Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 | /* * JFFS2 -- Journalling Flash File System, Version 2. * * Copyright (C) 2001, 2002 Red Hat, Inc. * * Created by David Woodhouse <dwmw2@cambridge.redhat.com> * * For licensing information, see the file 'LICENCE' in this directory. * * $Id: wbuf.c,v 1.20 2002/11/12 11:33:02 dwmw2 Exp $ * + some of the dependencies on later MTD NAND code temporarily reverted. * */ #include <linux/kernel.h> #include <linux/slab.h> #include <linux/mtd/mtd.h> #include <linux/interrupt.h> #include <linux/crc32.h> #include <linux/mtd/nand.h> #include "nodelist.h" /* FIXME duplicated defines in wbuf.c and nand.c * Constants for out of band layout */ #ifndef NAND_BADBLOCK_POS #define NAND_BADBLOCK_POS 5 #endif #ifndef NAND_JFFS2_OOB_BADBPOS #define NAND_JFFS2_OOB_BADBPOS 5 #define NAND_JFFS2_OOB8_FSDAPOS 6 #define NAND_JFFS2_OOB16_FSDAPOS 8 #define NAND_JFFS2_OOB8_FSDALEN 2 #define NAND_JFFS2_OOB16_FSDALEN 8 #endif /* max. erase failures before we mark a block bad */ #define MAX_ERASE_FAILURES 5 /* two seconds timeout for timed wbuf-flushing */ #define WBUF_FLUSH_TIMEOUT 2 * HZ static inline void jffs2_refile_wbuf_blocks(struct jffs2_sb_info *c) { struct list_head *this, *next; static int n; if (list_empty(&c->erasable_pending_wbuf_list)) return; list_for_each_safe(this, next, &c->erasable_pending_wbuf_list) { struct jffs2_eraseblock *jeb = list_entry(this, struct jffs2_eraseblock, list); D1(printk(KERN_DEBUG "Removing eraseblock at 0x%08x from erasable_pending_wbuf_list...\n", jeb->offset)); list_del(this); if ((jiffies + (n++)) & 127) { /* Most of the time, we just erase it immediately. Otherwise we spend ages scanning it on mount, etc. */ D1(printk(KERN_DEBUG "...and adding to erase_pending_list\n")); list_add_tail(&jeb->list, &c->erase_pending_list); c->nr_erasing_blocks++; jffs2_erase_pending_trigger(c); } else { /* Sometimes, however, we leave it elsewhere so it doesn't get immediately reused, and we spread the load a bit. */ D1(printk(KERN_DEBUG "...and adding to erasable_list\n")); list_add_tail(&jeb->list, &c->erasable_list); } } } /* * Timed flushing of wbuf. If we have no consecutive write to wbuf, within * the specified time, we flush the contents with padding ! */ void jffs2_wbuf_timeout (unsigned long data) { struct jffs2_sb_info *c = (struct jffs2_sb_info *) data; /* * Wake up the flush process, we need process context to have the right * to sleep on flash write */ D1(printk(KERN_DEBUG "jffs2_wbuf_timeout(): timer expired\n")); schedule_work(&c->wbuf_task); } /* * Process for timed wbuf flush * * FIXME What happens, if we have a write failure there ???? */ void jffs2_wbuf_process (void *data) { struct jffs2_sb_info *c = (struct jffs2_sb_info *) data; D1(printk(KERN_DEBUG "jffs2_wbuf_process() entered\n")); /* Check, if the timer is active again */ if (timer_pending (&c->wbuf_timer)) { D1(printk (KERN_DEBUG "Nothing to do, timer is active again\n")); return; } if (down_trylock(&c->alloc_sem)) { /* If someone else has the alloc_sem, they're about to write anyway. So no need to waste space by padding */ D1(printk (KERN_DEBUG "jffs2_wbuf_process() alloc_sem already occupied\n")); return; } D1(printk (KERN_DEBUG "jffs2_wbuf_process() alloc_sem got\n")); if (!c->nextblock) { D1(printk(KERN_DEBUG "jffs2_wbuf_process(): nextblock NULL, nothing to do\n")); if (c->wbuf_len) { printk(KERN_WARNING "jffs2_wbuf_process(): c->wbuf_len is 0x%03x but nextblock is NULL!\n", c->wbuf_len); up(&c->alloc_sem); BUG(); } return; } /* if !c->nextblock then the tail will have got flushed from jffs2_do_reserve_space() anyway. */ if(c->nextblock) jffs2_flush_wbuf(c, 2); /* pad and adjust nextblock */ up(&c->alloc_sem); } /* Meaning of pad argument: 0: Do not pad. Probably pointless - we only ever use this when we can't pad anyway. 1: Pad, do not adjust nextblock free_size 2: Pad, adjust nextblock free_size */ int jffs2_flush_wbuf(struct jffs2_sb_info *c, int pad) { int ret; size_t retlen; /* Nothing to do if not NAND flash. In particular, we shouldn't del_timer() the timer we never initialised. */ if (jffs2_can_mark_obsolete(c)) return 0; if (!down_trylock(&c->alloc_sem)) { up(&c->alloc_sem); printk(KERN_CRIT "jffs2_flush_wbuf() called with alloc_sem not locked!\n"); BUG(); } /* delete a eventually started timed wbuf flush */ del_timer_sync(&c->wbuf_timer); if(!c->wbuf || !c->wbuf_len) return 0; /* claim remaining space on the page this happens, if we have a change to a new block, or if fsync forces us to flush the writebuffer. if we have a switch to next page, we will not have enough remaining space for this. */ if (pad) { c->wbuf_len = PAD(c->wbuf_len); if ( c->wbuf_len + sizeof(struct jffs2_unknown_node) < c->wbuf_pagesize) { struct jffs2_unknown_node *padnode = (void *)(c->wbuf + c->wbuf_len); padnode->magic = cpu_to_je16(JFFS2_MAGIC_BITMASK); padnode->nodetype = cpu_to_je16(JFFS2_NODETYPE_PADDING); padnode->totlen = cpu_to_je32(c->wbuf_pagesize - c->wbuf_len); padnode->hdr_crc = cpu_to_je32(crc32(0, padnode, sizeof(*padnode)-4)); } } /* else jffs2_flash_writev has actually filled in the rest of the buffer for us, and will deal with the node refs etc. later. */ ret = c->mtd->write(c->mtd, c->wbuf_ofs, c->wbuf_pagesize, &retlen, c->wbuf); if (ret || retlen != c->wbuf_pagesize) { if (ret) printk(KERN_CRIT "jffs2_flush_wbuf(): Write failed with %d\n",ret); else printk(KERN_CRIT "jffs2_flush_wbuf(): Write was short %d instead of %d\n",retlen,c->wbuf_pagesize); ret = -EIO; /* CHECKME NAND So that the caller knows what happened. If we were called from jffs2_flash_writev(), it'll know to return failure and _its_ caller will try again. writev gives back to jffs2_write_xxx in write.c. There are the real fixme's */ /* FIXME NAND If we were called from GC or fsync, there's no repair kit yet */ return ret; } /* Adjusting free size of next block only, if it's called from fsync ! */ if (pad == 2) { D1(printk(KERN_DEBUG "jffs2_flush_wbuf() adjusting free_size of c->nextblock\n")); spin_lock_bh(&c->erase_completion_lock); if (!c->nextblock) BUG(); /* wbuf_pagesize - wbuf_len is the amount of space that's to be padded. If there is less free space in the block than that, something screwed up */ if (c->nextblock->free_size < (c->wbuf_pagesize - c->wbuf_len)) { printk(KERN_CRIT "jffs2_flush_wbuf(): Accounting error. wbuf at 0x%08x has 0x%03x bytes, 0x%03x left.\n", c->wbuf_ofs, c->wbuf_len, c->wbuf_pagesize-c->wbuf_len); printk(KERN_CRIT "jffs2_flush_wbuf(): But free_size for block at 0x%08x is only 0x%08x\n", c->nextblock->offset, c->nextblock->free_size); BUG(); } c->nextblock->free_size -= (c->wbuf_pagesize - c->wbuf_len); c->free_size -= (c->wbuf_pagesize - c->wbuf_len); c->nextblock->wasted_size += (c->wbuf_pagesize - c->wbuf_len); c->wasted_size += (c->wbuf_pagesize - c->wbuf_len); spin_unlock_bh(&c->erase_completion_lock); } /* Stick any now-obsoleted blocks on the erase_pending_list */ spin_lock_bh(&c->erase_completion_lock); jffs2_refile_wbuf_blocks(c); spin_unlock_bh(&c->erase_completion_lock); memset(c->wbuf,0xff,c->wbuf_pagesize); /* adjust write buffer offset, else we get a non contigous write bug */ c->wbuf_ofs+= c->wbuf_pagesize; c->wbuf_len = 0; return 0; } #define PAGE_DIV(x) ( (x) & (~(c->wbuf_pagesize - 1)) ) #define PAGE_MOD(x) ( (x) & (c->wbuf_pagesize - 1) ) int jffs2_flash_writev(struct jffs2_sb_info *c, const struct iovec *invecs, unsigned long count, loff_t to, size_t *retlen) { struct iovec outvecs[3]; uint32_t totlen = 0; uint32_t split_ofs = 0; uint32_t old_totlen; int ret, splitvec = -1; int invec, outvec; size_t wbuf_retlen; unsigned char *wbuf_ptr; size_t donelen = 0; uint32_t outvec_to = to; /* If not NAND flash, don't bother */ if (!c->wbuf) return jffs2_flash_direct_writev(c, invecs, count, to, retlen); /* If wbuf_ofs is not initialized, set it to target address */ if (c->wbuf_ofs == 0xFFFFFFFF) { c->wbuf_ofs = PAGE_DIV(to); c->wbuf_len = PAGE_MOD(to); memset(c->wbuf,0xff,c->wbuf_pagesize); } /* Sanity checks on target address. It's permitted to write at PAD(c->wbuf_len+c->wbuf_ofs), and it's permitted to write at the beginning of a new erase block. Anything else, and you die. New block starts at xxx000c (0-b = block header) */ if ( (to & ~(c->sector_size-1)) != (c->wbuf_ofs & ~(c->sector_size-1)) ) { /* It's a write to a new block */ if (c->wbuf_len) { D1(printk(KERN_DEBUG "jffs2_flash_writev() to 0x%lx causes flush of wbuf at 0x%08x\n", (unsigned long)to, c->wbuf_ofs)); ret = jffs2_flush_wbuf(c, 1); if (ret) { /* the underlying layer has to check wbuf_len to do the cleanup */ D1(printk(KERN_WARNING "jffs2_flush_wbuf() called from jffs2_flash_writev() failed %d\n", ret)); *retlen = 0; return ret; } } /* set pointer to new block */ c->wbuf_ofs = PAGE_DIV(to); c->wbuf_len = PAGE_MOD(to); } if (to != PAD(c->wbuf_ofs + c->wbuf_len)) { /* We're not writing immediately after the writebuffer. Bad. */ printk(KERN_CRIT "jffs2_flash_writev(): Non-contiguous write to %08lx\n", (unsigned long)to); if (c->wbuf_len) printk(KERN_CRIT "wbuf was previously %08x-%08x\n", c->wbuf_ofs, c->wbuf_ofs+c->wbuf_len); BUG(); } /* Note outvecs[3] above. We know count is never greater than 2 */ if (count > 2) { printk(KERN_CRIT "jffs2_flash_writev(): count is %ld\n", count); BUG(); } invec = 0; outvec = 0; /* Fill writebuffer first, if already in use */ if (c->wbuf_len) { uint32_t invec_ofs = 0; /* adjust alignment offset */ if (c->wbuf_len != PAGE_MOD(to)) { c->wbuf_len = PAGE_MOD(to); /* take care of alignment to next page */ if (!c->wbuf_len) c->wbuf_len = c->wbuf_pagesize; } while(c->wbuf_len < c->wbuf_pagesize) { uint32_t thislen; if (invec == count) goto alldone; thislen = c->wbuf_pagesize - c->wbuf_len; if (thislen >= invecs[invec].iov_len) thislen = invecs[invec].iov_len; invec_ofs = thislen; memcpy(c->wbuf + c->wbuf_len, invecs[invec].iov_base, thislen); c->wbuf_len += thislen; donelen += thislen; /* Get next invec, if actual did not fill the buffer */ if (c->wbuf_len < c->wbuf_pagesize) invec++; } /* write buffer is full, flush buffer */ ret = jffs2_flush_wbuf(c, 0); if (ret) { /* the underlying layer has to check wbuf_len to do the cleanup */ D1(printk(KERN_WARNING "jffs2_flush_wbuf() called from jffs2_flash_writev() failed %d\n", ret)); *retlen = 0; return ret; } outvec_to += donelen; c->wbuf_ofs = outvec_to; /* All invecs done ? */ if (invec == count) goto alldone; /* Set up the first outvec, containing the remainder of the invec we partially used */ if (invecs[invec].iov_len > invec_ofs) { outvecs[0].iov_base = invecs[invec].iov_base+invec_ofs; totlen = outvecs[0].iov_len = invecs[invec].iov_len-invec_ofs; if (totlen > c->wbuf_pagesize) { splitvec = outvec; split_ofs = outvecs[0].iov_len - PAGE_MOD(totlen); } outvec++; } invec++; } /* OK, now we've flushed the wbuf and the start of the bits we have been asked to write, now to write the rest.... */ /* totlen holds the amount of data still to be written */ old_totlen = totlen; for ( ; invec < count; invec++,outvec++ ) { outvecs[outvec].iov_base = invecs[invec].iov_base; totlen += outvecs[outvec].iov_len = invecs[invec].iov_len; if (PAGE_DIV(totlen) != PAGE_DIV(old_totlen)) { splitvec = outvec; split_ofs = outvecs[outvec].iov_len - PAGE_MOD(totlen); old_totlen = totlen; } } /* Now the outvecs array holds all the remaining data to write */ /* Up to splitvec,split_ofs is to be written immediately. The rest goes into the (now-empty) wbuf */ if (splitvec != -1) { uint32_t remainder; int ret; remainder = outvecs[splitvec].iov_len - split_ofs; outvecs[splitvec].iov_len = split_ofs; /* We did cross a page boundary, so we write some now */ ret = jffs2_flash_direct_writev(c, outvecs, splitvec+1, outvec_to, &wbuf_retlen); if (ret < 0 || wbuf_retlen != PAGE_DIV(totlen)) { /* At this point we have no problem, c->wbuf is empty. */ *retlen = donelen; return ret; } donelen += wbuf_retlen; c->wbuf_ofs = PAGE_DIV(outvec_to) + PAGE_DIV(totlen); if (remainder) { outvecs[splitvec].iov_base += split_ofs; outvecs[splitvec].iov_len = remainder; } else { splitvec++; } } else { splitvec = 0; } /* Now splitvec points to the start of the bits we have to copy into the wbuf */ wbuf_ptr = c->wbuf; for ( ; splitvec < outvec; splitvec++) { /* Don't copy the wbuf into itself */ if (outvecs[splitvec].iov_base == c->wbuf) continue; memcpy(wbuf_ptr, outvecs[splitvec].iov_base, outvecs[splitvec].iov_len); wbuf_ptr += outvecs[splitvec].iov_len; donelen += outvecs[splitvec].iov_len; } c->wbuf_len = wbuf_ptr - c->wbuf; alldone: *retlen = donelen; /* Setup timed wbuf flush, if buffer len != 0 */ if (c->wbuf_len) { D1(printk (KERN_DEBUG "jffs2_flash_writev: mod wbuf_timer\n")); mod_timer(&c->wbuf_timer, jiffies + WBUF_FLUSH_TIMEOUT); } return 0; } /* This is the entry for NOR-Flash. We use it also for NAND to flush wbuf */ int jffs2_flash_write(struct jffs2_sb_info *c, loff_t ofs, size_t len, size_t *retlen, const u_char *buf) { return c->mtd->write(c->mtd, ofs, len, retlen, buf); } /* Handle readback from writebuffer and ECC failure return */ int jffs2_flash_read(struct jffs2_sb_info *c, loff_t ofs, size_t len, size_t *retlen, u_char *buf) { loff_t orbf = 0, owbf = 0, lwbf = 0; int ret; /* Read flash */ if (!jffs2_can_mark_obsolete(c)) { ret = c->mtd->read(c->mtd, ofs, len, retlen, buf); if ( (ret == -EIO) && (*retlen == len) ) { printk(KERN_WARNING "mtd->read(0x%x bytes from 0x%llx) returned ECC error\n", len, ofs); /* * We have the raw data without ECC correction in the buffer, maybe * we are lucky and all data or parts are correct. We check the node. * If data are corrupted node check will sort it out. * We keep this block, it will fail on write or erase and the we * mark it bad. Or should we do that now? But we should give him a chance. * Maybe we had a system crash or power loss before the ecc write or * a erase was completed. * So we return success. :) */ ret = 0; } } else return c->mtd->read(c->mtd, ofs, len, retlen, buf); /* if no writebuffer available or write buffer empty, return */ if (!c->wbuf_pagesize || !c->wbuf_len) return ret; /* if we read in a different block, return */ if ( (ofs & ~(c->sector_size-1)) != (c->wbuf_ofs & ~(c->sector_size-1)) ) return ret; if (ofs >= c->wbuf_ofs) { owbf = (ofs - c->wbuf_ofs); /* offset in write buffer */ if (owbf > c->wbuf_len) /* is read beyond write buffer ? */ return ret; lwbf = c->wbuf_len - owbf; /* number of bytes to copy */ if (lwbf > len) lwbf = len; } else { orbf = (c->wbuf_ofs - ofs); /* offset in read buffer */ if (orbf > len) /* is write beyond write buffer ? */ return ret; lwbf = len - orbf; /* number of bytes to copy */ if (lwbf > c->wbuf_len) lwbf = c->wbuf_len; } if (lwbf > 0) memcpy(buf+orbf,c->wbuf+owbf,lwbf); return ret; } /* * Check, if the out of band area is empty */ int jffs2_check_oob_empty( struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb, int mode) { unsigned char *buf; int ret = 0; int i,len,cnt,page; size_t retlen; int fsdata_pos,badblock_pos,oob_size; oob_size = c->mtd->oobsize; switch(c->mtd->ecctype) { case MTD_ECC_SW: fsdata_pos = (c->wbuf_pagesize == 256) ? NAND_JFFS2_OOB8_FSDAPOS : NAND_JFFS2_OOB16_FSDAPOS; badblock_pos = NAND_BADBLOCK_POS; break; default: D1(printk(KERN_WARNING "jffs2_write_oob_empty(): Invalid ECC type\n")); return -EINVAL; } /* allocate a buffer for all oob data in this sector */ len = 4 * oob_size; buf = kmalloc(len, GFP_KERNEL); if (!buf) { printk(KERN_NOTICE "jffs2_check_oob_empty(): allocation of temporary data buffer for oob check failed\n"); return -ENOMEM; } /* * if mode = 0, we scan for a total empty oob area, else we have * to take care of the cleanmarker in the first page of the block */ ret = jffs2_flash_read_oob(c, jeb->offset, len , &retlen, buf); if (ret) { D1(printk(KERN_WARNING "jffs2_check_oob_empty(): Read OOB failed %d for block at %08x\n", ret, jeb->offset)); goto out; } if (retlen < len) { D1(printk(KERN_WARNING "jffs2_check_oob_empty(): Read OOB return short read " "(%d bytes not %d) for block at %08x\n", retlen, len, jeb->offset)); ret = -EIO; goto out; } /* Special check for first two pages */ for (page = 0; page < 2 * oob_size; page += oob_size) { /* Check for bad block marker */ if (buf[page+badblock_pos] != 0xff) { D1(printk(KERN_WARNING "jffs2_check_oob_empty(): Bad or failed block at %08x\n",jeb->offset)); /* Return 2 for bad and 3 for failed block bad goes to list_bad and failed to list_erase */ ret = (!page) ? 2 : 3; goto out; } cnt = oob_size; if (mode) cnt -= fsdata_pos; for(i = 0; i < cnt ; i+=sizeof(unsigned short)) { unsigned short dat = *(unsigned short *)(&buf[page+i]); if(dat != 0xffff) { ret = 1; goto out; } } /* only the first page can contain a cleanmarker !*/ mode = 0; } /* we know, we are aligned :) */ for (; page < len; page += sizeof(long)) { unsigned long dat = *(unsigned long *)(&buf[page]); if(dat != -1) { ret = 1; goto out; } } out: kfree(buf); return ret; } int jffs2_check_nand_cleanmarker(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb) { struct jffs2_unknown_node n; unsigned char buf[32]; unsigned char *p; int ret,i; size_t retlen; int fsdata_pos,fsdata_len, oob_size, badblock_pos; oob_size = c->mtd->oobsize; switch(c->mtd->ecctype) { case MTD_ECC_SW: fsdata_pos = (c->wbuf_pagesize == 256) ? NAND_JFFS2_OOB8_FSDAPOS : NAND_JFFS2_OOB16_FSDAPOS; fsdata_len = (c->wbuf_pagesize == 256) ? NAND_JFFS2_OOB8_FSDALEN : NAND_JFFS2_OOB16_FSDALEN; badblock_pos = NAND_BADBLOCK_POS; break; default: D1(printk(KERN_WARNING "jffs2_write_nand_cleanmarker(): Invalid ECC type\n")); return -EINVAL; } /* * We read oob data from page 0 and 1 of the block. * page 0 contains cleanmarker and badblock info * page 2 contains failure count of this block */ ret = c->mtd->read_oob(c->mtd, jeb->offset, oob_size << 1 , &retlen, buf); if (ret) { D1(printk(KERN_WARNING "jffs2_check_nand_cleanmarker(): Read OOB failed %d for block at %08x\n", ret, jeb->offset)); return ret; } if (retlen < (oob_size << 1) ) { D1(printk(KERN_WARNING "jffs2_check_nand_cleanmarker(): Read OOB return short read (%d bytes not %d) for block at %08x\n", retlen, oob_size << 1 , jeb->offset)); return -EIO; } /* Check for bad block marker */ if (buf[badblock_pos] != 0xff) { D1(printk(KERN_WARNING "jffs2_check_nand_cleanmarker(): Bad block at %08x\n",jeb->offset)); return 2; } /* Check for failure counter in the second page */ if (buf[badblock_pos+oob_size] != 0xff) { D1(printk(KERN_WARNING "jffs2_check_nand_cleanmarker(): Block marked as failed at %08x, fail count:%d\n",jeb->offset,buf[badblock_pos+oob_size])); return 3; } n.magic = cpu_to_je16(JFFS2_MAGIC_BITMASK); n.nodetype = cpu_to_je16(JFFS2_NODETYPE_CLEANMARKER); n.totlen = cpu_to_je32(8); p = (unsigned char *) &n; for (i = 0; i < fsdata_len; i++) { if (buf[fsdata_pos+i] != p[i]) { D2(printk(KERN_WARNING "jffs2_check_nand_cleanmarker(): Cleanmarker node not detected in block at %08x\n", jeb->offset)); return 1; } } return 0; } int jffs2_write_nand_cleanmarker(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb) { struct jffs2_unknown_node n; int ret; int fsdata_pos,fsdata_len; size_t retlen; switch(c->mtd->ecctype) { case MTD_ECC_SW: fsdata_pos = (c->wbuf_pagesize == 256) ? NAND_JFFS2_OOB8_FSDAPOS : NAND_JFFS2_OOB16_FSDAPOS; fsdata_len = (c->wbuf_pagesize == 256) ? NAND_JFFS2_OOB8_FSDALEN : NAND_JFFS2_OOB16_FSDALEN; break; default: D1(printk(KERN_WARNING "jffs2_write_nand_cleanmarker(): Invalid ECC type\n")); return -EINVAL; } n.magic = cpu_to_je16(JFFS2_MAGIC_BITMASK); n.nodetype = cpu_to_je16(JFFS2_NODETYPE_CLEANMARKER); n.totlen = cpu_to_je32(8); ret = jffs2_flash_write_oob(c, jeb->offset + fsdata_pos, fsdata_len, &retlen, (unsigned char *)&n); if (ret) { D1(printk(KERN_WARNING "jffs2_write_nand_cleanmarker(): Write failed for block at %08x: error %d\n", jeb->offset, ret)); return ret; } if (retlen != fsdata_len) { D1(printk(KERN_WARNING "jffs2_write_nand_cleanmarker(): Short write for block at %08x: %d not %d\n", jeb->offset, retlen, fsdata_len)); return ret; } return 0; } /* * We try to get the failure count of this block. */ int jffs2_nand_read_failcnt(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb) { unsigned char buf[16]; int ret; size_t retlen; int oob_size, badblock_pos; oob_size = c->mtd->oobsize; switch(c->mtd->ecctype) { case MTD_ECC_SW: badblock_pos = NAND_BADBLOCK_POS; break; default: D1(printk(KERN_WARNING "jffs2_nand_read_failcnt(): Invalid ECC type\n")); return -EINVAL; } ret = c->mtd->read_oob(c->mtd, jeb->offset + c->mtd->oobblock, oob_size , &retlen, buf); if (ret) { D1(printk(KERN_WARNING "jffs2_nand_read_failcnt(): Read OOB failed %d for block at %08x\n", ret, jeb->offset)); return ret; } if (retlen < oob_size) { D1(printk(KERN_WARNING "jffs2_nand_read_failcnt(): Read OOB return short read (%d bytes not %d) for block at %08x\n", retlen, oob_size, jeb->offset)); return -EIO; } jeb->bad_count = buf[badblock_pos]; return 0; } /* * On NAND we try to mark this block bad. We try to write how often * the block was erased and mark it finaly bad, if the count * is > MAX_ERASE_FAILURES. We read this information on mount ! * jeb->bad_count contains the count before this erase. * Don't care about failures. This block remains on the erase-pending * or badblock list as long as nobody manipulates the flash with * a bootloader or something like that. */ int jffs2_write_nand_badblock(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb) { unsigned char buf = 0x0; int ret,pos; size_t retlen; switch(c->mtd->ecctype) { case MTD_ECC_SW: pos = NAND_BADBLOCK_POS; break; default: D1(printk(KERN_WARNING "jffs2_write_nand_badblock(): Invalid ECC type\n")); return -EINVAL; } /* if the count is < max, we try to write the counter to the 2nd page oob area */ if( ++jeb->bad_count < MAX_ERASE_FAILURES) { buf = (unsigned char)jeb->bad_count; pos += c->mtd->oobblock; } ret = jffs2_flash_write_oob(c, jeb->offset + pos, 1, &retlen, &buf); if (ret) { D1(printk(KERN_WARNING "jffs2_write_nand_badblock(): Write failed for block at %08x: error %d\n", jeb->offset, ret)); return ret; } if (retlen != 1) { D1(printk(KERN_WARNING "jffs2_write_nand_badblock(): Short write for block at %08x: %d not 1\n", jeb->offset, retlen)); return ret; } return 0; } |