Linux Audio

Check our new training course

Embedded Linux Audio

Check our new training course
with Creative Commons CC-BY-SA
lecture materials

Bootlin logo

Elixir Cross Referencer

Loading...
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
/*
 *  arch/s390/kernel/smp.c
 *
 *  S390 version
 *    Copyright (C) 1999,2000 IBM Deutschland Entwicklung GmbH, IBM Corporation
 *    Author(s): Denis Joseph Barrow (djbarrow@de.ibm.com,barrow_dj@yahoo.com),
 *               Martin Schwidefsky (schwidefsky@de.ibm.com)
 *
 *  based on other smp stuff by 
 *    (c) 1995 Alan Cox, CymruNET Ltd  <alan@cymru.net>
 *    (c) 1998 Ingo Molnar
 *
 * We work with logical cpu numbering everywhere we can. The only
 * functions using the real cpu address (got from STAP) are the sigp
 * functions. For all other functions we use the identity mapping.
 * That means that cpu_number_map[i] == i for every cpu. cpu_number_map is
 * used e.g. to find the idle task belonging to a logical cpu. Every array
 * in the kernel is sorted by the logical cpu number and not by the physical
 * one which is causing all the confusion with __cpu_logical_map and
 * cpu_number_map in other architectures.
 */

#include <linux/module.h>
#include <linux/init.h>

#include <linux/mm.h>
#include <linux/spinlock.h>
#include <linux/kernel_stat.h>
#include <linux/smp_lock.h>

#include <linux/delay.h>
#include <linux/cache.h>

#include <asm/sigp.h>
#include <asm/pgalloc.h>
#include <asm/irq.h>
#include <asm/s390_ext.h>
#include <asm/cpcmd.h>
#include <asm/tlbflush.h>

/* prototypes */
extern int cpu_idle(void * unused);

extern volatile int __cpu_logical_map[];

/*
 * An array with a pointer the lowcore of every CPU.
 */

struct _lowcore *lowcore_ptr[NR_CPUS];
cycles_t         cacheflush_time=0;
int              smp_threads_ready=0;      /* Set when the idlers are all forked. */

volatile unsigned long cpu_online_map;
volatile unsigned long cpu_possible_map;
unsigned long    cache_decay_ticks = 0;

/*
 * Reboot, halt and power_off routines for SMP.
 */
extern char vmhalt_cmd[];
extern char vmpoff_cmd[];

extern void do_reipl(unsigned long devno);

static sigp_ccode smp_ext_bitcall(int, ec_bit_sig);
static void smp_ext_bitcall_others(ec_bit_sig);

/*
 * Structure and data for smp_call_function(). This is designed to minimise
 * static memory requirements. It also looks cleaner.
 */
static spinlock_t call_lock = SPIN_LOCK_UNLOCKED;

struct call_data_struct {
	void (*func) (void *info);
	void *info;
	atomic_t started;
	atomic_t finished;
	int wait;
};

static struct call_data_struct * call_data;

/*
 * 'Call function' interrupt callback
 */
static void do_call_function(void)
{
	void (*func) (void *info) = call_data->func;
	void *info = call_data->info;
	int wait = call_data->wait;

	atomic_inc(&call_data->started);
	(*func)(info);
	if (wait)
		atomic_inc(&call_data->finished);
}

/*
 * this function sends a 'generic call function' IPI to all other CPUs
 * in the system.
 */

int smp_call_function (void (*func) (void *info), void *info, int nonatomic,
			int wait)
/*
 * [SUMMARY] Run a function on all other CPUs.
 * <func> The function to run. This must be fast and non-blocking.
 * <info> An arbitrary pointer to pass to the function.
 * <nonatomic> currently unused.
 * <wait> If true, wait (atomically) until function has completed on other CPUs.
 * [RETURNS] 0 on success, else a negative status code. Does not return until
 * remote CPUs are nearly ready to execute <<func>> or are or have executed.
 *
 * You must not call this function with disabled interrupts or from a
 * hardware interrupt handler or from a bottom half handler.
 */
{
	struct call_data_struct data;
	int cpus = num_online_cpus()-1;

	/* FIXME: get cpu lock -hc */
	if (cpus <= 0)
		return 0;

	data.func = func;
	data.info = info;
	atomic_set(&data.started, 0);
	data.wait = wait;
	if (wait)
		atomic_set(&data.finished, 0);

	spin_lock(&call_lock);
	call_data = &data;
	/* Send a message to all other CPUs and wait for them to respond */
        smp_ext_bitcall_others(ec_call_function);

	/* Wait for response */
	while (atomic_read(&data.started) != cpus)
		barrier();

	if (wait)
		while (atomic_read(&data.finished) != cpus)
			barrier();
	spin_unlock(&call_lock);

	return 0;
}

static inline void do_send_stop(void)
{
        u32 dummy;
        int i, rc;

        /* stop all processors */
        for (i =  0; i < NR_CPUS; i++) {
                if (!cpu_online(i) || smp_processor_id() == i)
			continue;
		do {
			rc = signal_processor_ps(&dummy, 0, i, sigp_stop);
		} while (rc == sigp_busy);
	}
}

static inline void do_store_status(void)
{
        unsigned long low_core_addr;
        u32 dummy;
        int i, rc;

        /* store status of all processors in their lowcores (real 0) */
        for (i =  0; i < NR_CPUS; i++) {
                if (!cpu_online(i) || smp_processor_id() == i)
			continue;
		low_core_addr = (unsigned long) lowcore_ptr[i];
		do {
			rc = signal_processor_ps(&dummy, low_core_addr, i,
						 sigp_store_status_at_address);
		} while(rc == sigp_busy);
        }
}

/*
 * this function sends a 'stop' sigp to all other CPUs in the system.
 * it goes straight through.
 */
void smp_send_stop(void)
{
        /* write magic number to zero page (absolute 0) */
	lowcore_ptr[smp_processor_id()]->panic_magic = __PANIC_MAGIC;

	/* stop other processors. */
	do_send_stop();

	/* store status of other processors. */
	do_store_status();
}

/*
 * Reboot, halt and power_off routines for SMP.
 */
static volatile unsigned long cpu_restart_map;

static void do_machine_restart(void * __unused)
{
	clear_bit(smp_processor_id(), &cpu_restart_map);
	if (smp_processor_id() == 0) {
		/* Wait for all other cpus to enter do_machine_restart. */
		while (cpu_restart_map != 0);
		/* Store status of other cpus. */
		do_store_status();
		/*
		 * Finally call reipl. Because we waited for all other
		 * cpus to enter this function we know that they do
		 * not hold any s390irq-locks (the cpus have been
		 * interrupted by an external interrupt and s390irq
		 * locks are always held disabled).
		 */
		if (MACHINE_IS_VM)
			cpcmd ("IPL", NULL, 0);
		else
			do_reipl (0x10000 | S390_lowcore.ipl_device);
	}
	signal_processor(smp_processor_id(), sigp_stop);
}

void machine_restart_smp(char * __unused) 
{
	cpu_restart_map = cpu_online_map;
        smp_call_function(do_machine_restart, NULL, 0, 0);
	do_machine_restart(NULL);
}

static void do_machine_halt(void * __unused)
{
	if (smp_processor_id() == 0) {
		smp_send_stop();
		if (MACHINE_IS_VM && strlen(vmhalt_cmd) > 0)
			cpcmd(vmhalt_cmd, NULL, 0);
		signal_processor(smp_processor_id(),
				 sigp_stop_and_store_status);
	}
	for (;;)
		enabled_wait();
}

void machine_halt_smp(void)
{
        smp_call_function(do_machine_halt, NULL, 0, 0);
	do_machine_halt(NULL);
}

static void do_machine_power_off(void * __unused)
{
	if (smp_processor_id() == 0) {
		smp_send_stop();
		if (MACHINE_IS_VM && strlen(vmpoff_cmd) > 0)
			cpcmd(vmpoff_cmd, NULL, 0);
		signal_processor(smp_processor_id(),
				 sigp_stop_and_store_status);
	}
	for (;;)
		enabled_wait();
}

void machine_power_off_smp(void)
{
        smp_call_function(do_machine_power_off, NULL, 0, 0);
	do_machine_power_off(NULL);
}

/*
 * This is the main routine where commands issued by other
 * cpus are handled.
 */

void do_ext_call_interrupt(struct pt_regs *regs, __u16 code)
{
        unsigned long bits;

        /*
         * handle bit signal external calls
         *
         * For the ec_schedule signal we have to do nothing. All the work
         * is done automatically when we return from the interrupt.
         */
	bits = xchg(&S390_lowcore.ext_call_fast, 0);

	if (test_bit(ec_call_function, &bits)) 
		do_call_function();
}

/*
 * Send an external call sigp to another cpu and return without waiting
 * for its completion.
 */
static sigp_ccode smp_ext_bitcall(int cpu, ec_bit_sig sig)
{
        sigp_ccode ccode;

        /*
         * Set signaling bit in lowcore of target cpu and kick it
         */
	set_bit(sig, (unsigned long *) &lowcore_ptr[cpu]->ext_call_fast);
        ccode = signal_processor(cpu, sigp_external_call);
        return ccode;
}

/*
 * Send an external call sigp to every other cpu in the system and
 * return without waiting for its completion.
 */
static void smp_ext_bitcall_others(ec_bit_sig sig)
{
        struct _lowcore *lowcore;
        int i;

        for (i = 0; i < NR_CPUS; i++) {
                if (!cpu_online(i) || smp_processor_id() == i)
                        continue;
                lowcore = lowcore_ptr[i];
                /*
                 * Set signaling bit in lowcore of target cpu and kick it
                 */
		set_bit(sig, (unsigned long *) &lowcore_ptr[i]->ext_call_fast);
                while (signal_processor(i, sigp_external_call) == sigp_busy)
			udelay(10);
        }
}

/*
 * this function sends a 'purge tlb' signal to another CPU.
 */
void smp_ptlb_callback(void *info)
{
	local_flush_tlb();
}

void smp_ptlb_all(void)
{
        smp_call_function(smp_ptlb_callback, NULL, 0, 1);
	local_flush_tlb();
}

/*
 * this function sends a 'reschedule' IPI to another CPU.
 * it goes straight through and wastes no time serializing
 * anything. Worst case is that we lose a reschedule ...
 */
void smp_send_reschedule(int cpu)
{
        smp_ext_bitcall(cpu, ec_schedule);
}

/*
 * parameter area for the set/clear control bit callbacks
 */
typedef struct
{
	__u16 start_ctl;
	__u16 end_ctl;
	__u32 orvals[16];
	__u32 andvals[16];
} ec_creg_mask_parms;

/*
 * callback for setting/clearing control bits
 */
void smp_ctl_bit_callback(void *info) {
	ec_creg_mask_parms *pp;
	u32 cregs[16];
	int i;
	
	pp = (ec_creg_mask_parms *) info;
	asm volatile ("   bras  1,0f\n"
		      "   stctl 0,0,0(%0)\n"
		      "0: ex    %1,0(1)\n"
		      : : "a" (cregs+pp->start_ctl),
		          "a" ((pp->start_ctl<<4) + pp->end_ctl)
		      : "memory", "1" );
	for (i = pp->start_ctl; i <= pp->end_ctl; i++)
		cregs[i] = (cregs[i] & pp->andvals[i]) | pp->orvals[i];
	asm volatile ("   bras  1,0f\n"
		      "   lctl 0,0,0(%0)\n"
		      "0: ex    %1,0(1)\n"
		      : : "a" (cregs+pp->start_ctl),
		          "a" ((pp->start_ctl<<4) + pp->end_ctl)
		      : "memory", "1" );
	return;
}

/*
 * Set a bit in a control register of all cpus
 */
void smp_ctl_set_bit(int cr, int bit) {
        ec_creg_mask_parms parms;

	parms.start_ctl = cr;
	parms.end_ctl = cr;
	parms.orvals[cr] = 1 << bit;
	parms.andvals[cr] = 0xFFFFFFFF;
	smp_call_function(smp_ctl_bit_callback, &parms, 0, 1);
        __ctl_set_bit(cr, bit);
}

/*
 * Clear a bit in a control register of all cpus
 */
void smp_ctl_clear_bit(int cr, int bit) {
        ec_creg_mask_parms parms;

	parms.start_ctl = cr;
	parms.end_ctl = cr;
	parms.orvals[cr] = 0x00000000;
	parms.andvals[cr] = ~(1 << bit);
	smp_call_function(smp_ctl_bit_callback, &parms, 0, 1);
        __ctl_clear_bit(cr, bit);
}

/*
 * Lets check how many CPUs we have.
 */

void __init smp_check_cpus(unsigned int max_cpus)
{
        int curr_cpu, num_cpus;
	__u16 boot_cpu_addr;

	boot_cpu_addr = S390_lowcore.cpu_data.cpu_addr;
        current_thread_info()->cpu = 0;
        num_cpus = 1;
	cpu_possible_map = 1;
	cpu_online_map = 1;
        for (curr_cpu = 0;
             curr_cpu <= 65535 && num_cpus < max_cpus; curr_cpu++) {
                if ((__u16) curr_cpu == boot_cpu_addr)
                        continue;
                __cpu_logical_map[num_cpus] = (__u16) curr_cpu;
                if (signal_processor(num_cpus, sigp_sense) ==
                    sigp_not_operational)
                        continue;
		set_bit(num_cpus, &cpu_possible_map);
                num_cpus++;
        }
        printk("Detected %d CPU's\n",(int) num_cpus);
        printk("Boot cpu address %2X\n", boot_cpu_addr);
}

/*
 *      Activate a secondary processor.
 */
extern void init_cpu_timer(void);
extern int pfault_init(void);
extern int pfault_token(void);

int __devinit start_secondary(void *cpuvoid)
{
        /* Setup the cpu */
        cpu_init();
        /* init per CPU timer */
        init_cpu_timer();
#ifdef CONFIG_PFAULT
	/* Enable pfault pseudo page faults on this cpu. */
	pfault_init();
#endif
	/* Mark this cpu as online */
	set_bit(smp_processor_id(), &cpu_online_map);
	/* Switch on interrupts */
	local_irq_enable();
        /* Print info about this processor */
        print_cpu_info(&S390_lowcore.cpu_data);
        /* cpu_idle will call schedule for us */
        return cpu_idle(NULL);
}

static struct task_struct *__devinit fork_by_hand(void)
{
       struct pt_regs regs;
       /* don't care about the psw and regs settings since we'll never
          reschedule the forked task. */
       memset(&regs,0,sizeof(struct pt_regs));
       return do_fork(CLONE_VM|CLONE_IDLETASK, 0, &regs, 0, NULL, NULL);
}

int __cpu_up(unsigned int cpu)
{
        struct task_struct *idle;
        struct _lowcore    *cpu_lowcore;
        sigp_ccode          ccode;

	/*
	 *  Set prefix page for new cpu
	 */

	ccode = signal_processor_p((u32)(lowcore_ptr[cpu]),
				   cpu, sigp_set_prefix);
	if (ccode){
		printk("sigp_set_prefix failed for cpu %d "
		       "with condition code %d\n",
		       (int) cpu, (int) ccode);
		return -EIO;
	}


        /* We can't use kernel_thread since we must _avoid_ to reschedule
           the child. */
        idle = fork_by_hand();
	if (IS_ERR(idle)){
                printk("failed fork for CPU %d", cpu);
		return -EIO;
	}

        /*
         * We remove it from the pidhash and the runqueue
         * once we got the process:
         */
	init_idle(idle, cpu);

        unhash_process(idle);

        cpu_lowcore = lowcore_ptr[cpu];
	cpu_lowcore->save_area[15] = idle->thread.ksp;
	cpu_lowcore->kernel_stack = (__u32) idle->thread_info + (2*PAGE_SIZE);
        __asm__ __volatile__("la    1,%0\n\t"
			     "stctl 0,15,0(1)\n\t"
			     "la    1,%1\n\t"
                             "stam  0,15,0(1)"
                             : "=m" (cpu_lowcore->cregs_save_area[0]),
                               "=m" (cpu_lowcore->access_regs_save_area[0])
                             : : "1", "memory");

        eieio();
        signal_processor(cpu,sigp_restart);

	while (!cpu_online(cpu));
	return 0;
}

/*
 *	Cycle through the processors and setup structures.
 */

void __init smp_prepare_cpus(unsigned int max_cpus)
{
	unsigned long async_stack;
        int i;

        /* request the 0x1202 external interrupt */
        if (register_external_interrupt(0x1202, do_ext_call_interrupt) != 0)
                panic("Couldn't request external interrupt 0x1202");
        smp_check_cpus(max_cpus);
        memset(lowcore_ptr,0,sizeof(lowcore_ptr));  

        /*
         *  Initialize prefix pages and stacks for all possible cpus
         */
	print_cpu_info(&S390_lowcore.cpu_data);

        for(i = 0; i < NR_CPUS; i++) {
		if (!cpu_possible(i))
			continue;
		lowcore_ptr[i] = (struct _lowcore *)
			__get_free_page(GFP_KERNEL|GFP_DMA);
		async_stack = __get_free_pages(GFP_KERNEL,1);
		if (lowcore_ptr[i] == NULL || async_stack == 0UL)
			panic("smp_boot_cpus failed to allocate memory\n");

                memcpy(lowcore_ptr[i], &S390_lowcore, sizeof(struct _lowcore));
		lowcore_ptr[i]->async_stack = async_stack + (2 * PAGE_SIZE);
	}
	set_prefix((u32) lowcore_ptr[smp_processor_id()]);
}

void __devinit smp_prepare_boot_cpu(void)
{
	set_bit(smp_processor_id(), &cpu_online_map);
	set_bit(smp_processor_id(), &cpu_possible_map);
}

void smp_cpus_done(unsigned int max_cpus)
{
}

/*
 * the frequency of the profiling timer can be changed
 * by writing a multiplier value into /proc/profile.
 *
 * usually you want to run this on all CPUs ;)
 */
int setup_profiling_timer(unsigned int multiplier)
{
        return 0;
}

EXPORT_SYMBOL(lowcore_ptr);
EXPORT_SYMBOL(smp_ctl_set_bit);
EXPORT_SYMBOL(smp_ctl_clear_bit);
EXPORT_SYMBOL(smp_call_function);