0)\
                       REG_SHADOW_SET(port_csp0_addr, port_csp0_shadow, x, 1);\
        }while(0)
#define LED_BIT_CLR(x)\
        do{\
                if((( 1 << x) & CONFIGURABLE_LEDS)  != 0)\
                       REG_SHADOW_SET(port_csp0_addr, port_csp0_shadow, x, 0);\
        }while(0)
#endif

#
#ifdef CONFIG_ETRAX_SOFT_SHUTDOWN
#define SOFT_SHUTDOWN() \
          REG_SHADOW_SET(port_csp0_addr, port_csp0_shadow, CONFIG_ETRAX_SHUTDOWN_BIT, 1)
#else
#define SOFT_SHUTDOWN()
#endif

/*
 * Change virtual addresses to physical addresses and vv.
 */

static inline unsigned long virt_to_phys(volatile void * address)
{
	return __pa(address);
}

static inline void * phys_to_virt(unsigned long address)
{
	return __va(address);
}

extern void * __ioremap(unsigned long offset, unsigned long size, unsigned long flags);

extern inline void * ioremap (unsigned long offset, unsigned long size)
{
	return __ioremap(offset, size, 0);
}

/*
 * IO bus memory addresses are also 1:1 with the physical address
 */
#define virt_to_bus virt_to_phys
#define bus_to_virt phys_to_virt

/*
 * readX/writeX() are used to access memory mapped devices. On some
 * architectures the memory mapped IO stuff needs to be accessed
 * differently. On the CRIS architecture, we just read/write the
 * memory location directly.
 */
#define readb(addr) (*(volatile unsigned char *) (addr))
#define readw(addr) (*(volatile unsigned short *) (addr))
#define readl(addr) (*(volatile unsigned int *) (addr))

#define writeb(b,addr) ((*(volatile unsigned char *) (addr)) = (b))
#define writew(b,addr) ((*(volatile unsigned short *) (addr)) = (b))
#define writel(b,addr) ((*(volatile unsigned int *) (addr)) = (b))

#define memset_io(a,b,c)	memset((void *)(a),(b),(c))
#define memcpy_fromio(a,b,c)	memcpy((a),(void *)(b),(c))
#define memcpy_toio(a,b,c)	memcpy((void *)(a),(b),(c))

/*
 * Again, CRIS does not require mem IO specific function.
 */

#define eth_io_copy_and_sum(a,b,c,d)	eth_copy_and_sum((a),(void *)(b),(c),(d))

/* The following is junk needed for the arch-independent code but which
 * we never use in the CRIS port
 */

#define IO_SPACE_LIMIT 0xffff
#define inb(x) (0)
#define outb(x,y)
#define outw(x,y)
#define outl(x,y)
#define insb(x,y,z)
#define insw(x,y,z)
#define insl(x,y,z)
#define outsb(x,y,z)
#define outsw(x,y,z)
#define outsl(x,y,z)

#endif