Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ MOTOROLA MICROPROCESSOR & MEMORY TECHNOLOGY GROUP M68000 Hi-Performance Microprocessor Division M68060 Software Package Production Release P1.00 -- October 10, 1994 M68060 Software Package Copyright © 1993, 1994 Motorola Inc. All rights reserved. THE SOFTWARE is provided on an "AS IS" basis and without warranty. To the maximum extent permitted by applicable law, MOTOROLA DISCLAIMS ALL WARRANTIES WHETHER EXPRESS OR IMPLIED, INCLUDING IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE and any warranty against infringement with regard to the SOFTWARE (INCLUDING ANY MODIFIED VERSIONS THEREOF) and any accompanying written materials. To the maximum extent permitted by applicable law, IN NO EVENT SHALL MOTOROLA BE LIABLE FOR ANY DAMAGES WHATSOEVER (INCLUDING WITHOUT LIMITATION, DAMAGES FOR LOSS OF BUSINESS PROFITS, BUSINESS INTERRUPTION, LOSS OF BUSINESS INFORMATION, OR OTHER PECUNIARY LOSS) ARISING OF THE USE OR INABILITY TO USE THE SOFTWARE. Motorola assumes no responsibility for the maintenance and support of the SOFTWARE. You are hereby granted a copyright license to use, modify, and distribute the SOFTWARE so long as this entire notice is retained without alteration in any modified and/or redistributed versions, and that such modified versions are clearly identified as such. No licenses are granted by implication, estoppel or otherwise under any patents or trademarks of Motorola, Inc. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # ireal.s: # This file is appended to the top of the 060ISP package # and contains the entry points into the package. The user, in # effect, branches to one of the branch table entries located # after _060ISP_TABLE. # Also, subroutine stubs exist in this file (_isp_done for # example) that are referenced by the ISP package itself in order # to call a given routine. The stub routine actually performs the # callout. The ISP code does a "bsr" to the stub routine. This # extra layer of hierarchy adds a slight performance penalty but # it makes the ISP code easier to read and more mainatinable. # set _off_chk, 0x00 set _off_divbyzero, 0x04 set _off_trace, 0x08 set _off_access, 0x0c set _off_done, 0x10 set _off_cas, 0x14 set _off_cas2, 0x18 set _off_lock, 0x1c set _off_unlock, 0x20 set _off_imr, 0x40 set _off_dmr, 0x44 set _off_dmw, 0x48 set _off_irw, 0x4c set _off_irl, 0x50 set _off_drb, 0x54 set _off_drw, 0x58 set _off_drl, 0x5c set _off_dwb, 0x60 set _off_dww, 0x64 set _off_dwl, 0x68 _060ISP_TABLE: # Here's the table of ENTRY POINTS for those linking the package. bra.l _isp_unimp short 0x0000 bra.l _isp_cas short 0x0000 bra.l _isp_cas2 short 0x0000 bra.l _isp_cas_finish short 0x0000 bra.l _isp_cas2_finish short 0x0000 bra.l _isp_cas_inrange short 0x0000 bra.l _isp_cas_terminate short 0x0000 bra.l _isp_cas_restart short 0x0000 space 64 ############################################################# global _real_chk _real_chk: mov.l %d0,-(%sp) mov.l (_060ISP_TABLE-0x80+_off_chk,%pc),%d0 pea.l (_060ISP_TABLE-0x80,%pc,%d0) mov.l 0x4(%sp),%d0 rtd &0x4 global _real_divbyzero _real_divbyzero: mov.l %d0,-(%sp) mov.l (_060ISP_TABLE-0x80+_off_divbyzero,%pc),%d0 pea.l (_060ISP_TABLE-0x80,%pc,%d0) mov.l 0x4(%sp),%d0 rtd &0x4 global _real_trace _real_trace: mov.l %d0,-(%sp) mov.l (_060ISP_TABLE-0x80+_off_trace,%pc),%d0 pea.l (_060ISP_TABLE-0x80,%pc,%d0) mov.l 0x4(%sp),%d0 rtd &0x4 global _real_access _real_access: mov.l %d0,-(%sp) mov.l (_060ISP_TABLE-0x80+_off_access,%pc),%d0 pea.l (_060ISP_TABLE-0x80,%pc,%d0) mov.l 0x4(%sp),%d0 rtd &0x4 global _isp_done _isp_done: mov.l %d0,-(%sp) mov.l (_060ISP_TABLE-0x80+_off_done,%pc),%d0 pea.l (_060ISP_TABLE-0x80,%pc,%d0) mov.l 0x4(%sp),%d0 rtd &0x4 ####################################### global _real_cas _real_cas: mov.l %d0,-(%sp) mov.l (_060ISP_TABLE-0x80+_off_cas,%pc),%d0 pea.l (_060ISP_TABLE-0x80,%pc,%d0) mov.l 0x4(%sp),%d0 rtd &0x4 global _real_cas2 _real_cas2: mov.l %d0,-(%sp) mov.l (_060ISP_TABLE-0x80+_off_cas2,%pc),%d0 pea.l (_060ISP_TABLE-0x80,%pc,%d0) mov.l 0x4(%sp),%d0 rtd &0x4 global _real_lock_page _real_lock_page: mov.l %d0,-(%sp) mov.l (_060ISP_TABLE-0x80+_off_lock,%pc),%d0 pea.l (_060ISP_TABLE-0x80,%pc,%d0) mov.l 0x4(%sp),%d0 rtd &0x4 global _real_unlock_page _real_unlock_page: mov.l %d0,-(%sp) mov.l (_060ISP_TABLE-0x80+_off_unlock,%pc),%d0 pea.l (_060ISP_TABLE-0x80,%pc,%d0) mov.l 0x4(%sp),%d0 rtd &0x4 ####################################### global _imem_read _imem_read: mov.l %d0,-(%sp) mov.l (_060ISP_TABLE-0x80+_off_imr,%pc),%d0 pea.l (_060ISP_TABLE-0x80,%pc,%d0) mov.l 0x4(%sp),%d0 rtd &0x4 global _dmem_read _dmem_read: mov.l %d0,-(%sp) mov.l (_060ISP_TABLE-0x80+_off_dmr,%pc),%d0 pea.l (_060ISP_TABLE-0x80,%pc,%d0) mov.l 0x4(%sp),%d0 rtd &0x4 global _dmem_write _dmem_write: mov.l %d0,-(%sp) mov.l (_060ISP_TABLE-0x80+_off_dmw,%pc),%d0 pea.l (_060ISP_TABLE-0x80,%pc,%d0) mov.l 0x4(%sp),%d0 rtd &0x4 global _imem_read_word _imem_read_word: mov.l %d0,-(%sp) mov.l (_060ISP_TABLE-0x80+_off_irw,%pc),%d0 pea.l (_060ISP_TABLE-0x80,%pc,%d0) mov.l 0x4(%sp),%d0 rtd &0x4 global _imem_read_long _imem_read_long: mov.l %d0,-(%sp) mov.l (_060ISP_TABLE-0x80+_off_irl,%pc),%d0 pea.l (_060ISP_TABLE-0x80,%pc,%d0) mov.l 0x4(%sp),%d0 rtd &0x4 global _dmem_read_byte _dmem_read_byte: mov.l %d0,-(%sp) mov.l (_060ISP_TABLE-0x80+_off_drb,%pc),%d0 pea.l (_060ISP_TABLE-0x80,%pc,%d0) mov.l 0x4(%sp),%d0 rtd &0x4 global _dmem_read_word _dmem_read_word: mov.l %d0,-(%sp) mov.l (_060ISP_TABLE-0x80+_off_drw,%pc),%d0 pea.l (_060ISP_TABLE-0x80,%pc,%d0) mov.l 0x4(%sp),%d0 rtd &0x4 global _dmem_read_long _dmem_read_long: mov.l %d0,-(%sp) mov.l (_060ISP_TABLE-0x80+_off_drl,%pc),%d0 pea.l (_060ISP_TABLE-0x80,%pc,%d0) mov.l 0x4(%sp),%d0 rtd &0x4 global _dmem_write_byte _dmem_write_byte: mov.l %d0,-(%sp) mov.l (_060ISP_TABLE-0x80+_off_dwb,%pc),%d0 pea.l (_060ISP_TABLE-0x80,%pc,%d0) mov.l 0x4(%sp),%d0 rtd &0x4 global _dmem_write_word _dmem_write_word: mov.l %d0,-(%sp) mov.l (_060ISP_TABLE-0x80+_off_dww,%pc),%d0 pea.l (_060ISP_TABLE-0x80,%pc,%d0) mov.l 0x4(%sp),%d0 rtd &0x4 global _dmem_write_long _dmem_write_long: mov.l %d0,-(%sp) mov.l (_060ISP_TABLE-0x80+_off_dwl,%pc),%d0 pea.l (_060ISP_TABLE-0x80,%pc,%d0) mov.l 0x4(%sp),%d0 rtd &0x4 # # This file contains a set of define statements for constants # in oreder to promote readability within the core code itself. # set LOCAL_SIZE, 96 # stack frame size(bytes) set LV, -LOCAL_SIZE # stack offset set EXC_ISR, 0x4 # stack status register set EXC_IPC, 0x6 # stack pc set EXC_IVOFF, 0xa # stacked vector offset set EXC_AREGS, LV+64 # offset of all address regs set EXC_DREGS, LV+32 # offset of all data regs set EXC_A7, EXC_AREGS+(7*4) # offset of a7 set EXC_A6, EXC_AREGS+(6*4) # offset of a6 set EXC_A5, EXC_AREGS+(5*4) # offset of a5 set EXC_A4, EXC_AREGS+(4*4) # offset of a4 set EXC_A3, EXC_AREGS+(3*4) # offset of a3 set EXC_A2, EXC_AREGS+(2*4) # offset of a2 set EXC_A1, EXC_AREGS+(1*4) # offset of a1 set EXC_A0, EXC_AREGS+(0*4) # offset of a0 set EXC_D7, EXC_DREGS+(7*4) # offset of d7 set EXC_D6, EXC_DREGS+(6*4) # offset of d6 set EXC_D5, EXC_DREGS+(5*4) # offset of d5 set EXC_D4, EXC_DREGS+(4*4) # offset of d4 set EXC_D3, EXC_DREGS+(3*4) # offset of d3 set EXC_D2, EXC_DREGS+(2*4) # offset of d2 set EXC_D1, EXC_DREGS+(1*4) # offset of d1 set EXC_D0, EXC_DREGS+(0*4) # offset of d0 set EXC_TEMP, LV+16 # offset of temp stack space set EXC_SAVVAL, LV+12 # offset of old areg value set EXC_SAVREG, LV+11 # offset of old areg index set SPCOND_FLG, LV+10 # offset of spc condition flg set EXC_CC, LV+8 # offset of cc register set EXC_EXTWPTR, LV+4 # offset of current PC set EXC_EXTWORD, LV+2 # offset of current ext opword set EXC_OPWORD, LV+0 # offset of current opword ########################### # SPecial CONDition FLaGs # ########################### set mia7_flg, 0x04 # (a7)+ flag set mda7_flg, 0x08 # -(a7) flag set ichk_flg, 0x10 # chk exception flag set idbyz_flg, 0x20 # divbyzero flag set restore_flg, 0x40 # restore -(an)+ flag set immed_flg, 0x80 # immediate data flag set mia7_bit, 0x2 # (a7)+ bit set mda7_bit, 0x3 # -(a7) bit set ichk_bit, 0x4 # chk exception bit set idbyz_bit, 0x5 # divbyzero bit set restore_bit, 0x6 # restore -(a7)+ bit set immed_bit, 0x7 # immediate data bit ######### # Misc. # ######### set BYTE, 1 # len(byte) == 1 byte set WORD, 2 # len(word) == 2 bytes set LONG, 4 # len(longword) == 4 bytes ######################################################################### # XDEF **************************************************************** # # _isp_unimp(): 060ISP entry point for Unimplemented Instruction # # # # This handler should be the first code executed upon taking the # # "Unimplemented Integer Instruction" exception in an operating # # system. # # # # XREF **************************************************************** # # _imem_read_{word,long}() - read instruction word/longword # # _mul64() - emulate 64-bit multiply # # _div64() - emulate 64-bit divide # # _moveperipheral() - emulate "movep" # # _compandset() - emulate misaligned "cas" # # _compandset2() - emulate "cas2" # # _chk2_cmp2() - emulate "cmp2" and "chk2" # # _isp_done() - "callout" for normal final exit # # _real_trace() - "callout" for Trace exception # # _real_chk() - "callout" for Chk exception # # _real_divbyzero() - "callout" for DZ exception # # _real_access() - "callout" for access error exception # # # # INPUT *************************************************************** # # - The system stack contains the Unimp Int Instr stack frame # # # # OUTPUT ************************************************************** # # If Trace exception: # # - The system stack changed to contain Trace exc stack frame # # If Chk exception: # # - The system stack changed to contain Chk exc stack frame # # If DZ exception: # # - The system stack changed to contain DZ exc stack frame # # If access error exception: # # - The system stack changed to contain access err exc stk frame # # Else: # # - Results saved as appropriate # # # # ALGORITHM *********************************************************** # # This handler fetches the first instruction longword from # # memory and decodes it to determine which of the unimplemented # # integer instructions caused this exception. This handler then calls # # one of _mul64(), _div64(), _moveperipheral(), _compandset(), # # _compandset2(), or _chk2_cmp2() as appropriate. # # Some of these instructions, by their nature, may produce other # # types of exceptions. "div" can produce a divide-by-zero exception, # # and "chk2" can cause a "Chk" exception. In both cases, the current # # exception stack frame must be converted to an exception stack frame # # of the correct exception type and an exit must be made through # # _real_divbyzero() or _real_chk() as appropriate. In addition, all # # instructions may be executing while Trace is enabled. If so, then # # a Trace exception stack frame must be created and an exit made # # through _real_trace(). # # Meanwhile, if any read or write to memory using the # # _mem_{read,write}() "callout"s returns a failing value, then an # # access error frame must be created and an exit made through # # _real_access(). # # If none of these occur, then a normal exit is made through # # _isp_done(). # # # # This handler, upon entry, saves almost all user-visible # # address and data registers to the stack. Although this may seem to # # cause excess memory traffic, it was found that due to having to # # access these register files for things like data retrieval and <ea> # # calculations, it was more efficient to have them on the stack where # # they could be accessed by indexing rather than to make subroutine # # calls to retrieve a register of a particular index. # # # ######################################################################### global _isp_unimp _isp_unimp: link.w %a6,&-LOCAL_SIZE # create room for stack frame movm.l &0x3fff,EXC_DREGS(%a6) # store d0-d7/a0-a5 mov.l (%a6),EXC_A6(%a6) # store a6 btst &0x5,EXC_ISR(%a6) # from s or u mode? bne.b uieh_s # supervisor mode uieh_u: mov.l %usp,%a0 # fetch user stack pointer mov.l %a0,EXC_A7(%a6) # store a7 bra.b uieh_cont uieh_s: lea 0xc(%a6),%a0 mov.l %a0,EXC_A7(%a6) # store corrected sp ############################################################################### uieh_cont: clr.b SPCOND_FLG(%a6) # clear "special case" flag mov.w EXC_ISR(%a6),EXC_CC(%a6) # store cc copy on stack mov.l EXC_IPC(%a6),EXC_EXTWPTR(%a6) # store extwptr on stack # # fetch the opword and first extension word pointed to by the stacked pc # and store them to the stack for now # mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr addq.l &0x4,EXC_EXTWPTR(%a6) # incr instruction ptr bsr.l _imem_read_long # fetch opword & extword mov.l %d0,EXC_OPWORD(%a6) # store extword on stack ######################################################################### # muls.l 0100 1100 00 |<ea>| 0*** 1100 0000 0*** # # mulu.l 0100 1100 00 |<ea>| 0*** 0100 0000 0*** # # # # divs.l 0100 1100 01 |<ea>| 0*** 1100 0000 0*** # # divu.l 0100 1100 01 |<ea>| 0*** 0100 0000 0*** # # # # movep.w m2r 0000 ***1 00 001*** | <displacement> | # # movep.l m2r 0000 ***1 01 001*** | <displacement> | # # movep.w r2m 0000 ***1 10 001*** | <displacement> | # # movep.l r2m 0000 ***1 11 001*** | <displacement> | # # # # cas.w 0000 1100 11 |<ea>| 0000 000* **00 0*** # # cas.l 0000 1110 11 |<ea>| 0000 000* **00 0*** # # # # cas2.w 0000 1100 11 111100 **** 000* **00 0*** # # **** 000* **00 0*** # # cas2.l 0000 1110 11 111100 **** 000* **00 0*** # # **** 000* **00 0*** # # # # chk2.b 0000 0000 11 |<ea>| **** 1000 0000 0000 # # chk2.w 0000 0010 11 |<ea>| **** 1000 0000 0000 # # chk2.l 0000 0100 11 |<ea>| **** 1000 0000 0000 # # # # cmp2.b 0000 0000 11 |<ea>| **** 0000 0000 0000 # # cmp2.w 0000 0010 11 |<ea>| **** 0000 0000 0000 # # cmp2.l 0000 0100 11 |<ea>| **** 0000 0000 0000 # ######################################################################### # # using bit 14 of the operation word, separate into 2 groups: # (group1) mul64, div64 # (group2) movep, chk2, cmp2, cas2, cas # btst &0x1e,%d0 # group1 or group2 beq.b uieh_group2 # go handle group2 # # now, w/ group1, make mul64's decode the fastest since it will # most likely be used the most. # uieh_group1: btst &0x16,%d0 # test for div64 bne.b uieh_div64 # go handle div64 uieh_mul64: # mul64() may use ()+ addressing and may, therefore, alter a7 bsr.l _mul64 # _mul64() btst &0x5,EXC_ISR(%a6) # supervisor mode? beq.w uieh_done btst &mia7_bit,SPCOND_FLG(%a6) # was a7 changed? beq.w uieh_done # no btst &0x7,EXC_ISR(%a6) # is trace enabled? bne.w uieh_trace_a7 # yes bra.w uieh_a7 # no uieh_div64: # div64() may use ()+ addressing and may, therefore, alter a7. # div64() may take a divide by zero exception. bsr.l _div64 # _div64() # here, we sort out all of the special cases that may have happened. btst &mia7_bit,SPCOND_FLG(%a6) # was a7 changed? bne.b uieh_div64_a7 # yes uieh_div64_dbyz: btst &idbyz_bit,SPCOND_FLG(%a6) # did divide-by-zero occur? bne.w uieh_divbyzero # yes bra.w uieh_done # no uieh_div64_a7: btst &0x5,EXC_ISR(%a6) # supervisor mode? beq.b uieh_div64_dbyz # no # here, a7 has been incremented by 4 bytes in supervisor mode. we still # may have the following 3 cases: # (i) (a7)+ # (ii) (a7)+; trace # (iii) (a7)+; divide-by-zero # btst &idbyz_bit,SPCOND_FLG(%a6) # did divide-by-zero occur? bne.w uieh_divbyzero_a7 # yes tst.b EXC_ISR(%a6) # no; is trace enabled? bmi.w uieh_trace_a7 # yes bra.w uieh_a7 # no # # now, w/ group2, make movep's decode the fastest since it will # most likely be used the most. # uieh_group2: btst &0x18,%d0 # test for not movep beq.b uieh_not_movep bsr.l _moveperipheral # _movep() bra.w uieh_done uieh_not_movep: btst &0x1b,%d0 # test for chk2,cmp2 beq.b uieh_chk2cmp2 # go handle chk2,cmp2 swap %d0 # put opword in lo word cmpi.b %d0,&0xfc # test for cas2 beq.b uieh_cas2 # go handle cas2 uieh_cas: bsr.l _compandset # _cas() # the cases of "cas Dc,Du,(a7)+" and "cas Dc,Du,-(a7)" used from supervisor # mode are simply not considered valid and therefore are not handled. bra.w uieh_done uieh_cas2: mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr addq.l &0x2,EXC_EXTWPTR(%a6) # incr instruction ptr bsr.l _imem_read_word # read extension word tst.l %d1 # ifetch error? bne.w isp_iacc # yes bsr.l _compandset2 # _cas2() bra.w uieh_done uieh_chk2cmp2: # chk2 may take a chk exception bsr.l _chk2_cmp2 # _chk2_cmp2() # here we check to see if a chk trap should be taken cmpi.b SPCOND_FLG(%a6),&ichk_flg bne.w uieh_done bra.b uieh_chk_trap ########################################################################### # # the required emulation has been completed. now, clean up the necessary stack # info and prepare for rte # uieh_done: mov.b EXC_CC+1(%a6),EXC_ISR+1(%a6) # insert new ccodes # if exception occurred in user mode, then we have to restore a7 in case it # changed. we don't have to update a7 for supervisor mose because that case # doesn't flow through here btst &0x5,EXC_ISR(%a6) # user or supervisor? bne.b uieh_finish # supervisor mov.l EXC_A7(%a6),%a0 # fetch user stack pointer mov.l %a0,%usp # restore it uieh_finish: movm.l EXC_DREGS(%a6),&0x3fff # restore d0-d7/a0-a5 btst &0x7,EXC_ISR(%a6) # is trace mode on? bne.b uieh_trace # yes;go handle trace mode mov.l EXC_EXTWPTR(%a6),EXC_IPC(%a6) # new pc on stack frame mov.l EXC_A6(%a6),(%a6) # prepare new a6 for unlink unlk %a6 # unlink stack frame bra.l _isp_done # # The instruction that was just emulated was also being traced. The trace # trap for this instruction will be lost unless we jump to the trace handler. # So, here we create a Trace Exception format number two exception stack # frame from the Unimplemented Integer Intruction Exception stack frame # format number zero and jump to the user supplied hook "_real_trace()". # # UIEH FRAME TRACE FRAME # ***************** ***************** # * 0x0 * 0x0f4 * * Current * # ***************** * PC * # * Current * ***************** # * PC * * 0x2 * 0x024 * # ***************** ***************** # * SR * * Next * # ***************** * PC * # ->* Old * ***************** # from link -->* A6 * * SR * # ***************** ***************** # /* A7 * * New * <-- for final unlink # / * * * A6 * # link frame < ***************** ***************** # \ ~ ~ ~ ~ # \***************** ***************** # uieh_trace: mov.l EXC_A6(%a6),-0x4(%a6) mov.w EXC_ISR(%a6),0x0(%a6) mov.l EXC_IPC(%a6),0x8(%a6) mov.l EXC_EXTWPTR(%a6),0x2(%a6) mov.w &0x2024,0x6(%a6) sub.l &0x4,%a6 unlk %a6 bra.l _real_trace # # UIEH FRAME CHK FRAME # ***************** ***************** # * 0x0 * 0x0f4 * * Current * # ***************** * PC * # * Current * ***************** # * PC * * 0x2 * 0x018 * # ***************** ***************** # * SR * * Next * # ***************** * PC * # (4 words) ***************** # * SR * # ***************** # (6 words) # # the chk2 instruction should take a chk trap. so, here we must create a # chk stack frame from an unimplemented integer instruction exception frame # and jump to the user supplied entry point "_real_chk()". # uieh_chk_trap: mov.b EXC_CC+1(%a6),EXC_ISR+1(%a6) # insert new ccodes movm.l EXC_DREGS(%a6),&0x3fff # restore d0-d7/a0-a5 mov.w EXC_ISR(%a6),(%a6) # put new SR on stack mov.l EXC_IPC(%a6),0x8(%a6) # put "Current PC" on stack mov.l EXC_EXTWPTR(%a6),0x2(%a6) # put "Next PC" on stack mov.w &0x2018,0x6(%a6) # put Vector Offset on stack mov.l EXC_A6(%a6),%a6 # restore a6 add.l &LOCAL_SIZE,%sp # clear stack frame bra.l _real_chk # # UIEH FRAME DIVBYZERO FRAME # ***************** ***************** # * 0x0 * 0x0f4 * * Current * # ***************** * PC * # * Current * ***************** # * PC * * 0x2 * 0x014 * # ***************** ***************** # * SR * * Next * # ***************** * PC * # (4 words) ***************** # * SR * # ***************** # (6 words) # # the divide instruction should take an integer divide by zero trap. so, here # we must create a divbyzero stack frame from an unimplemented integer # instruction exception frame and jump to the user supplied entry point # "_real_divbyzero()". # uieh_divbyzero: mov.b EXC_CC+1(%a6),EXC_ISR+1(%a6) # insert new ccodes movm.l EXC_DREGS(%a6),&0x3fff # restore d0-d7/a0-a5 mov.w EXC_ISR(%a6),(%a6) # put new SR on stack mov.l EXC_IPC(%a6),0x8(%a6) # put "Current PC" on stack mov.l EXC_EXTWPTR(%a6),0x2(%a6) # put "Next PC" on stack mov.w &0x2014,0x6(%a6) # put Vector Offset on stack mov.l EXC_A6(%a6),%a6 # restore a6 add.l &LOCAL_SIZE,%sp # clear stack frame bra.l _real_divbyzero # # DIVBYZERO FRAME # ***************** # * Current * # UIEH FRAME * PC * # ***************** ***************** # * 0x0 * 0x0f4 * * 0x2 * 0x014 * # ***************** ***************** # * Current * * Next * # * PC * * PC * # ***************** ***************** # * SR * * SR * # ***************** ***************** # (4 words) (6 words) # # the divide instruction should take an integer divide by zero trap. so, here # we must create a divbyzero stack frame from an unimplemented integer # instruction exception frame and jump to the user supplied entry point # "_real_divbyzero()". # # However, we must also deal with the fact that (a7)+ was used from supervisor # mode, thereby shifting the stack frame up 4 bytes. # uieh_divbyzero_a7: mov.b EXC_CC+1(%a6),EXC_ISR+1(%a6) # insert new ccodes movm.l EXC_DREGS(%a6),&0x3fff # restore d0-d7/a0-a5 mov.l EXC_IPC(%a6),0xc(%a6) # put "Current PC" on stack mov.w &0x2014,0xa(%a6) # put Vector Offset on stack mov.l EXC_EXTWPTR(%a6),0x6(%a6) # put "Next PC" on stack mov.l EXC_A6(%a6),%a6 # restore a6 add.l &4+LOCAL_SIZE,%sp # clear stack frame bra.l _real_divbyzero # # TRACE FRAME # ***************** # * Current * # UIEH FRAME * PC * # ***************** ***************** # * 0x0 * 0x0f4 * * 0x2 * 0x024 * # ***************** ***************** # * Current * * Next * # * PC * * PC * # ***************** ***************** # * SR * * SR * # ***************** ***************** # (4 words) (6 words) # # # The instruction that was just emulated was also being traced. The trace # trap for this instruction will be lost unless we jump to the trace handler. # So, here we create a Trace Exception format number two exception stack # frame from the Unimplemented Integer Intruction Exception stack frame # format number zero and jump to the user supplied hook "_real_trace()". # # However, we must also deal with the fact that (a7)+ was used from supervisor # mode, thereby shifting the stack frame up 4 bytes. # uieh_trace_a7: mov.b EXC_CC+1(%a6),EXC_ISR+1(%a6) # insert new ccodes movm.l EXC_DREGS(%a6),&0x3fff # restore d0-d7/a0-a5 mov.l EXC_IPC(%a6),0xc(%a6) # put "Current PC" on stack mov.w &0x2024,0xa(%a6) # put Vector Offset on stack mov.l EXC_EXTWPTR(%a6),0x6(%a6) # put "Next PC" on stack mov.l EXC_A6(%a6),%a6 # restore a6 add.l &4+LOCAL_SIZE,%sp # clear stack frame bra.l _real_trace # # UIEH FRAME # ***************** # * 0x0 * 0x0f4 * # UIEH FRAME ***************** # ***************** * Next * # * 0x0 * 0x0f4 * * PC * # ***************** ***************** # * Current * * SR * # * PC * ***************** # ***************** (4 words) # * SR * # ***************** # (4 words) uieh_a7: mov.b EXC_CC+1(%a6),EXC_ISR+1(%a6) # insert new ccodes movm.l EXC_DREGS(%a6),&0x3fff # restore d0-d7/a0-a5 mov.w &0x00f4,0xe(%a6) # put Vector Offset on stack mov.l EXC_EXTWPTR(%a6),0xa(%a6) # put "Next PC" on stack mov.w EXC_ISR(%a6),0x8(%a6) # put SR on stack mov.l EXC_A6(%a6),%a6 # restore a6 add.l &8+LOCAL_SIZE,%sp # clear stack frame bra.l _isp_done ########## # this is the exit point if a data read or write fails. # a0 = failing address # d0 = fslw isp_dacc: mov.l %a0,(%a6) # save address mov.l %d0,-0x4(%a6) # save partial fslw lea -64(%a6),%sp movm.l (%sp)+,&0x7fff # restore d0-d7/a0-a6 mov.l 0xc(%sp),-(%sp) # move voff,hi(pc) mov.l 0x4(%sp),0x10(%sp) # store fslw mov.l 0xc(%sp),0x4(%sp) # store sr,lo(pc) mov.l 0x8(%sp),0xc(%sp) # store address mov.l (%sp)+,0x4(%sp) # store voff,hi(pc) mov.w &0x4008,0x6(%sp) # store new voff bra.b isp_acc_exit # this is the exit point if an instruction word read fails. # FSLW: # misaligned = true # read = true # size = word # instruction = true # software emulation error = true isp_iacc: movm.l EXC_DREGS(%a6),&0x3fff # restore d0-d7/a0-a5 unlk %a6 # unlink frame sub.w &0x8,%sp # make room for acc frame mov.l 0x8(%sp),(%sp) # store sr,lo(pc) mov.w 0xc(%sp),0x4(%sp) # store hi(pc) mov.w &0x4008,0x6(%sp) # store new voff mov.l 0x2(%sp),0x8(%sp) # store address (=pc) mov.l &0x09428001,0xc(%sp) # store fslw isp_acc_exit: btst &0x5,(%sp) # user or supervisor? beq.b isp_acc_exit2 # user bset &0x2,0xd(%sp) # set supervisor TM bit isp_acc_exit2: bra.l _real_access # if the addressing mode was (an)+ or -(an), the address register must # be restored to it's pre-exception value before entering _real_access. isp_restore: cmpi.b SPCOND_FLG(%a6),&restore_flg # do we need a restore? bne.b isp_restore_done # no clr.l %d0 mov.b EXC_SAVREG(%a6),%d0 # regno to restore mov.l EXC_SAVVAL(%a6),(EXC_AREGS,%a6,%d0.l*4) # restore value isp_restore_done: rts ######################################################################### # XDEF **************************************************************** # # _calc_ea(): routine to calculate effective address # # # # XREF **************************************************************** # # _imem_read_word() - read instruction word # # _imem_read_long() - read instruction longword # # _dmem_read_long() - read data longword (for memory indirect) # # isp_iacc() - handle instruction access error exception # # isp_dacc() - handle data access error exception # # # # INPUT *************************************************************** # # d0 = number of bytes related to effective address (w,l) # # # # OUTPUT ************************************************************** # # If exiting through isp_dacc... # # a0 = failing address # # d0 = FSLW # # elsif exiting though isp_iacc... # # none # # else # # a0 = effective address # # # # ALGORITHM *********************************************************** # # The effective address type is decoded from the opword residing # # on the stack. A jump table is used to vector to a routine for the # # appropriate mode. Since none of the emulated integer instructions # # uses byte-sized operands, only handle word and long operations. # # # # Dn,An - shouldn't enter here # # (An) - fetch An value from stack # # -(An) - fetch An value from stack; return decr value; # # place decr value on stack; store old value in case of # # future access error; if -(a7), set mda7_flg in # # SPCOND_FLG # # (An)+ - fetch An value from stack; return value; # # place incr value on stack; store old value in case of # # future access error; if (a7)+, set mia7_flg in # # SPCOND_FLG # # (d16,An) - fetch An value from stack; read d16 using # # _imem_read_word(); fetch may fail -> branch to # # isp_iacc() # # (xxx).w,(xxx).l - use _imem_read_{word,long}() to fetch # # address; fetch may fail # # #<data> - return address of immediate value; set immed_flg # # in SPCOND_FLG # # (d16,PC) - fetch stacked PC value; read d16 using # # _imem_read_word(); fetch may fail -> branch to # # isp_iacc() # # everything else - read needed displacements as appropriate w/ # # _imem_read_{word,long}(); read may fail; if memory # # indirect, read indirect address using # # _dmem_read_long() which may also fail # # # ######################################################################### global _calc_ea _calc_ea: mov.l %d0,%a0 # move # bytes to a0 # MODE and REG are taken from the EXC_OPWORD. mov.w EXC_OPWORD(%a6),%d0 # fetch opcode word mov.w %d0,%d1 # make a copy andi.w &0x3f,%d0 # extract mode field andi.l &0x7,%d1 # extract reg field # jump to the corresponding function for each {MODE,REG} pair. mov.w (tbl_ea_mode.b,%pc,%d0.w*2), %d0 # fetch jmp distance jmp (tbl_ea_mode.b,%pc,%d0.w*1) # jmp to correct ea mode swbeg &64 tbl_ea_mode: short tbl_ea_mode - tbl_ea_mode short tbl_ea_mode - tbl_ea_mode short tbl_ea_mode - tbl_ea_mode short tbl_ea_mode - tbl_ea_mode short tbl_ea_mode - tbl_ea_mode short tbl_ea_mode - tbl_ea_mode short tbl_ea_mode - tbl_ea_mode short tbl_ea_mode - tbl_ea_mode short tbl_ea_mode - tbl_ea_mode short tbl_ea_mode - tbl_ea_mode short tbl_ea_mode - tbl_ea_mode short tbl_ea_mode - tbl_ea_mode short tbl_ea_mode - tbl_ea_mode short tbl_ea_mode - tbl_ea_mode short tbl_ea_mode - tbl_ea_mode short tbl_ea_mode - tbl_ea_mode short addr_ind_a0 - tbl_ea_mode short addr_ind_a1 - tbl_ea_mode short addr_ind_a2 - tbl_ea_mode short addr_ind_a3 - tbl_ea_mode short addr_ind_a4 - tbl_ea_mode short addr_ind_a5 - tbl_ea_mode short addr_ind_a6 - tbl_ea_mode short addr_ind_a7 - tbl_ea_mode short addr_ind_p_a0 - tbl_ea_mode short addr_ind_p_a1 - tbl_ea_mode short addr_ind_p_a2 - tbl_ea_mode short addr_ind_p_a3 - tbl_ea_mode short addr_ind_p_a4 - tbl_ea_mode short addr_ind_p_a5 - tbl_ea_mode short addr_ind_p_a6 - tbl_ea_mode short addr_ind_p_a7 - tbl_ea_mode short addr_ind_m_a0 - tbl_ea_mode short addr_ind_m_a1 - tbl_ea_mode short addr_ind_m_a2 - tbl_ea_mode short addr_ind_m_a3 - tbl_ea_mode short addr_ind_m_a4 - tbl_ea_mode short addr_ind_m_a5 - tbl_ea_mode short addr_ind_m_a6 - tbl_ea_mode short addr_ind_m_a7 - tbl_ea_mode short addr_ind_disp_a0 - tbl_ea_mode short addr_ind_disp_a1 - tbl_ea_mode short addr_ind_disp_a2 - tbl_ea_mode short addr_ind_disp_a3 - tbl_ea_mode short addr_ind_disp_a4 - tbl_ea_mode short addr_ind_disp_a5 - tbl_ea_mode short addr_ind_disp_a6 - tbl_ea_mode short addr_ind_disp_a7 - tbl_ea_mode short _addr_ind_ext - tbl_ea_mode short _addr_ind_ext - tbl_ea_mode short _addr_ind_ext - tbl_ea_mode short _addr_ind_ext - tbl_ea_mode short _addr_ind_ext - tbl_ea_mode short _addr_ind_ext - tbl_ea_mode short _addr_ind_ext - tbl_ea_mode short _addr_ind_ext - tbl_ea_mode short abs_short - tbl_ea_mode short abs_long - tbl_ea_mode short pc_ind - tbl_ea_mode short pc_ind_ext - tbl_ea_mode short immediate - tbl_ea_mode short tbl_ea_mode - tbl_ea_mode short tbl_ea_mode - tbl_ea_mode short tbl_ea_mode - tbl_ea_mode ################################### # Address register indirect: (An) # ################################### addr_ind_a0: mov.l EXC_A0(%a6),%a0 # Get current a0 rts addr_ind_a1: mov.l EXC_A1(%a6),%a0 # Get current a1 rts addr_ind_a2: mov.l EXC_A2(%a6),%a0 # Get current a2 rts addr_ind_a3: mov.l EXC_A3(%a6),%a0 # Get current a3 rts addr_ind_a4: mov.l EXC_A4(%a6),%a0 # Get current a4 rts addr_ind_a5: mov.l EXC_A5(%a6),%a0 # Get current a5 rts addr_ind_a6: mov.l EXC_A6(%a6),%a0 # Get current a6 rts addr_ind_a7: mov.l EXC_A7(%a6),%a0 # Get current a7 rts ##################################################### # Address register indirect w/ postincrement: (An)+ # ##################################################### addr_ind_p_a0: mov.l %a0,%d0 # copy no. bytes mov.l EXC_A0(%a6),%a0 # load current value add.l %a0,%d0 # increment mov.l %d0,EXC_A0(%a6) # save incremented value mov.l %a0,EXC_SAVVAL(%a6) # save in case of access error mov.b &0x0,EXC_SAVREG(%a6) # save regno, too mov.b &restore_flg,SPCOND_FLG(%a6) # set flag rts addr_ind_p_a1: mov.l %a0,%d0 # copy no. bytes mov.l EXC_A1(%a6),%a0 # load current value add.l %a0,%d0 # increment mov.l %d0,EXC_A1(%a6) # save incremented value mov.l %a0,EXC_SAVVAL(%a6) # save in case of access error mov.b &0x1,EXC_SAVREG(%a6) # save regno, too mov.b &restore_flg,SPCOND_FLG(%a6) # set flag rts addr_ind_p_a2: mov.l %a0,%d0 # copy no. bytes mov.l EXC_A2(%a6),%a0 # load current value add.l %a0,%d0 # increment mov.l %d0,EXC_A2(%a6) # save incremented value mov.l %a0,EXC_SAVVAL(%a6) # save in case of access error mov.b &0x2,EXC_SAVREG(%a6) # save regno, too mov.b &restore_flg,SPCOND_FLG(%a6) # set flag rts addr_ind_p_a3: mov.l %a0,%d0 # copy no. bytes mov.l EXC_A3(%a6),%a0 # load current value add.l %a0,%d0 # increment mov.l %d0,EXC_A3(%a6) # save incremented value mov.l %a0,EXC_SAVVAL(%a6) # save in case of access error mov.b &0x3,EXC_SAVREG(%a6) # save regno, too mov.b &restore_flg,SPCOND_FLG(%a6) # set flag rts addr_ind_p_a4: mov.l %a0,%d0 # copy no. bytes mov.l EXC_A4(%a6),%a0 # load current value add.l %a0,%d0 # increment mov.l %d0,EXC_A4(%a6) # save incremented value mov.l %a0,EXC_SAVVAL(%a6) # save in case of access error mov.b &0x4,EXC_SAVREG(%a6) # save regno, too mov.b &restore_flg,SPCOND_FLG(%a6) # set flag rts addr_ind_p_a5: mov.l %a0,%d0 # copy no. bytes mov.l EXC_A5(%a6),%a0 # load current value add.l %a0,%d0 # increment mov.l %d0,EXC_A5(%a6) # save incremented value mov.l %a0,EXC_SAVVAL(%a6) # save in case of access error mov.b &0x5,EXC_SAVREG(%a6) # save regno, too mov.b &restore_flg,SPCOND_FLG(%a6) # set flag rts addr_ind_p_a6: mov.l %a0,%d0 # copy no. bytes mov.l EXC_A6(%a6),%a0 # load current value add.l %a0,%d0 # increment mov.l %d0,EXC_A6(%a6) # save incremented value mov.l %a0,EXC_SAVVAL(%a6) # save in case of access error mov.b &0x6,EXC_SAVREG(%a6) # save regno, too mov.b &restore_flg,SPCOND_FLG(%a6) # set flag rts addr_ind_p_a7: mov.b &mia7_flg,SPCOND_FLG(%a6) # set "special case" flag mov.l %a0,%d0 # copy no. bytes mov.l EXC_A7(%a6),%a0 # load current value add.l %a0,%d0 # increment mov.l %d0,EXC_A7(%a6) # save incremented value rts #################################################### # Address register indirect w/ predecrement: -(An) # #################################################### addr_ind_m_a0: mov.l EXC_A0(%a6),%d0 # Get current a0 mov.l %d0,EXC_SAVVAL(%a6) # save in case of access error sub.l %a0,%d0 # Decrement mov.l %d0,EXC_A0(%a6) # Save decr value mov.l %d0,%a0 mov.b &0x0,EXC_SAVREG(%a6) # save regno, too mov.b &restore_flg,SPCOND_FLG(%a6) # set flag rts addr_ind_m_a1: mov.l EXC_A1(%a6),%d0 # Get current a1 mov.l %d0,EXC_SAVVAL(%a6) # save in case of access error sub.l %a0,%d0 # Decrement mov.l %d0,EXC_A1(%a6) # Save decr value mov.l %d0,%a0 mov.b &0x1,EXC_SAVREG(%a6) # save regno, too mov.b &restore_flg,SPCOND_FLG(%a6) # set flag rts addr_ind_m_a2: mov.l EXC_A2(%a6),%d0 # Get current a2 mov.l %d0,EXC_SAVVAL(%a6) # save in case of access error sub.l %a0,%d0 # Decrement mov.l %d0,EXC_A2(%a6) # Save decr value mov.l %d0,%a0 mov.b &0x2,EXC_SAVREG(%a6) # save regno, too mov.b &restore_flg,SPCOND_FLG(%a6) # set flag rts addr_ind_m_a3: mov.l EXC_A3(%a6),%d0 # Get current a3 mov.l %d0,EXC_SAVVAL(%a6) # save in case of access error sub.l %a0,%d0 # Decrement mov.l %d0,EXC_A3(%a6) # Save decr value mov.l %d0,%a0 mov.b &0x3,EXC_SAVREG(%a6) # save regno, too mov.b &restore_flg,SPCOND_FLG(%a6) # set flag rts addr_ind_m_a4: mov.l EXC_A4(%a6),%d0 # Get current a4 mov.l %d0,EXC_SAVVAL(%a6) # save in case of access error sub.l %a0,%d0 # Decrement mov.l %d0,EXC_A4(%a6) # Save decr value mov.l %d0,%a0 mov.b &0x4,EXC_SAVREG(%a6) # save regno, too mov.b &restore_flg,SPCOND_FLG(%a6) # set flag rts addr_ind_m_a5: mov.l EXC_A5(%a6),%d0 # Get current a5 mov.l %d0,EXC_SAVVAL(%a6) # save in case of access error sub.l %a0,%d0 # Decrement mov.l %d0,EXC_A5(%a6) # Save decr value mov.l %d0,%a0 mov.b &0x5,EXC_SAVREG(%a6) # save regno, too mov.b &restore_flg,SPCOND_FLG(%a6) # set flag rts addr_ind_m_a6: mov.l EXC_A6(%a6),%d0 # Get current a6 mov.l %d0,EXC_SAVVAL(%a6) # save in case of access error sub.l %a0,%d0 # Decrement mov.l %d0,EXC_A6(%a6) # Save decr value mov.l %d0,%a0 mov.b &0x6,EXC_SAVREG(%a6) # save regno, too mov.b &restore_flg,SPCOND_FLG(%a6) # set flag rts addr_ind_m_a7: mov.b &mda7_flg,SPCOND_FLG(%a6) # set "special case" flag mov.l EXC_A7(%a6),%d0 # Get current a7 sub.l %a0,%d0 # Decrement mov.l %d0,EXC_A7(%a6) # Save decr value mov.l %d0,%a0 rts ######################################################## # Address register indirect w/ displacement: (d16, An) # ######################################################## addr_ind_disp_a0: mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr addq.l &0x2,EXC_EXTWPTR(%a6) # incr instruction ptr bsr.l _imem_read_word tst.l %d1 # ifetch error? bne.l isp_iacc # yes mov.w %d0,%a0 # sign extend displacement add.l EXC_A0(%a6),%a0 # a0 + d16 rts addr_ind_disp_a1: mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr addq.l &0x2,EXC_EXTWPTR(%a6) # incr instruction ptr bsr.l _imem_read_word tst.l %d1 # ifetch error? bne.l isp_iacc # yes mov.w %d0,%a0 # sign extend displacement add.l EXC_A1(%a6),%a0 # a1 + d16 rts addr_ind_disp_a2: mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr addq.l &0x2,EXC_EXTWPTR(%a6) # incr instruction ptr bsr.l _imem_read_word tst.l %d1 # ifetch error? bne.l isp_iacc # yes mov.w %d0,%a0 # sign extend displacement add.l EXC_A2(%a6),%a0 # a2 + d16 rts addr_ind_disp_a3: mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr addq.l &0x2,EXC_EXTWPTR(%a6) # incr instruction ptr bsr.l _imem_read_word tst.l %d1 # ifetch error? bne.l isp_iacc # yes mov.w %d0,%a0 # sign extend displacement add.l EXC_A3(%a6),%a0 # a3 + d16 rts addr_ind_disp_a4: mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr addq.l &0x2,EXC_EXTWPTR(%a6) # incr instruction ptr bsr.l _imem_read_word tst.l %d1 # ifetch error? bne.l isp_iacc # yes mov.w %d0,%a0 # sign extend displacement add.l EXC_A4(%a6),%a0 # a4 + d16 rts addr_ind_disp_a5: mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr addq.l &0x2,EXC_EXTWPTR(%a6) # incr instruction ptr bsr.l _imem_read_word tst.l %d1 # ifetch error? bne.l isp_iacc # yes mov.w %d0,%a0 # sign extend displacement add.l EXC_A5(%a6),%a0 # a5 + d16 rts addr_ind_disp_a6: mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr addq.l &0x2,EXC_EXTWPTR(%a6) # incr instruction ptr bsr.l _imem_read_word tst.l %d1 # ifetch error? bne.l isp_iacc # yes mov.w %d0,%a0 # sign extend displacement add.l EXC_A6(%a6),%a0 # a6 + d16 rts addr_ind_disp_a7: mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr addq.l &0x2,EXC_EXTWPTR(%a6) # incr instruction ptr bsr.l _imem_read_word tst.l %d1 # ifetch error? bne.l isp_iacc # yes mov.w %d0,%a0 # sign extend displacement add.l EXC_A7(%a6),%a0 # a7 + d16 rts ######################################################################## # Address register indirect w/ index(8-bit displacement): (dn, An, Xn) # # " " " w/ " (base displacement): (bd, An, Xn) # # Memory indirect postindexed: ([bd, An], Xn, od) # # Memory indirect preindexed: ([bd, An, Xn], od) # ######################################################################## _addr_ind_ext: mov.l %d1,-(%sp) mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr addq.l &0x2,EXC_EXTWPTR(%a6) # incr instruction ptr bsr.l _imem_read_word # fetch extword in d0 tst.l %d1 # ifetch error? bne.l isp_iacc # yes mov.l (%sp)+,%d1 mov.l (EXC_AREGS,%a6,%d1.w*4),%a0 # put base in a0 btst &0x8,%d0 beq.b addr_ind_index_8bit # for ext word or not? movm.l &0x3c00,-(%sp) # save d2-d5 mov.l %d0,%d5 # put extword in d5 mov.l %a0,%d3 # put base in d3 bra.l calc_mem_ind # calc memory indirect addr_ind_index_8bit: mov.l %d2,-(%sp) # save old d2 mov.l %d0,%d1 rol.w &0x4,%d1 andi.w &0xf,%d1 # extract index regno mov.l (EXC_DREGS,%a6,%d1.w*4),%d1 # fetch index reg value btst &0xb,%d0 # is it word or long? bne.b aii8_long ext.l %d1 # sign extend word index aii8_long: mov.l %d0,%d2 rol.w &0x7,%d2 andi.l &0x3,%d2 # extract scale value lsl.l %d2,%d1 # shift index by scale extb.l %d0 # sign extend displacement add.l %d1,%d0 # index + disp add.l %d0,%a0 # An + (index + disp) mov.l (%sp)+,%d2 # restore old d2 rts ###################### # Immediate: #<data> # ######################################################################### # word, long: <ea> of the data is the current extension word # # pointer value. new extension word pointer is simply the old # # plus the number of bytes in the data type(2 or 4). # ######################################################################### immediate: mov.b &immed_flg,SPCOND_FLG(%a6) # set immediate flag mov.l EXC_EXTWPTR(%a6),%a0 # fetch extension word ptr rts ########################### # Absolute short: (XXX).W # ########################### abs_short: mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr addq.l &0x2,EXC_EXTWPTR(%a6) # incr instruction ptr bsr.l _imem_read_word # fetch short address tst.l %d1 # ifetch error? bne.l isp_iacc # yes mov.w %d0,%a0 # return <ea> in a0 rts ########################## # Absolute long: (XXX).L # ########################## abs_long: mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr addq.l &0x4,EXC_EXTWPTR(%a6) # incr instruction ptr bsr.l _imem_read_long # fetch long address tst.l %d1 # ifetch error? bne.l isp_iacc # yes mov.l %d0,%a0 # return <ea> in a0 rts ####################################################### # Program counter indirect w/ displacement: (d16, PC) # ####################################################### pc_ind: mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr addq.l &0x2,EXC_EXTWPTR(%a6) # incr instruction ptr bsr.l _imem_read_word # fetch word displacement tst.l %d1 # ifetch error? bne.l isp_iacc # yes mov.w %d0,%a0 # sign extend displacement add.l EXC_EXTWPTR(%a6),%a0 # pc + d16 # _imem_read_word() increased the extwptr by 2. need to adjust here. subq.l &0x2,%a0 # adjust <ea> rts ########################################################## # PC indirect w/ index(8-bit displacement): (d8, PC, An) # # " " w/ " (base displacement): (bd, PC, An) # # PC memory indirect postindexed: ([bd, PC], Xn, od) # # PC memory indirect preindexed: ([bd, PC, Xn], od) # ########################################################## pc_ind_ext: mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr addq.l &0x2,EXC_EXTWPTR(%a6) # incr instruction ptr bsr.l _imem_read_word # fetch ext word tst.l %d1 # ifetch error? bne.l isp_iacc # yes mov.l EXC_EXTWPTR(%a6),%a0 # put base in a0 subq.l &0x2,%a0 # adjust base btst &0x8,%d0 # is disp only 8 bits? beq.b pc_ind_index_8bit # yes # the indexed addressing mode uses a base displacement of size # word or long movm.l &0x3c00,-(%sp) # save d2-d5 mov.l %d0,%d5 # put extword in d5 mov.l %a0,%d3 # put base in d3 bra.l calc_mem_ind # calc memory indirect pc_ind_index_8bit: mov.l %d2,-(%sp) # create a temp register mov.l %d0,%d1 # make extword copy rol.w &0x4,%d1 # rotate reg num into place andi.w &0xf,%d1 # extract register number mov.l (EXC_DREGS,%a6,%d1.w*4),%d1 # fetch index reg value btst &0xb,%d0 # is index word or long? bne.b pii8_long # long ext.l %d1 # sign extend word index pii8_long: mov.l %d0,%d2 # make extword copy rol.w &0x7,%d2 # rotate scale value into place andi.l &0x3,%d2 # extract scale value lsl.l %d2,%d1 # shift index by scale extb.l %d0 # sign extend displacement add.l %d1,%d0 # index + disp add.l %d0,%a0 # An + (index + disp) mov.l (%sp)+,%d2 # restore temp register rts # a5 = exc_extwptr (global to uaeh) # a4 = exc_opword (global to uaeh) # a3 = exc_dregs (global to uaeh) # d2 = index (internal " " ) # d3 = base (internal " " ) # d4 = od (internal " " ) # d5 = extword (internal " " ) calc_mem_ind: btst &0x6,%d5 # is the index suppressed? beq.b calc_index clr.l %d2 # yes, so index = 0 bra.b base_supp_ck calc_index: bfextu %d5{&16:&4},%d2 mov.l (EXC_DREGS,%a6,%d2.w*4),%d2 btst &0xb,%d5 # is index word or long? bne.b no_ext ext.l %d2 no_ext: bfextu %d5{&21:&2},%d0 lsl.l %d0,%d2 base_supp_ck: btst &0x7,%d5 # is the bd suppressed? beq.b no_base_sup clr.l %d3 no_base_sup: bfextu %d5{&26:&2},%d0 # get bd size # beq.l _error # if (size == 0) it's reserved cmpi.b %d0,&2 blt.b no_bd beq.b get_word_bd mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr addq.l &0x4,EXC_EXTWPTR(%a6) # incr instruction ptr bsr.l _imem_read_long tst.l %d1 # ifetch error? bne.l isp_iacc # yes bra.b chk_ind get_word_bd: mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr addq.l &0x2,EXC_EXTWPTR(%a6) # incr instruction ptr bsr.l _imem_read_word tst.l %d1 # ifetch error? bne.l isp_iacc # yes ext.l %d0 # sign extend bd chk_ind: add.l %d0,%d3 # base += bd no_bd: bfextu %d5{&30:&2},%d0 # is od suppressed? beq.w aii_bd cmpi.b %d0,&0x2 blt.b null_od beq.b word_od mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr addq.l &0x4,EXC_EXTWPTR(%a6) # incr instruction ptr bsr.l _imem_read_long tst.l %d1 # ifetch error? bne.l isp_iacc # yes bra.b add_them word_od: mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr addq.l &0x2,EXC_EXTWPTR(%a6) # incr instruction ptr bsr.l _imem_read_word tst.l %d1 # ifetch error? bne.l isp_iacc # yes ext.l %d0 # sign extend od bra.b add_them null_od: clr.l %d0 add_them: mov.l %d0,%d4 btst &0x2,%d5 # pre or post indexing? beq.b pre_indexed mov.l %d3,%a0 bsr.l _dmem_read_long tst.l %d1 # dfetch error? bne.b calc_ea_err # yes add.l %d2,%d0 # <ea> += index add.l %d4,%d0 # <ea> += od bra.b done_ea pre_indexed: add.l %d2,%d3 # preindexing mov.l %d3,%a0 bsr.l _dmem_read_long tst.l %d1 # ifetch error? bne.b calc_ea_err # yes add.l %d4,%d0 # ea += od bra.b done_ea aii_bd: add.l %d2,%d3 # ea = (base + bd) + index mov.l %d3,%d0 done_ea: mov.l %d0,%a0 movm.l (%sp)+,&0x003c # restore d2-d5 rts # if dmem_read_long() returns a fail message in d1, the package # must create an access error frame. here, we pass a skeleton fslw # and the failing address to the routine that creates the new frame. # FSLW: # read = true # size = longword # TM = data # software emulation error = true calc_ea_err: mov.l %d3,%a0 # pass failing address mov.l &0x01010001,%d0 # pass fslw bra.l isp_dacc ######################################################################### # XDEF **************************************************************** # # _moveperipheral(): routine to emulate movep instruction # # # # XREF **************************************************************** # # _dmem_read_byte() - read byte from memory # # _dmem_write_byte() - write byte to memory # # isp_dacc() - handle data access error exception # # # # INPUT *************************************************************** # # none # # # # OUTPUT ************************************************************** # # If exiting through isp_dacc... # # a0 = failing address # # d0 = FSLW # # else # # none # # # # ALGORITHM *********************************************************** # # Decode the movep instruction words stored at EXC_OPWORD and # # either read or write the required bytes from/to memory. Use the # # _dmem_{read,write}_byte() routines. If one of the memory routines # # returns a failing value, we must pass the failing address and a FSLW # # to the _isp_dacc() routine. # # Since this instruction is used to access peripherals, make sure # # to only access the required bytes. # # # ######################################################################### ########################### # movep.(w,l) Dx,(d,Ay) # # movep.(w,l) (d,Ay),Dx # ########################### global _moveperipheral _moveperipheral: mov.w EXC_OPWORD(%a6),%d1 # fetch the opcode word mov.b %d1,%d0 and.w &0x7,%d0 # extract Ay from opcode word mov.l (EXC_AREGS,%a6,%d0.w*4),%a0 # fetch ay add.w EXC_EXTWORD(%a6),%a0 # add: an + sgn_ext(disp) btst &0x7,%d1 # (reg 2 mem) or (mem 2 reg) beq.w mem2reg # reg2mem: fetch dx, then write it to memory reg2mem: mov.w %d1,%d0 rol.w &0x7,%d0 and.w &0x7,%d0 # extract Dx from opcode word mov.l (EXC_DREGS,%a6,%d0.w*4), %d0 # fetch dx btst &0x6,%d1 # word or long operation? beq.b r2mwtrans # a0 = dst addr # d0 = Dx r2mltrans: mov.l %d0,%d2 # store data mov.l %a0,%a2 # store addr rol.l &0x8,%d2 mov.l %d2,%d0 bsr.l _dmem_write_byte # os : write hi tst.l %d1 # dfetch error? bne.w movp_write_err # yes add.w &0x2,%a2 # incr addr mov.l %a2,%a0 rol.l &0x8,%d2 mov.l %d2,%d0 bsr.l _dmem_write_byte # os : write lo tst.l %d1 # dfetch error? bne.w movp_write_err # yes add.w &0x2,%a2 # incr addr mov.l %a2,%a0 rol.l &0x8,%d2 mov.l %d2,%d0 bsr.l _dmem_write_byte # os : write lo tst.l %d1 # dfetch error? bne.w movp_write_err # yes add.w &0x2,%a2 # incr addr mov.l %a2,%a0 rol.l &0x8,%d2 mov.l %d2,%d0 bsr.l _dmem_write_byte # os : write lo tst.l %d1 # dfetch error? bne.w movp_write_err # yes rts # a0 = dst addr # d0 = Dx r2mwtrans: mov.l %d0,%d2 # store data mov.l %a0,%a2 # store addr lsr.w &0x8,%d0 bsr.l _dmem_write_byte # os : write hi tst.l %d1 # dfetch error? bne.w movp_write_err # yes add.w &0x2,%a2 mov.l %a2,%a0 mov.l %d2,%d0 bsr.l _dmem_write_byte # os : write lo tst.l %d1 # dfetch error? bne.w movp_write_err # yes rts # mem2reg: read bytes from memory. # determines the dest register, and then writes the bytes into it. mem2reg: btst &0x6,%d1 # word or long operation? beq.b m2rwtrans # a0 = dst addr m2rltrans: mov.l %a0,%a2 # store addr bsr.l _dmem_read_byte # read first byte tst.l %d1 # dfetch error? bne.w movp_read_err # yes mov.l %d0,%d2 add.w &0x2,%a2 # incr addr by 2 bytes mov.l %a2,%a0 bsr.l _dmem_read_byte # read second byte tst.l %d1 # dfetch error? bne.w movp_read_err # yes lsl.w &0x8,%d2 mov.b %d0,%d2 # append bytes add.w &0x2,%a2 # incr addr by 2 bytes mov.l %a2,%a0 bsr.l _dmem_read_byte # read second byte tst.l %d1 # dfetch error? bne.w movp_read_err # yes lsl.l &0x8,%d2 mov.b %d0,%d2 # append bytes add.w &0x2,%a2 # incr addr by 2 bytes mov.l %a2,%a0 bsr.l _dmem_read_byte # read second byte tst.l %d1 # dfetch error? bne.w movp_read_err # yes lsl.l &0x8,%d2 mov.b %d0,%d2 # append bytes mov.b EXC_OPWORD(%a6),%d1 lsr.b &0x1,%d1 and.w &0x7,%d1 # extract Dx from opcode word mov.l %d2,(EXC_DREGS,%a6,%d1.w*4) # store dx rts # a0 = dst addr m2rwtrans: mov.l %a0,%a2 # store addr bsr.l _dmem_read_byte # read first byte tst.l %d1 # dfetch error? bne.w movp_read_err # yes mov.l %d0,%d2 add.w &0x2,%a2 # incr addr by 2 bytes mov.l %a2,%a0 bsr.l _dmem_read_byte # read second byte tst.l %d1 # dfetch error? bne.w movp_read_err # yes lsl.w &0x8,%d2 mov.b %d0,%d2 # append bytes mov.b EXC_OPWORD(%a6),%d1 lsr.b &0x1,%d1 and.w &0x7,%d1 # extract Dx from opcode word mov.w %d2,(EXC_DREGS+2,%a6,%d1.w*4) # store dx rts # if dmem_{read,write}_byte() returns a fail message in d1, the package # must create an access error frame. here, we pass a skeleton fslw # and the failing address to the routine that creates the new frame. # FSLW: # write = true # size = byte # TM = data # software emulation error = true movp_write_err: mov.l %a2,%a0 # pass failing address mov.l &0x00a10001,%d0 # pass fslw bra.l isp_dacc # FSLW: # read = true # size = byte # TM = data # software emulation error = true movp_read_err: mov.l %a2,%a0 # pass failing address mov.l &0x01210001,%d0 # pass fslw bra.l isp_dacc ######################################################################### # XDEF **************************************************************** # # _chk2_cmp2(): routine to emulate chk2/cmp2 instructions # # # # XREF **************************************************************** # # _calc_ea(): calculate effective address # # _dmem_read_long(): read operands # # _dmem_read_word(): read operands # # isp_dacc(): handle data access error exception # # # # INPUT *************************************************************** # # none # # # # OUTPUT ************************************************************** # # If exiting through isp_dacc... # # a0 = failing address # # d0 = FSLW # # else # # none # # # # ALGORITHM *********************************************************** # # First, calculate the effective address, then fetch the byte, # # word, or longword sized operands. Then, in the interest of # # simplicity, all operands are converted to longword size whether the # # operation is byte, word, or long. The bounds are sign extended # # accordingly. If Rn is a data regsiter, Rn is also sign extended. If # # Rn is an address register, it need not be sign extended since the # # full register is always used. # # The comparisons are made and the condition codes calculated. # # If the instruction is chk2 and the Rn value is out-of-bounds, set # # the ichk_flg in SPCOND_FLG. # # If the memory fetch returns a failing value, pass the failing # # address and FSLW to the isp_dacc() routine. # # # ######################################################################### global _chk2_cmp2 _chk2_cmp2: # passing size parameter doesn't matter since chk2 & cmp2 can't do # either predecrement, postincrement, or immediate. bsr.l _calc_ea # calculate <ea> mov.b EXC_EXTWORD(%a6), %d0 # fetch hi extension word rol.b &0x4, %d0 # rotate reg bits into lo and.w &0xf, %d0 # extract reg bits mov.l (EXC_DREGS,%a6,%d0.w*4), %d2 # get regval cmpi.b EXC_OPWORD(%a6), &0x2 # what size is operation? blt.b chk2_cmp2_byte # size == byte beq.b chk2_cmp2_word # size == word # the bounds are longword size. call routine to read the lower # bound into d0 and the higher bound into d1. chk2_cmp2_long: mov.l %a0,%a2 # save copy of <ea> bsr.l _dmem_read_long # fetch long lower bound tst.l %d1 # dfetch error? bne.w chk2_cmp2_err_l # yes mov.l %d0,%d3 # save long lower bound addq.l &0x4,%a2 mov.l %a2,%a0 # pass <ea> of long upper bound bsr.l _dmem_read_long # fetch long upper bound tst.l %d1 # dfetch error? bne.w chk2_cmp2_err_l # yes mov.l %d0,%d1 # long upper bound in d1 mov.l %d3,%d0 # long lower bound in d0 bra.w chk2_cmp2_compare # go do the compare emulation # the bounds are word size. fetch them in one subroutine call by # reading a longword. sign extend both. if it's a data operation, # sign extend Rn to long, also. chk2_cmp2_word: mov.l %a0,%a2 bsr.l _dmem_read_long # fetch 2 word bounds tst.l %d1 # dfetch error? bne.w chk2_cmp2_err_l # yes mov.w %d0, %d1 # place hi in %d1 swap %d0 # place lo in %d0 ext.l %d0 # sign extend lo bnd ext.l %d1 # sign extend hi bnd btst &0x7, EXC_EXTWORD(%a6) # address compare? bne.w chk2_cmp2_compare # yes; don't sign extend # operation is a data register compare. # sign extend word to long so we can do simple longword compares. ext.l %d2 # sign extend data word bra.w chk2_cmp2_compare # go emulate compare # the bounds are byte size. fetch them in one subroutine call by # reading a word. sign extend both. if it's a data operation, # sign extend Rn to long, also. chk2_cmp2_byte: mov.l %a0,%a2 bsr.l _dmem_read_word # fetch 2 byte bounds tst.l %d1 # dfetch error? bne.w chk2_cmp2_err_w # yes mov.b %d0, %d1 # place hi in %d1 lsr.w &0x8, %d0 # place lo in %d0 extb.l %d0 # sign extend lo bnd extb.l %d1 # sign extend hi bnd btst &0x7, EXC_EXTWORD(%a6) # address compare? bne.b chk2_cmp2_compare # yes; don't sign extend # operation is a data register compare. # sign extend byte to long so we can do simple longword compares. extb.l %d2 # sign extend data byte # # To set the ccodes correctly: # (1) save 'Z' bit from (Rn - lo) # (2) save 'Z' and 'N' bits from ((hi - lo) - (Rn - hi)) # (3) keep 'X', 'N', and 'V' from before instruction # (4) combine ccodes # chk2_cmp2_compare: sub.l %d0, %d2 # (Rn - lo) mov.w %cc, %d3 # fetch resulting ccodes andi.b &0x4, %d3 # keep 'Z' bit sub.l %d0, %d1 # (hi - lo) cmp.l %d1,%d2 # ((hi - lo) - (Rn - hi)) mov.w %cc, %d4 # fetch resulting ccodes or.b %d4, %d3 # combine w/ earlier ccodes andi.b &0x5, %d3 # keep 'Z' and 'N' mov.w EXC_CC(%a6), %d4 # fetch old ccodes andi.b &0x1a, %d4 # keep 'X','N','V' bits or.b %d3, %d4 # insert new ccodes mov.w %d4, EXC_CC(%a6) # save new ccodes btst &0x3, EXC_EXTWORD(%a6) # separate chk2,cmp2 bne.b chk2_finish # it's a chk2 rts # this code handles the only difference between chk2 and cmp2. chk2 would # have trapped out if the value was out of bounds. we check this by seeing # if the 'N' bit was set by the operation. chk2_finish: btst &0x0, %d4 # is 'N' bit set? bne.b chk2_trap # yes;chk2 should trap rts chk2_trap: mov.b &ichk_flg,SPCOND_FLG(%a6) # set "special case" flag rts # if dmem_read_{long,word}() returns a fail message in d1, the package # must create an access error frame. here, we pass a skeleton fslw # and the failing address to the routine that creates the new frame. # FSLW: # read = true # size = longword # TM = data # software emulation error = true chk2_cmp2_err_l: mov.l %a2,%a0 # pass failing address mov.l &0x01010001,%d0 # pass fslw bra.l isp_dacc # FSLW: # read = true # size = word # TM = data # software emulation error = true chk2_cmp2_err_w: mov.l %a2,%a0 # pass failing address mov.l &0x01410001,%d0 # pass fslw bra.l isp_dacc ######################################################################### # XDEF **************************************************************** # # _div64(): routine to emulate div{u,s}.l <ea>,Dr:Dq # # 64/32->32r:32q # # # # XREF **************************************************************** # # _calc_ea() - calculate effective address # # isp_iacc() - handle instruction access error exception # # isp_dacc() - handle data access error exception # # isp_restore() - restore An on access error w/ -() or ()+ # # # # INPUT *************************************************************** # # none # # # # OUTPUT ************************************************************** # # If exiting through isp_dacc... # # a0 = failing address # # d0 = FSLW # # else # # none # # # # ALGORITHM *********************************************************** # # First, decode the operand location. If it's in Dn, fetch from # # the stack. If it's in memory, use _calc_ea() to calculate the # # effective address. Use _dmem_read_long() to fetch at that address. # # Unless the operand is immediate data. Then use _imem_read_long(). # # Send failures to isp_dacc() or isp_iacc() as appropriate. # # If the operands are signed, make them unsigned and save the # # sign info for later. Separate out special cases like divide-by-zero # # or 32-bit divides if possible. Else, use a special math algorithm # # to calculate the result. # # Restore sign info if signed instruction. Set the condition # # codes. Set idbyz_flg in SPCOND_FLG if divisor was zero. Store the # # quotient and remainder in the appropriate data registers on the stack.# # # ######################################################################### set NDIVISOR, EXC_TEMP+0x0 set NDIVIDEND, EXC_TEMP+0x1 set NDRSAVE, EXC_TEMP+0x2 set NDQSAVE, EXC_TEMP+0x4 set DDSECOND, EXC_TEMP+0x6 set DDQUOTIENT, EXC_TEMP+0x8 set DDNORMAL, EXC_TEMP+0xc global _div64 ############# # div(u,s)l # ############# _div64: mov.b EXC_OPWORD+1(%a6), %d0 andi.b &0x38, %d0 # extract src mode bne.w dcontrolmodel_s # %dn dest or control mode? mov.b EXC_OPWORD+1(%a6), %d0 # extract Dn from opcode andi.w &0x7, %d0 mov.l (EXC_DREGS,%a6,%d0.w*4), %d7 # fetch divisor from register dgotsrcl: beq.w div64eq0 # divisor is = 0!!! mov.b EXC_EXTWORD+1(%a6), %d0 # extract Dr from extword mov.b EXC_EXTWORD(%a6), %d1 # extract Dq from extword and.w &0x7, %d0 lsr.b &0x4, %d1 and.w &0x7, %d1 mov.w %d0, NDRSAVE(%a6) # save Dr for later mov.w %d1, NDQSAVE(%a6) # save Dq for later # fetch %dr and %dq directly off stack since all regs are saved there mov.l (EXC_DREGS,%a6,%d0.w*4), %d5 # get dividend hi mov.l (EXC_DREGS,%a6,%d1.w*4), %d6 # get dividend lo # separate signed and unsigned divide btst &0x3, EXC_EXTWORD(%a6) # signed or unsigned? beq.b dspecialcases # use positive divide # save the sign of the divisor # make divisor unsigned if it's negative tst.l %d7 # chk sign of divisor slt NDIVISOR(%a6) # save sign of divisor bpl.b dsgndividend neg.l %d7 # complement negative divisor # save the sign of the dividend # make dividend unsigned if it's negative dsgndividend: tst.l %d5 # chk sign of hi(dividend) slt NDIVIDEND(%a6) # save sign of dividend bpl.b dspecialcases mov.w &0x0, %cc # clear 'X' cc bit negx.l %d6 # complement signed dividend negx.l %d5 # extract some special cases: # - is (dividend == 0) ? # - is (hi(dividend) == 0 && (divisor <= lo(dividend))) ? (32-bit div) dspecialcases: tst.l %d5 # is (hi(dividend) == 0) bne.b dnormaldivide # no, so try it the long way tst.l %d6 # is (lo(dividend) == 0), too beq.w ddone # yes, so (dividend == 0) cmp.l %d7,%d6 # is (divisor <= lo(dividend)) bls.b d32bitdivide # yes, so use 32 bit divide exg %d5,%d6 # q = 0, r = dividend bra.w divfinish # can't divide, we're done. d32bitdivide: tdivu.l %d7, %d5:%d6 # it's only a 32/32 bit div! bra.b divfinish dnormaldivide: # last special case: # - is hi(dividend) >= divisor ? if yes, then overflow cmp.l %d7,%d5 bls.b ddovf # answer won't fit in 32 bits # perform the divide algorithm: bsr.l dclassical # do int divide # separate into signed and unsigned finishes. divfinish: btst &0x3, EXC_EXTWORD(%a6) # do divs, divu separately beq.b ddone # divu has no processing!!! # it was a divs.l, so ccode setting is a little more complicated... tst.b NDIVIDEND(%a6) # remainder has same sign beq.b dcc # as dividend. neg.l %d5 # sgn(rem) = sgn(dividend) dcc: mov.b NDIVISOR(%a6), %d0 eor.b %d0, NDIVIDEND(%a6) # chk if quotient is negative beq.b dqpos # branch to quot positive # 0x80000000 is the largest number representable as a 32-bit negative # number. the negative of 0x80000000 is 0x80000000. cmpi.l %d6, &0x80000000 # will (-quot) fit in 32 bits? bhi.b ddovf neg.l %d6 # make (-quot) 2's comp bra.b ddone dqpos: btst &0x1f, %d6 # will (+quot) fit in 32 bits? bne.b ddovf ddone: # at this point, result is normal so ccodes are set based on result. mov.w EXC_CC(%a6), %cc tst.l %d6 # set %ccode bits mov.w %cc, EXC_CC(%a6) mov.w NDRSAVE(%a6), %d0 # get Dr off stack mov.w NDQSAVE(%a6), %d1 # get Dq off stack # if the register numbers are the same, only the quotient gets saved. # so, if we always save the quotient second, we save ourselves a cmp&beq mov.l %d5, (EXC_DREGS,%a6,%d0.w*4) # save remainder mov.l %d6, (EXC_DREGS,%a6,%d1.w*4) # save quotient rts ddovf: bset &0x1, EXC_CC+1(%a6) # 'V' set on overflow bclr &0x0, EXC_CC+1(%a6) # 'C' cleared on overflow rts div64eq0: andi.b &0x1e, EXC_CC+1(%a6) # clear 'C' bit on divbyzero ori.b &idbyz_flg,SPCOND_FLG(%a6) # set "special case" flag rts ########################################################################### ######################################################################### # This routine uses the 'classical' Algorithm D from Donald Knuth's # # Art of Computer Programming, vol II, Seminumerical Algorithms. # # For this implementation b=2**16, and the target is U1U2U3U4/V1V2, # # where U,V are words of the quadword dividend and longword divisor, # # and U1, V1 are the most significant words. # # # # The most sig. longword of the 64 bit dividend must be in %d5, least # # in %d6. The divisor must be in the variable ddivisor, and the # # signed/unsigned flag ddusign must be set (0=unsigned,1=signed). # # The quotient is returned in %d6, remainder in %d5, unless the # # v (overflow) bit is set in the saved %ccr. If overflow, the dividend # # is unchanged. # ######################################################################### dclassical: # if the divisor msw is 0, use simpler algorithm then the full blown # one at ddknuth: cmpi.l %d7, &0xffff bhi.b ddknuth # go use D. Knuth algorithm # Since the divisor is only a word (and larger than the mslw of the dividend), # a simpler algorithm may be used : # In the general case, four quotient words would be created by # dividing the divisor word into each dividend word. In this case, # the first two quotient words must be zero, or overflow would occur. # Since we already checked this case above, we can treat the most significant # longword of the dividend as (0) remainder (see Knuth) and merely complete # the last two divisions to get a quotient longword and word remainder: clr.l %d1 swap %d5 # same as r*b if previous step rqd swap %d6 # get u3 to lsw position mov.w %d6, %d5 # rb + u3 divu.w %d7, %d5 mov.w %d5, %d1 # first quotient word swap %d6 # get u4 mov.w %d6, %d5 # rb + u4 divu.w %d7, %d5 swap %d1 mov.w %d5, %d1 # 2nd quotient 'digit' clr.w %d5 swap %d5 # now remainder mov.l %d1, %d6 # and quotient rts ddknuth: # In this algorithm, the divisor is treated as a 2 digit (word) number # which is divided into a 3 digit (word) dividend to get one quotient # digit (word). After subtraction, the dividend is shifted and the # process repeated. Before beginning, the divisor and quotient are # 'normalized' so that the process of estimating the quotient digit # will yield verifiably correct results.. clr.l DDNORMAL(%a6) # count of shifts for normalization clr.b DDSECOND(%a6) # clear flag for quotient digits clr.l %d1 # %d1 will hold trial quotient ddnchk: btst &31, %d7 # must we normalize? first word of bne.b ddnormalized # divisor (V1) must be >= 65536/2 addq.l &0x1, DDNORMAL(%a6) # count normalization shifts lsl.l &0x1, %d7 # shift the divisor lsl.l &0x1, %d6 # shift u4,u3 with overflow to u2 roxl.l &0x1, %d5 # shift u1,u2 bra.w ddnchk ddnormalized: # Now calculate an estimate of the quotient words (msw first, then lsw). # The comments use subscripts for the first quotient digit determination. mov.l %d7, %d3 # divisor mov.l %d5, %d2 # dividend mslw swap %d2 swap %d3 cmp.w %d2, %d3 # V1 = U1 ? bne.b ddqcalc1 mov.w &0xffff, %d1 # use max trial quotient word bra.b ddadj0 ddqcalc1: mov.l %d5, %d1 divu.w %d3, %d1 # use quotient of mslw/msw andi.l &0x0000ffff, %d1 # zero any remainder ddadj0: # now test the trial quotient and adjust. This step plus the # normalization assures (according to Knuth) that the trial # quotient will be at worst 1 too large. mov.l %d6, -(%sp) clr.w %d6 # word u3 left swap %d6 # in lsw position ddadj1: mov.l %d7, %d3 mov.l %d1, %d2 mulu.w %d7, %d2 # V2q swap %d3 mulu.w %d1, %d3 # V1q mov.l %d5, %d4 # U1U2 sub.l %d3, %d4 # U1U2 - V1q swap %d4 mov.w %d4,%d0 mov.w %d6,%d4 # insert lower word (U3) tst.w %d0 # is upper word set? bne.w ddadjd1 # add.l %d6, %d4 # (U1U2 - V1q) + U3 cmp.l %d2, %d4 bls.b ddadjd1 # is V2q > (U1U2-V1q) + U3 ? subq.l &0x1, %d1 # yes, decrement and recheck bra.b ddadj1 ddadjd1: # now test the word by multiplying it by the divisor (V1V2) and comparing # the 3 digit (word) result with the current dividend words mov.l %d5, -(%sp) # save %d5 (%d6 already saved) mov.l %d1, %d6 swap %d6 # shift answer to ms 3 words mov.l %d7, %d5 bsr.l dmm2 mov.l %d5, %d2 # now %d2,%d3 are trial*divisor mov.l %d6, %d3 mov.l (%sp)+, %d5 # restore dividend mov.l (%sp)+, %d6 sub.l %d3, %d6 subx.l %d2, %d5 # subtract double precision bcc dd2nd # no carry, do next quotient digit subq.l &0x1, %d1 # q is one too large # need to add back divisor longword to current ms 3 digits of dividend # - according to Knuth, this is done only 2 out of 65536 times for random # divisor, dividend selection. clr.l %d2 mov.l %d7, %d3 swap %d3 clr.w %d3 # %d3 now ls word of divisor add.l %d3, %d6 # aligned with 3rd word of dividend addx.l %d2, %d5 mov.l %d7, %d3 clr.w %d3 # %d3 now ms word of divisor swap %d3 # aligned with 2nd word of dividend add.l %d3, %d5 dd2nd: tst.b DDSECOND(%a6) # both q words done? bne.b ddremain # first quotient digit now correct. store digit and shift the # (subtracted) dividend mov.w %d1, DDQUOTIENT(%a6) clr.l %d1 swap %d5 swap %d6 mov.w %d6, %d5 clr.w %d6 st DDSECOND(%a6) # second digit bra.w ddnormalized ddremain: # add 2nd word to quotient, get the remainder. mov.w %d1, DDQUOTIENT+2(%a6) # shift down one word/digit to renormalize remainder. mov.w %d5, %d6 swap %d6 swap %d5 mov.l DDNORMAL(%a6), %d7 # get norm shift count beq.b ddrn subq.l &0x1, %d7 # set for loop count ddnlp: lsr.l &0x1, %d5 # shift into %d6 roxr.l &0x1, %d6 dbf %d7, ddnlp ddrn: mov.l %d6, %d5 # remainder mov.l DDQUOTIENT(%a6), %d6 # quotient rts dmm2: # factors for the 32X32->64 multiplication are in %d5 and %d6. # returns 64 bit result in %d5 (hi) %d6(lo). # destroys %d2,%d3,%d4. # multiply hi,lo words of each factor to get 4 intermediate products mov.l %d6, %d2 mov.l %d6, %d3 mov.l %d5, %d4 swap %d3 swap %d4 mulu.w %d5, %d6 # %d6 <- lsw*lsw mulu.w %d3, %d5 # %d5 <- msw-dest*lsw-source mulu.w %d4, %d2 # %d2 <- msw-source*lsw-dest mulu.w %d4, %d3 # %d3 <- msw*msw # now use swap and addx to consolidate to two longwords clr.l %d4 swap %d6 add.w %d5, %d6 # add msw of l*l to lsw of m*l product addx.w %d4, %d3 # add any carry to m*m product add.w %d2, %d6 # add in lsw of other m*l product addx.w %d4, %d3 # add any carry to m*m product swap %d6 # %d6 is low 32 bits of final product clr.w %d5 clr.w %d2 # lsw of two mixed products used, swap %d5 # now use msws of longwords swap %d2 add.l %d2, %d5 add.l %d3, %d5 # %d5 now ms 32 bits of final product rts ########## dcontrolmodel_s: movq.l &LONG,%d0 bsr.l _calc_ea # calc <ea> cmpi.b SPCOND_FLG(%a6),&immed_flg # immediate addressing mode? beq.b dimmed # yes mov.l %a0,%a2 bsr.l _dmem_read_long # fetch divisor from <ea> tst.l %d1 # dfetch error? bne.b div64_err # yes mov.l %d0, %d7 bra.w dgotsrcl # we have to split out immediate data here because it must be read using # imem_read() instead of dmem_read(). this becomes especially important # if the fetch runs into some deadly fault. dimmed: addq.l &0x4,EXC_EXTWPTR(%a6) bsr.l _imem_read_long # read immediate value tst.l %d1 # ifetch error? bne.l isp_iacc # yes mov.l %d0,%d7 bra.w dgotsrcl ########## # if dmem_read_long() returns a fail message in d1, the package # must create an access error frame. here, we pass a skeleton fslw # and the failing address to the routine that creates the new frame. # also, we call isp_restore in case the effective addressing mode was # (an)+ or -(an) in which case the previous "an" value must be restored. # FSLW: # read = true # size = longword # TM = data # software emulation error = true div64_err: bsr.l isp_restore # restore addr reg mov.l %a2,%a0 # pass failing address mov.l &0x01010001,%d0 # pass fslw bra.l isp_dacc ######################################################################### # XDEF **************************************************************** # # _mul64(): routine to emulate mul{u,s}.l <ea>,Dh:Dl 32x32->64 # # # # XREF **************************************************************** # # _calc_ea() - calculate effective address # # isp_iacc() - handle instruction access error exception # # isp_dacc() - handle data access error exception # # isp_restore() - restore An on access error w/ -() or ()+ # # # # INPUT *************************************************************** # # none # # # # OUTPUT ************************************************************** # # If exiting through isp_dacc... # # a0 = failing address # # d0 = FSLW # # else # # none # # # # ALGORITHM *********************************************************** # # First, decode the operand location. If it's in Dn, fetch from # # the stack. If it's in memory, use _calc_ea() to calculate the # # effective address. Use _dmem_read_long() to fetch at that address. # # Unless the operand is immediate data. Then use _imem_read_long(). # # Send failures to isp_dacc() or isp_iacc() as appropriate. # # If the operands are signed, make them unsigned and save the # # sign info for later. Perform the multiplication using 16x16->32 # # unsigned multiplies and "add" instructions. Store the high and low # # portions of the result in the appropriate data registers on the # # stack. Calculate the condition codes, also. # # # ######################################################################### ############# # mul(u,s)l # ############# global _mul64 _mul64: mov.b EXC_OPWORD+1(%a6), %d0 # extract src {mode,reg} cmpi.b %d0, &0x7 # is src mode Dn or other? bgt.w mul64_memop # src is in memory # multiplier operand in the data register file. # must extract the register number and fetch the operand from the stack. mul64_regop: andi.w &0x7, %d0 # extract Dn mov.l (EXC_DREGS,%a6,%d0.w*4), %d3 # fetch multiplier # multiplier is in %d3. now, extract Dl and Dh fields and fetch the # multiplicand from the data register specified by Dl. mul64_multiplicand: mov.w EXC_EXTWORD(%a6), %d2 # fetch ext word clr.w %d1 # clear Dh reg mov.b %d2, %d1 # grab Dh rol.w &0x4, %d2 # align Dl byte andi.w &0x7, %d2 # extract Dl mov.l (EXC_DREGS,%a6,%d2.w*4), %d4 # get multiplicand # check for the case of "zero" result early tst.l %d4 # test multiplicand beq.w mul64_zero # handle zero separately tst.l %d3 # test multiplier beq.w mul64_zero # handle zero separately # multiplier is in %d3 and multiplicand is in %d4. # if the operation is to be signed, then the operands are converted # to unsigned and the result sign is saved for the end. clr.b EXC_TEMP(%a6) # clear temp space btst &0x3, EXC_EXTWORD(%a6) # signed or unsigned? beq.b mul64_alg # unsigned; skip sgn calc tst.l %d3 # is multiplier negative? bge.b mul64_chk_md_sgn # no neg.l %d3 # make multiplier positive ori.b &0x1, EXC_TEMP(%a6) # save multiplier sgn # the result sign is the exclusive or of the operand sign bits. mul64_chk_md_sgn: tst.l %d4 # is multiplicand negative? bge.b mul64_alg # no neg.l %d4 # make multiplicand positive eori.b &0x1, EXC_TEMP(%a6) # calculate correct sign ######################################################################### # 63 32 0 # # ---------------------------- # # | hi(mplier) * hi(mplicand)| # # ---------------------------- # # ----------------------------- # # | hi(mplier) * lo(mplicand) | # # ----------------------------- # # ----------------------------- # # | lo(mplier) * hi(mplicand) | # # ----------------------------- # # | ----------------------------- # # --|-- | lo(mplier) * lo(mplicand) | # # | ----------------------------- # # ======================================================== # # -------------------------------------------------------- # # | hi(result) | lo(result) | # # -------------------------------------------------------- # ######################################################################### mul64_alg: # load temp registers with operands mov.l %d3, %d5 # mr in %d5 mov.l %d3, %d6 # mr in %d6 mov.l %d4, %d7 # md in %d7 swap %d6 # hi(mr) in lo %d6 swap %d7 # hi(md) in lo %d7 # complete necessary multiplies: mulu.w %d4, %d3 # [1] lo(mr) * lo(md) mulu.w %d6, %d4 # [2] hi(mr) * lo(md) mulu.w %d7, %d5 # [3] lo(mr) * hi(md) mulu.w %d7, %d6 # [4] hi(mr) * hi(md) # add lo portions of [2],[3] to hi portion of [1]. # add carries produced from these adds to [4]. # lo([1]) is the final lo 16 bits of the result. clr.l %d7 # load %d7 w/ zero value swap %d3 # hi([1]) <==> lo([1]) add.w %d4, %d3 # hi([1]) + lo([2]) addx.l %d7, %d6 # [4] + carry add.w %d5, %d3 # hi([1]) + lo([3]) addx.l %d7, %d6 # [4] + carry swap %d3 # lo([1]) <==> hi([1]) # lo portions of [2],[3] have been added in to final result. # now, clear lo, put hi in lo reg, and add to [4] clr.w %d4 # clear lo([2]) clr.w %d5 # clear hi([3]) swap %d4 # hi([2]) in lo %d4 swap %d5 # hi([3]) in lo %d5 add.l %d5, %d4 # [4] + hi([2]) add.l %d6, %d4 # [4] + hi([3]) # unsigned result is now in {%d4,%d3} tst.b EXC_TEMP(%a6) # should result be signed? beq.b mul64_done # no # result should be a signed negative number. # compute 2's complement of the unsigned number: # -negate all bits and add 1 mul64_neg: not.l %d3 # negate lo(result) bits not.l %d4 # negate hi(result) bits addq.l &1, %d3 # add 1 to lo(result) addx.l %d7, %d4 # add carry to hi(result) # the result is saved to the register file. # for '040 compatability, if Dl == Dh then only the hi(result) is # saved. so, saving hi after lo accomplishes this without need to # check Dl,Dh equality. mul64_done: mov.l %d3, (EXC_DREGS,%a6,%d2.w*4) # save lo(result) mov.w &0x0, %cc mov.l %d4, (EXC_DREGS,%a6,%d1.w*4) # save hi(result) # now, grab the condition codes. only one that can be set is 'N'. # 'N' CAN be set if the operation is unsigned if bit 63 is set. mov.w %cc, %d7 # fetch %ccr to see if 'N' set andi.b &0x8, %d7 # extract 'N' bit mul64_ccode_set: mov.b EXC_CC+1(%a6), %d6 # fetch previous %ccr andi.b &0x10, %d6 # all but 'X' bit changes or.b %d7, %d6 # group 'X' and 'N' mov.b %d6, EXC_CC+1(%a6) # save new %ccr rts # one or both of the operands is zero so the result is also zero. # save the zero result to the register file and set the 'Z' ccode bit. mul64_zero: clr.l (EXC_DREGS,%a6,%d2.w*4) # save lo(result) clr.l (EXC_DREGS,%a6,%d1.w*4) # save hi(result) movq.l &0x4, %d7 # set 'Z' ccode bit bra.b mul64_ccode_set # finish ccode set ########## # multiplier operand is in memory at the effective address. # must calculate the <ea> and go fetch the 32-bit operand. mul64_memop: movq.l &LONG, %d0 # pass # of bytes bsr.l _calc_ea # calculate <ea> cmpi.b SPCOND_FLG(%a6),&immed_flg # immediate addressing mode? beq.b mul64_immed # yes mov.l %a0,%a2 bsr.l _dmem_read_long # fetch src from addr (%a0) tst.l %d1 # dfetch error? bne.w mul64_err # yes mov.l %d0, %d3 # store multiplier in %d3 bra.w mul64_multiplicand # we have to split out immediate data here because it must be read using # imem_read() instead of dmem_read(). this becomes especially important # if the fetch runs into some deadly fault. mul64_immed: addq.l &0x4,EXC_EXTWPTR(%a6) bsr.l _imem_read_long # read immediate value tst.l %d1 # ifetch error? bne.l isp_iacc # yes mov.l %d0,%d3 bra.w mul64_multiplicand ########## # if dmem_read_long() returns a fail message in d1, the package # must create an access error frame. here, we pass a skeleton fslw # and the failing address to the routine that creates the new frame. # also, we call isp_restore in case the effective addressing mode was # (an)+ or -(an) in which case the previous "an" value must be restored. # FSLW: # read = true # size = longword # TM = data # software emulation error = true mul64_err: bsr.l isp_restore # restore addr reg mov.l %a2,%a0 # pass failing address mov.l &0x01010001,%d0 # pass fslw bra.l isp_dacc ######################################################################### # XDEF **************************************************************** # # _compandset2(): routine to emulate cas2() # # (internal to package) # # # # _isp_cas2_finish(): store ccodes, store compare regs # # (external to package) # # # # XREF **************************************************************** # # _real_lock_page() - "callout" to lock op's page from page-outs # # _cas_terminate2() - access error exit # # _real_cas2() - "callout" to core cas2 emulation code # # _real_unlock_page() - "callout" to unlock page # # # # INPUT *************************************************************** # # _compandset2(): # # d0 = instruction extension word # # # # _isp_cas2_finish(): # # see cas2 core emulation code # # # # OUTPUT ************************************************************** # # _compandset2(): # # see cas2 core emulation code # # # # _isp_cas_finish(): # # None (register file or memroy changed as appropriate) # # # # ALGORITHM *********************************************************** # # compandset2(): # # Decode the instruction and fetch the appropriate Update and # # Compare operands. Then call the "callout" _real_lock_page() for each # # memory operand address so that the operating system can keep these # # pages from being paged out. If either _real_lock_page() fails, exit # # through _cas_terminate2(). Don't forget to unlock the 1st locked page # # using _real_unlock_paged() if the 2nd lock-page fails. # # Finally, branch to the core cas2 emulation code by calling the # # "callout" _real_cas2(). # # # # _isp_cas2_finish(): # # Re-perform the comparison so we can determine the condition # # codes which were too much trouble to keep around during the locked # # emulation. Then unlock each operands page by calling the "callout" # # _real_unlock_page(). # # # ######################################################################### set ADDR1, EXC_TEMP+0xc set ADDR2, EXC_TEMP+0x0 set DC2, EXC_TEMP+0xa set DC1, EXC_TEMP+0x8 global _compandset2 _compandset2: mov.l %d0,EXC_TEMP+0x4(%a6) # store for possible restart mov.l %d0,%d1 # extension word in d0 rol.w &0x4,%d0 andi.w &0xf,%d0 # extract Rn2 mov.l (EXC_DREGS,%a6,%d0.w*4),%a1 # fetch ADDR2 mov.l %a1,ADDR2(%a6) mov.l %d1,%d0 lsr.w &0x6,%d1 andi.w &0x7,%d1 # extract Du2 mov.l (EXC_DREGS,%a6,%d1.w*4),%d5 # fetch Update2 Op andi.w &0x7,%d0 # extract Dc2 mov.l (EXC_DREGS,%a6,%d0.w*4),%d3 # fetch Compare2 Op mov.w %d0,DC2(%a6) mov.w EXC_EXTWORD(%a6),%d0 mov.l %d0,%d1 rol.w &0x4,%d0 andi.w &0xf,%d0 # extract Rn1 mov.l (EXC_DREGS,%a6,%d0.w*4),%a0 # fetch ADDR1 mov.l %a0,ADDR1(%a6) mov.l %d1,%d0 lsr.w &0x6,%d1 andi.w &0x7,%d1 # extract Du1 mov.l (EXC_DREGS,%a6,%d1.w*4),%d4 # fetch Update1 Op andi.w &0x7,%d0 # extract Dc1 mov.l (EXC_DREGS,%a6,%d0.w*4),%d2 # fetch Compare1 Op mov.w %d0,DC1(%a6) btst &0x1,EXC_OPWORD(%a6) # word or long? sne %d7 btst &0x5,EXC_ISR(%a6) # user or supervisor? sne %d6 mov.l %a0,%a2 mov.l %a1,%a3 mov.l %d7,%d1 # pass size mov.l %d6,%d0 # pass mode bsr.l _real_lock_page # lock page mov.l %a2,%a0 tst.l %d0 # error? bne.l _cas_terminate2 # yes mov.l %d7,%d1 # pass size mov.l %d6,%d0 # pass mode mov.l %a3,%a0 # pass addr bsr.l _real_lock_page # lock page mov.l %a3,%a0 tst.l %d0 # error? bne.b cas_preterm # yes mov.l %a2,%a0 mov.l %a3,%a1 bra.l _real_cas2 # if the 2nd lock attempt fails, then we must still unlock the # first page(s). cas_preterm: mov.l %d0,-(%sp) # save FSLW mov.l %d7,%d1 # pass size mov.l %d6,%d0 # pass mode mov.l %a2,%a0 # pass ADDR1 bsr.l _real_unlock_page # unlock first page(s) mov.l (%sp)+,%d0 # restore FSLW mov.l %a3,%a0 # pass failing addr bra.l _cas_terminate2 ############################################################# global _isp_cas2_finish _isp_cas2_finish: btst &0x1,EXC_OPWORD(%a6) bne.b cas2_finish_l mov.w EXC_CC(%a6),%cc # load old ccodes cmp.w %d0,%d2 bne.b cas2_finish_w_save cmp.w %d1,%d3 cas2_finish_w_save: mov.w %cc,EXC_CC(%a6) # save new ccodes tst.b %d4 # update compare reg? bne.b cas2_finish_w_done # no mov.w DC2(%a6),%d3 # fetch Dc2 mov.w %d1,(2+EXC_DREGS,%a6,%d3.w*4) # store new Compare2 Op mov.w DC1(%a6),%d2 # fetch Dc1 mov.w %d0,(2+EXC_DREGS,%a6,%d2.w*4) # store new Compare1 Op cas2_finish_w_done: btst &0x5,EXC_ISR(%a6) sne %d2 mov.l %d2,%d0 # pass mode sf %d1 # pass size mov.l ADDR1(%a6),%a0 # pass ADDR1 bsr.l _real_unlock_page # unlock page mov.l %d2,%d0 # pass mode sf %d1 # pass size mov.l ADDR2(%a6),%a0 # pass ADDR2 bsr.l _real_unlock_page # unlock page rts cas2_finish_l: mov.w EXC_CC(%a6),%cc # load old ccodes cmp.l %d0,%d2 bne.b cas2_finish_l_save cmp.l %d1,%d3 cas2_finish_l_save: mov.w %cc,EXC_CC(%a6) # save new ccodes tst.b %d4 # update compare reg? bne.b cas2_finish_l_done # no mov.w DC2(%a6),%d3 # fetch Dc2 mov.l %d1,(EXC_DREGS,%a6,%d3.w*4) # store new Compare2 Op mov.w DC1(%a6),%d2 # fetch Dc1 mov.l %d0,(EXC_DREGS,%a6,%d2.w*4) # store new Compare1 Op cas2_finish_l_done: btst &0x5,EXC_ISR(%a6) sne %d2 mov.l %d2,%d0 # pass mode st %d1 # pass size mov.l ADDR1(%a6),%a0 # pass ADDR1 bsr.l _real_unlock_page # unlock page mov.l %d2,%d0 # pass mode st %d1 # pass size mov.l ADDR2(%a6),%a0 # pass ADDR2 bsr.l _real_unlock_page # unlock page rts ######## global cr_cas2 cr_cas2: mov.l EXC_TEMP+0x4(%a6),%d0 bra.w _compandset2 ######################################################################### # XDEF **************************************************************** # # _compandset(): routine to emulate cas w/ misaligned <ea> # # (internal to package) # # _isp_cas_finish(): routine called when cas emulation completes # # (external and internal to package) # # _isp_cas_restart(): restart cas emulation after a fault # # (external to package) # # _isp_cas_terminate(): create access error stack frame on fault # # (external and internal to package) # # _isp_cas_inrange(): checks whether instr addess is within range # # of core cas/cas2emulation code # # (external to package) # # # # XREF **************************************************************** # # _calc_ea(): calculate effective address # # # # INPUT *************************************************************** # # compandset(): # # none # # _isp_cas_restart(): # # d6 = previous sfc/dfc # # _isp_cas_finish(): # # _isp_cas_terminate(): # # a0 = failing address # # d0 = FSLW # # d6 = previous sfc/dfc # # _isp_cas_inrange(): # # a0 = instruction address to be checked # # # # OUTPUT ************************************************************** # # compandset(): # # none # # _isp_cas_restart(): # # a0 = effective address # # d7 = word or longword flag # # _isp_cas_finish(): # # a0 = effective address # # _isp_cas_terminate(): # # initial register set before emulation exception # # _isp_cas_inrange(): # # d0 = 0 => in range; -1 => out of range # # # # ALGORITHM *********************************************************** # # # # compandset(): # # First, calculate the effective address. Then, decode the # # instruction word and fetch the "compare" (DC) and "update" (Du) # # operands. # # Next, call the external routine _real_lock_page() so that the # # operating system can keep this page from being paged out while we're # # in this routine. If this call fails, jump to _cas_terminate2(). # # The routine then branches to _real_cas(). This external routine # # that actually emulates cas can be supplied by the external os or # # made to point directly back into the 060ISP which has a routine for # # this purpose. # # # # _isp_cas_finish(): # # Either way, after emulation, the package is re-entered at # # _isp_cas_finish(). This routine re-compares the operands in order to # # set the condition codes. Finally, these routines will call # # _real_unlock_page() in order to unlock the pages that were previously # # locked. # # # # _isp_cas_restart(): # # This routine can be entered from an access error handler where # # the emulation sequence should be re-started from the beginning. # # # # _isp_cas_terminate(): # # This routine can be entered from an access error handler where # # an emulation operand access failed and the operating system would # # like an access error stack frame created instead of the current # # unimplemented integer instruction frame. # # Also, the package enters here if a call to _real_lock_page() # # fails. # # # # _isp_cas_inrange(): # # Checks to see whether the instruction address passed to it in # # a0 is within the software package cas/cas2 emulation routines. This # # can be helpful for an operating system to determine whether an access # # error during emulation was due to a cas/cas2 emulation access. # # # ######################################################################### set DC, EXC_TEMP+0x8 set ADDR, EXC_TEMP+0x4 global _compandset _compandset: btst &0x1,EXC_OPWORD(%a6) # word or long operation? bne.b compandsetl # long compandsetw: movq.l &0x2,%d0 # size = 2 bytes bsr.l _calc_ea # a0 = calculated <ea> mov.l %a0,ADDR(%a6) # save <ea> for possible restart sf %d7 # clear d7 for word size bra.b compandsetfetch compandsetl: movq.l &0x4,%d0 # size = 4 bytes bsr.l _calc_ea # a0 = calculated <ea> mov.l %a0,ADDR(%a6) # save <ea> for possible restart st %d7 # set d7 for longword size compandsetfetch: mov.w EXC_EXTWORD(%a6),%d0 # fetch cas extension word mov.l %d0,%d1 # make a copy lsr.w &0x6,%d0 andi.w &0x7,%d0 # extract Du mov.l (EXC_DREGS,%a6,%d0.w*4),%d2 # get update operand andi.w &0x7,%d1 # extract Dc mov.l (EXC_DREGS,%a6,%d1.w*4),%d4 # get compare operand mov.w %d1,DC(%a6) # save Dc btst &0x5,EXC_ISR(%a6) # which mode for exception? sne %d6 # set on supervisor mode mov.l %a0,%a2 # save temporarily mov.l %d7,%d1 # pass size mov.l %d6,%d0 # pass mode bsr.l _real_lock_page # lock page tst.l %d0 # did error occur? bne.w _cas_terminate2 # yes, clean up the mess mov.l %a2,%a0 # pass addr in a0 bra.l _real_cas ######## global _isp_cas_finish _isp_cas_finish: btst &0x1,EXC_OPWORD(%a6) bne.b cas_finish_l # just do the compare again since it's faster than saving the ccodes # from the locked routine... cas_finish_w: mov.w EXC_CC(%a6),%cc # restore cc cmp.w %d0,%d4 # do word compare mov.w %cc,EXC_CC(%a6) # save cc tst.b %d1 # update compare reg? bne.b cas_finish_w_done # no mov.w DC(%a6),%d3 mov.w %d0,(EXC_DREGS+2,%a6,%d3.w*4) # Dc = destination cas_finish_w_done: mov.l ADDR(%a6),%a0 # pass addr sf %d1 # pass size btst &0x5,EXC_ISR(%a6) sne %d0 # pass mode bsr.l _real_unlock_page # unlock page rts # just do the compare again since it's faster than saving the ccodes # from the locked routine... cas_finish_l: mov.w EXC_CC(%a6),%cc # restore cc cmp.l %d0,%d4 # do longword compare mov.w %cc,EXC_CC(%a6) # save cc tst.b %d1 # update compare reg? bne.b cas_finish_l_done # no mov.w DC(%a6),%d3 mov.l %d0,(EXC_DREGS,%a6,%d3.w*4) # Dc = destination cas_finish_l_done: mov.l ADDR(%a6),%a0 # pass addr st %d1 # pass size btst &0x5,EXC_ISR(%a6) sne %d0 # pass mode bsr.l _real_unlock_page # unlock page rts ######## global _isp_cas_restart _isp_cas_restart: mov.l %d6,%sfc # restore previous sfc mov.l %d6,%dfc # restore previous dfc cmpi.b EXC_OPWORD+1(%a6),&0xfc # cas or cas2? beq.l cr_cas2 # cas2 cr_cas: mov.l ADDR(%a6),%a0 # load <ea> btst &0x1,EXC_OPWORD(%a6) # word or long operation? sne %d7 # set d7 accordingly bra.w compandsetfetch ######## # At this stage, it would be nice if d0 held the FSLW. global _isp_cas_terminate _isp_cas_terminate: mov.l %d6,%sfc # restore previous sfc mov.l %d6,%dfc # restore previous dfc global _cas_terminate2 _cas_terminate2: mov.l %a0,%a2 # copy failing addr to a2 mov.l %d0,-(%sp) bsr.l isp_restore # restore An (if ()+ or -()) mov.l (%sp)+,%d0 addq.l &0x4,%sp # remove sub return addr subq.l &0x8,%sp # make room for bigger stack subq.l &0x8,%a6 # shift frame ptr down, too mov.l &26,%d1 # want to move 51 longwords lea 0x8(%sp),%a0 # get address of old stack lea 0x0(%sp),%a1 # get address of new stack cas_term_cont: mov.l (%a0)+,(%a1)+ # move a longword dbra.w %d1,cas_term_cont # keep going mov.w &0x4008,EXC_IVOFF(%a6) # put new stk fmt, voff mov.l %a2,EXC_IVOFF+0x2(%a6) # put faulting addr on stack mov.l %d0,EXC_IVOFF+0x6(%a6) # put FSLW on stack movm.l EXC_DREGS(%a6),&0x3fff # restore user regs unlk %a6 # unlink stack frame bra.l _real_access ######## global _isp_cas_inrange _isp_cas_inrange: clr.l %d0 # clear return result lea _CASHI(%pc),%a1 # load end of CAS core code cmp.l %a1,%a0 # is PC in range? blt.b cin_no # no lea _CASLO(%pc),%a1 # load begin of CAS core code cmp.l %a0,%a1 # is PC in range? blt.b cin_no # no rts # yes; return d0 = 0 cin_no: mov.l &-0x1,%d0 # out of range; return d0 = -1 rts ################################################################# ################################################################# ################################################################# # This is the start of the cas and cas2 "core" emulation code. # # This is the section that may need to be replaced by the host # # OS if it is too operating system-specific. # # Please refer to the package documentation to see how to # # "replace" this section, if necessary. # ################################################################# ################################################################# ################################################################# # ###### ## ###### #### # # # # # # # # # ###### ###### # # # # # # # # ###### # # ###### ###### ######################################################################### # XDEF **************************************************************** # # _isp_cas2(): "core" emulation code for the cas2 instruction # # # # XREF **************************************************************** # # _isp_cas2_finish() - only exit point for this emulation code; # # do clean-up; calculate ccodes; store # # Compare Ops if appropriate. # # # # INPUT *************************************************************** # # *see chart below* # # # # OUTPUT ************************************************************** # # *see chart below* # # # # ALGORITHM *********************************************************** # # (1) Make several copies of the effective address. # # (2) Save current SR; Then mask off all maskable interrupts. # # (3) Save current SFC/DFC (ASSUMED TO BE EQUAL!!!); Then set # # according to whether exception occurred in user or # # supervisor mode. # # (4) Use "plpaw" instruction to pre-load ATC with effective # # address pages(s). THIS SHOULD NOT FAULT!!! The relevant # # page(s) should have already been made resident prior to # # entering this routine. # # (5) Push the operand lines from the cache w/ "cpushl". # # In the 68040, this was done within the locked region. In # # the 68060, it is done outside of the locked region. # # (6) Use "plpar" instruction to do a re-load of ATC entries for # # ADDR1 since ADDR2 entries may have pushed ADDR1 out of the # # ATC. # # (7) Pre-fetch the core emulation instructions by executing # # one branch within each physical line (16 bytes) of the code # # before actually executing the code. # # (8) Load the BUSCR w/ the bus lock value. # # (9) Fetch the source operands using "moves". # # (10)Do the compares. If both equal, go to step (13). # # (11)Unequal. No update occurs. But, we do write the DST1 op # # back to itself (as w/ the '040) so we can gracefully unlock # # the bus (and assert LOCKE*) using BUSCR and the final move. # # (12)Exit. # # (13)Write update operand to the DST locations. Use BUSCR to # # assert LOCKE* for the final write operation. # # (14)Exit. # # # # The algorithm is actually implemented slightly differently # # depending on the size of the operation and the misalignment of the # # operands. A misaligned operand must be written in aligned chunks or # # else the BUSCR register control gets confused. # # # ######################################################################### ################################################################# # THIS IS THE STATE OF THE INTEGER REGISTER FILE UPON # # ENTERING _isp_cas2(). # # # # D0 = xxxxxxxx # # D1 = xxxxxxxx # # D2 = cmp operand 1 # # D3 = cmp operand 2 # # D4 = update oper 1 # # D5 = update oper 2 # # D6 = 'xxxxxxff if supervisor mode; 'xxxxxx00 if user mode # # D7 = 'xxxxxxff if longword operation; 'xxxxxx00 if word # # A0 = ADDR1 # # A1 = ADDR2 # # A2 = xxxxxxxx # # A3 = xxxxxxxx # # A4 = xxxxxxxx # # A5 = xxxxxxxx # # A6 = frame pointer # # A7 = stack pointer # ################################################################# # align 0x1000 # beginning label used by _isp_cas_inrange() global _CASLO _CASLO: global _isp_cas2 _isp_cas2: tst.b %d6 # user or supervisor mode? bne.b cas2_supervisor # supervisor cas2_user: movq.l &0x1,%d0 # load user data fc bra.b cas2_cont cas2_supervisor: movq.l &0x5,%d0 # load supervisor data fc cas2_cont: tst.b %d7 # word or longword? beq.w cas2w # word #### cas2l: mov.l %a0,%a2 # copy ADDR1 mov.l %a1,%a3 # copy ADDR2 mov.l %a0,%a4 # copy ADDR1 mov.l %a1,%a5 # copy ADDR2 addq.l &0x3,%a4 # ADDR1+3 addq.l &0x3,%a5 # ADDR2+3 mov.l %a2,%d1 # ADDR1 # mask interrupts levels 0-6. save old mask value. mov.w %sr,%d7 # save current SR ori.w &0x0700,%sr # inhibit interrupts # load the SFC and DFC with the appropriate mode. movc %sfc,%d6 # save old SFC/DFC movc %d0,%sfc # store new SFC movc %d0,%dfc # store new DFC # pre-load the operand ATC. no page faults should occur here because # _real_lock_page() should have taken care of this. plpaw (%a2) # load atc for ADDR1 plpaw (%a4) # load atc for ADDR1+3 plpaw (%a3) # load atc for ADDR2 plpaw (%a5) # load atc for ADDR2+3 # push the operand lines from the cache if they exist. cpushl %dc,(%a2) # push line for ADDR1 cpushl %dc,(%a4) # push line for ADDR1+3 cpushl %dc,(%a3) # push line for ADDR2 cpushl %dc,(%a5) # push line for ADDR2+2 mov.l %d1,%a2 # ADDR1 addq.l &0x3,%d1 mov.l %d1,%a4 # ADDR1+3 # if ADDR1 was ATC resident before the above "plpaw" and was executed # and it was the next entry scheduled for replacement and ADDR2 # shares the same set, then the "plpaw" for ADDR2 can push the ADDR1 # entries from the ATC. so, we do a second set of "plpa"s. plpar (%a2) # load atc for ADDR1 plpar (%a4) # load atc for ADDR1+3 # load the BUSCR values. mov.l &0x80000000,%a2 # assert LOCK* buscr value mov.l &0xa0000000,%a3 # assert LOCKE* buscr value mov.l &0x00000000,%a4 # buscr unlock value # there are three possible mis-aligned cases for longword cas. they # are separated because the final write which asserts LOCKE* must # be aligned. mov.l %a0,%d0 # is ADDR1 misaligned? andi.b &0x3,%d0 beq.b CAS2L_ENTER # no cmpi.b %d0,&0x2 beq.w CAS2L2_ENTER # yes; word misaligned bra.w CAS2L3_ENTER # yes; byte misaligned # # D0 = dst operand 1 <- # D1 = dst operand 2 <- # D2 = cmp operand 1 # D3 = cmp operand 2 # D4 = update oper 1 # D5 = update oper 2 # D6 = old SFC/DFC # D7 = old SR # A0 = ADDR1 # A1 = ADDR2 # A2 = bus LOCK* value # A3 = bus LOCKE* value # A4 = bus unlock value # A5 = xxxxxxxx # align 0x10 CAS2L_START: movc %a2,%buscr # assert LOCK* movs.l (%a1),%d1 # fetch Dest2[31:0] movs.l (%a0),%d0 # fetch Dest1[31:0] bra.b CAS2L_CONT CAS2L_ENTER: bra.b ~+16 CAS2L_CONT: cmp.l %d0,%d2 # Dest1 - Compare1 bne.b CAS2L_NOUPDATE cmp.l %d1,%d3 # Dest2 - Compare2 bne.b CAS2L_NOUPDATE movs.l %d5,(%a1) # Update2[31:0] -> DEST2 bra.b CAS2L_UPDATE bra.b ~+16 CAS2L_UPDATE: movc %a3,%buscr # assert LOCKE* movs.l %d4,(%a0) # Update1[31:0] -> DEST1 movc %a4,%buscr # unlock the bus bra.b cas2l_update_done bra.b ~+16 CAS2L_NOUPDATE: movc %a3,%buscr # assert LOCKE* movs.l %d0,(%a0) # Dest1[31:0] -> DEST1 movc %a4,%buscr # unlock the bus bra.b cas2l_noupdate_done bra.b ~+16 CAS2L_FILLER: nop nop nop nop nop nop nop bra.b CAS2L_START #### ################################################################# # THIS MUST BE THE STATE OF THE INTEGER REGISTER FILE UPON # # ENTERING _isp_cas2(). # # # # D0 = destination[31:0] operand 1 # # D1 = destination[31:0] operand 2 # # D2 = cmp[31:0] operand 1 # # D3 = cmp[31:0] operand 2 # # D4 = 'xxxxxx11 -> no reg update; 'xxxxxx00 -> update required # # D5 = xxxxxxxx # # D6 = xxxxxxxx # # D7 = xxxxxxxx # # A0 = xxxxxxxx # # A1 = xxxxxxxx # # A2 = xxxxxxxx # # A3 = xxxxxxxx # # A4 = xxxxxxxx # # A5 = xxxxxxxx # # A6 = frame pointer # # A7 = stack pointer # ################################################################# cas2l_noupdate_done: # restore previous SFC/DFC value. movc %d6,%sfc # restore old SFC movc %d6,%dfc # restore old DFC # restore previous interrupt mask level. mov.w %d7,%sr # restore old SR sf %d4 # indicate no update was done bra.l _isp_cas2_finish cas2l_update_done: # restore previous SFC/DFC value. movc %d6,%sfc # restore old SFC movc %d6,%dfc # restore old DFC # restore previous interrupt mask level. mov.w %d7,%sr # restore old SR st %d4 # indicate update was done bra.l _isp_cas2_finish #### align 0x10 CAS2L2_START: movc %a2,%buscr # assert LOCK* movs.l (%a1),%d1 # fetch Dest2[31:0] movs.l (%a0),%d0 # fetch Dest1[31:0] bra.b CAS2L2_CONT CAS2L2_ENTER: bra.b ~+16 CAS2L2_CONT: cmp.l %d0,%d2 # Dest1 - Compare1 bne.b CAS2L2_NOUPDATE cmp.l %d1,%d3 # Dest2 - Compare2 bne.b CAS2L2_NOUPDATE movs.l %d5,(%a1) # Update2[31:0] -> Dest2 bra.b CAS2L2_UPDATE bra.b ~+16 CAS2L2_UPDATE: swap %d4 # get Update1[31:16] movs.w %d4,(%a0)+ # Update1[31:16] -> DEST1 movc %a3,%buscr # assert LOCKE* swap %d4 # get Update1[15:0] bra.b CAS2L2_UPDATE2 bra.b ~+16 CAS2L2_UPDATE2: movs.w %d4,(%a0) # Update1[15:0] -> DEST1+0x2 movc %a4,%buscr # unlock the bus bra.w cas2l_update_done nop bra.b ~+16 CAS2L2_NOUPDATE: swap %d0 # get Dest1[31:16] movs.w %d0,(%a0)+ # Dest1[31:16] -> DEST1 movc %a3,%buscr # assert LOCKE* swap %d0 # get Dest1[15:0] bra.b CAS2L2_NOUPDATE2 bra.b ~+16 CAS2L2_NOUPDATE2: movs.w %d0,(%a0) # Dest1[15:0] -> DEST1+0x2 movc %a4,%buscr # unlock the bus bra.w cas2l_noupdate_done nop bra.b ~+16 CAS2L2_FILLER: nop nop nop nop nop nop nop bra.b CAS2L2_START ################################# align 0x10 CAS2L3_START: movc %a2,%buscr # assert LOCK* movs.l (%a1),%d1 # fetch Dest2[31:0] movs.l (%a0),%d0 # fetch Dest1[31:0] bra.b CAS2L3_CONT CAS2L3_ENTER: bra.b ~+16 CAS2L3_CONT: cmp.l %d0,%d2 # Dest1 - Compare1 bne.b CAS2L3_NOUPDATE cmp.l %d1,%d3 # Dest2 - Compare2 bne.b CAS2L3_NOUPDATE movs.l %d5,(%a1) # Update2[31:0] -> DEST2 bra.b CAS2L3_UPDATE bra.b ~+16 CAS2L3_UPDATE: rol.l &0x8,%d4 # get Update1[31:24] movs.b %d4,(%a0)+ # Update1[31:24] -> DEST1 swap %d4 # get Update1[23:8] movs.w %d4,(%a0)+ # Update1[23:8] -> DEST1+0x1 bra.b CAS2L3_UPDATE2 bra.b ~+16 CAS2L3_UPDATE2: rol.l &0x8,%d4 # get Update1[7:0] movc %a3,%buscr # assert LOCKE* movs.b %d4,(%a0) # Update1[7:0] -> DEST1+0x3 bra.b CAS2L3_UPDATE3 nop bra.b ~+16 CAS2L3_UPDATE3: movc %a4,%buscr # unlock the bus bra.w cas2l_update_done nop nop nop bra.b ~+16 CAS2L3_NOUPDATE: rol.l &0x8,%d0 # get Dest1[31:24] movs.b %d0,(%a0)+ # Dest1[31:24] -> DEST1 swap %d0 # get Dest1[23:8] movs.w %d0,(%a0)+ # Dest1[23:8] -> DEST1+0x1 bra.b CAS2L3_NOUPDATE2 bra.b ~+16 CAS2L3_NOUPDATE2: rol.l &0x8,%d0 # get Dest1[7:0] movc %a3,%buscr # assert LOCKE* movs.b %d0,(%a0) # Update1[7:0] -> DEST1+0x3 bra.b CAS2L3_NOUPDATE3 nop bra.b ~+16 CAS2L3_NOUPDATE3: movc %a4,%buscr # unlock the bus bra.w cas2l_noupdate_done nop nop nop bra.b ~+14 CAS2L3_FILLER: nop nop nop nop nop nop bra.w CAS2L3_START ############################################################# ############################################################# cas2w: mov.l %a0,%a2 # copy ADDR1 mov.l %a1,%a3 # copy ADDR2 mov.l %a0,%a4 # copy ADDR1 mov.l %a1,%a5 # copy ADDR2 addq.l &0x1,%a4 # ADDR1+1 addq.l &0x1,%a5 # ADDR2+1 mov.l %a2,%d1 # ADDR1 # mask interrupt levels 0-6. save old mask value. mov.w %sr,%d7 # save current SR ori.w &0x0700,%sr # inhibit interrupts # load the SFC and DFC with the appropriate mode. movc %sfc,%d6 # save old SFC/DFC movc %d0,%sfc # store new SFC movc %d0,%dfc # store new DFC # pre-load the operand ATC. no page faults should occur because # _real_lock_page() should have taken care of this. plpaw (%a2) # load atc for ADDR1 plpaw (%a4) # load atc for ADDR1+1 plpaw (%a3) # load atc for ADDR2 plpaw (%a5) # load atc for ADDR2+1 # push the operand cache lines from the cache if they exist. cpushl %dc,(%a2) # push line for ADDR1 cpushl %dc,(%a4) # push line for ADDR1+1 cpushl %dc,(%a3) # push line for ADDR2 cpushl %dc,(%a5) # push line for ADDR2+1 mov.l %d1,%a2 # ADDR1 addq.l &0x3,%d1 mov.l %d1,%a4 # ADDR1+3 # if ADDR1 was ATC resident before the above "plpaw" and was executed # and it was the next entry scheduled for replacement and ADDR2 # shares the same set, then the "plpaw" for ADDR2 can push the ADDR1 # entries from the ATC. so, we do a second set of "plpa"s. plpar (%a2) # load atc for ADDR1 plpar (%a4) # load atc for ADDR1+3 # load the BUSCR values. mov.l &0x80000000,%a2 # assert LOCK* buscr value mov.l &0xa0000000,%a3 # assert LOCKE* buscr value mov.l &0x00000000,%a4 # buscr unlock value # there are two possible mis-aligned cases for word cas. they # are separated because the final write which asserts LOCKE* must # be aligned. mov.l %a0,%d0 # is ADDR1 misaligned? btst &0x0,%d0 bne.w CAS2W2_ENTER # yes bra.b CAS2W_ENTER # no # # D0 = dst operand 1 <- # D1 = dst operand 2 <- # D2 = cmp operand 1 # D3 = cmp operand 2 # D4 = update oper 1 # D5 = update oper 2 # D6 = old SFC/DFC # D7 = old SR # A0 = ADDR1 # A1 = ADDR2 # A2 = bus LOCK* value # A3 = bus LOCKE* value # A4 = bus unlock value # A5 = xxxxxxxx # align 0x10 CAS2W_START: movc %a2,%buscr # assert LOCK* movs.w (%a1),%d1 # fetch Dest2[15:0] movs.w (%a0),%d0 # fetch Dest1[15:0] bra.b CAS2W_CONT2 CAS2W_ENTER: bra.b ~+16 CAS2W_CONT2: cmp.w %d0,%d2 # Dest1 - Compare1 bne.b CAS2W_NOUPDATE cmp.w %d1,%d3 # Dest2 - Compare2 bne.b CAS2W_NOUPDATE movs.w %d5,(%a1) # Update2[15:0] -> DEST2 bra.b CAS2W_UPDATE bra.b ~+16 CAS2W_UPDATE: movc %a3,%buscr # assert LOCKE* movs.w %d4,(%a0) # Update1[15:0] -> DEST1 movc %a4,%buscr # unlock the bus bra.b cas2w_update_done bra.b ~+16 CAS2W_NOUPDATE: movc %a3,%buscr # assert LOCKE* movs.w %d0,(%a0) # Dest1[15:0] -> DEST1 movc %a4,%buscr # unlock the bus bra.b cas2w_noupdate_done bra.b ~+16 CAS2W_FILLER: nop nop nop nop nop nop nop bra.b CAS2W_START #### ################################################################# # THIS MUST BE THE STATE OF THE INTEGER REGISTER FILE UPON # # ENTERING _isp_cas2(). # # # # D0 = destination[15:0] operand 1 # # D1 = destination[15:0] operand 2 # # D2 = cmp[15:0] operand 1 # # D3 = cmp[15:0] operand 2 # # D4 = 'xxxxxx11 -> no reg update; 'xxxxxx00 -> update required # # D5 = xxxxxxxx # # D6 = xxxxxxxx # # D7 = xxxxxxxx # # A0 = xxxxxxxx # # A1 = xxxxxxxx # # A2 = xxxxxxxx # # A3 = xxxxxxxx # # A4 = xxxxxxxx # # A5 = xxxxxxxx # # A6 = frame pointer # # A7 = stack pointer # ################################################################# cas2w_noupdate_done: # restore previous SFC/DFC value. movc %d6,%sfc # restore old SFC movc %d6,%dfc # restore old DFC # restore previous interrupt mask level. mov.w %d7,%sr # restore old SR sf %d4 # indicate no update was done bra.l _isp_cas2_finish cas2w_update_done: # restore previous SFC/DFC value. movc %d6,%sfc # restore old SFC movc %d6,%dfc # restore old DFC # restore previous interrupt mask level. mov.w %d7,%sr # restore old SR st %d4 # indicate update was done bra.l _isp_cas2_finish #### align 0x10 CAS2W2_START: movc %a2,%buscr # assert LOCK* movs.w (%a1),%d1 # fetch Dest2[15:0] movs.w (%a0),%d0 # fetch Dest1[15:0] bra.b CAS2W2_CONT2 CAS2W2_ENTER: bra.b ~+16 CAS2W2_CONT2: cmp.w %d0,%d2 # Dest1 - Compare1 bne.b CAS2W2_NOUPDATE cmp.w %d1,%d3 # Dest2 - Compare2 bne.b CAS2W2_NOUPDATE movs.w %d5,(%a1) # Update2[15:0] -> DEST2 bra.b CAS2W2_UPDATE bra.b ~+16 CAS2W2_UPDATE: ror.l &0x8,%d4 # get Update1[15:8] movs.b %d4,(%a0)+ # Update1[15:8] -> DEST1 movc %a3,%buscr # assert LOCKE* rol.l &0x8,%d4 # get Update1[7:0] bra.b CAS2W2_UPDATE2 bra.b ~+16 CAS2W2_UPDATE2: movs.b %d4,(%a0) # Update1[7:0] -> DEST1+0x1 movc %a4,%buscr # unlock the bus bra.w cas2w_update_done nop bra.b ~+16 CAS2W2_NOUPDATE: ror.l &0x8,%d0 # get Dest1[15:8] movs.b %d0,(%a0)+ # Dest1[15:8] -> DEST1 movc %a3,%buscr # assert LOCKE* rol.l &0x8,%d0 # get Dest1[7:0] bra.b CAS2W2_NOUPDATE2 bra.b ~+16 CAS2W2_NOUPDATE2: movs.b %d0,(%a0) # Dest1[7:0] -> DEST1+0x1 movc %a4,%buscr # unlock the bus bra.w cas2w_noupdate_done nop bra.b ~+16 CAS2W2_FILLER: nop nop nop nop nop nop nop bra.b CAS2W2_START # ###### ## ###### # # # # # # # ###### ###### # # # # # # ###### # # ###### ######################################################################### # XDEF **************************************************************** # # _isp_cas(): "core" emulation code for the cas instruction # # # # XREF **************************************************************** # # _isp_cas_finish() - only exit point for this emulation code; # # do clean-up # # # # INPUT *************************************************************** # # *see entry chart below* # # # # OUTPUT ************************************************************** # # *see exit chart below* # # # # ALGORITHM *********************************************************** # # (1) Make several copies of the effective address. # # (2) Save current SR; Then mask off all maskable interrupts. # # (3) Save current DFC/SFC (ASSUMED TO BE EQUAL!!!); Then set # # SFC/DFC according to whether exception occurred in user or # # supervisor mode. # # (4) Use "plpaw" instruction to pre-load ATC with efective # # address page(s). THIS SHOULD NOT FAULT!!! The relevant # # page(s) should have been made resident prior to entering # # this routine. # # (5) Push the operand lines from the cache w/ "cpushl". # # In the 68040, this was done within the locked region. In # # the 68060, it is done outside of the locked region. # # (6) Pre-fetch the core emulation instructions by executing one # # branch within each physical line (16 bytes) of the code # # before actually executing the code. # # (7) Load the BUSCR with the bus lock value. # # (8) Fetch the source operand. # # (9) Do the compare. If equal, go to step (12). # # (10)Unequal. No update occurs. But, we do write the DST op back # # to itself (as w/ the '040) so we can gracefully unlock # # the bus (and assert LOCKE*) using BUSCR and the final move. # # (11)Exit. # # (12)Write update operand to the DST location. Use BUSCR to # # assert LOCKE* for the final write operation. # # (13)Exit. # # # # The algorithm is actually implemented slightly differently # # depending on the size of the operation and the misalignment of the # # operand. A misaligned operand must be written in aligned chunks or # # else the BUSCR register control gets confused. # # # ######################################################################### ######################################################### # THIS IS THE STATE OF THE INTEGER REGISTER FILE UPON # # ENTERING _isp_cas(). # # # # D0 = xxxxxxxx # # D1 = xxxxxxxx # # D2 = update operand # # D3 = xxxxxxxx # # D4 = compare operand # # D5 = xxxxxxxx # # D6 = supervisor ('xxxxxxff) or user mode ('xxxxxx00) # # D7 = longword ('xxxxxxff) or word size ('xxxxxx00) # # A0 = ADDR # # A1 = xxxxxxxx # # A2 = xxxxxxxx # # A3 = xxxxxxxx # # A4 = xxxxxxxx # # A5 = xxxxxxxx # # A6 = frame pointer # # A7 = stack pointer # ######################################################### global _isp_cas _isp_cas: tst.b %d6 # user or supervisor mode? bne.b cas_super # supervisor cas_user: movq.l &0x1,%d0 # load user data fc bra.b cas_cont cas_super: movq.l &0x5,%d0 # load supervisor data fc cas_cont: tst.b %d7 # word or longword? bne.w casl # longword #### casw: mov.l %a0,%a1 # make copy for plpaw1 mov.l %a0,%a2 # make copy for plpaw2 addq.l &0x1,%a2 # plpaw2 points to end of word mov.l %d2,%d3 # d3 = update[7:0] lsr.w &0x8,%d2 # d2 = update[15:8] # mask interrupt levels 0-6. save old mask value. mov.w %sr,%d7 # save current SR ori.w &0x0700,%sr # inhibit interrupts # load the SFC and DFC with the appropriate mode. movc %sfc,%d6 # save old SFC/DFC movc %d0,%sfc # load new sfc movc %d0,%dfc # load new dfc # pre-load the operand ATC. no page faults should occur here because # _real_lock_page() should have taken care of this. plpaw (%a1) # load atc for ADDR plpaw (%a2) # load atc for ADDR+1 # push the operand lines from the cache if they exist. cpushl %dc,(%a1) # push dirty data cpushl %dc,(%a2) # push dirty data # load the BUSCR values. mov.l &0x80000000,%a1 # assert LOCK* buscr value mov.l &0xa0000000,%a2 # assert LOCKE* buscr value mov.l &0x00000000,%a3 # buscr unlock value # pre-load the instruction cache for the following algorithm. # this will minimize the number of cycles that LOCK* will be asserted. bra.b CASW_ENTER # start pre-loading icache # # D0 = dst operand <- # D1 = update[15:8] operand # D2 = update[7:0] operand # D3 = xxxxxxxx # D4 = compare[15:0] operand # D5 = xxxxxxxx # D6 = old SFC/DFC # D7 = old SR # A0 = ADDR # A1 = bus LOCK* value # A2 = bus LOCKE* value # A3 = bus unlock value # A4 = xxxxxxxx # A5 = xxxxxxxx # align 0x10 CASW_START: movc %a1,%buscr # assert LOCK* movs.w (%a0),%d0 # fetch Dest[15:0] cmp.w %d0,%d4 # Dest - Compare bne.b CASW_NOUPDATE bra.b CASW_UPDATE CASW_ENTER: bra.b ~+16 CASW_UPDATE: movs.b %d2,(%a0)+ # Update[15:8] -> DEST movc %a2,%buscr # assert LOCKE* movs.b %d3,(%a0) # Update[7:0] -> DEST+0x1 bra.b CASW_UPDATE2 bra.b ~+16 CASW_UPDATE2: movc %a3,%buscr # unlock the bus bra.b casw_update_done nop nop nop nop bra.b ~+16 CASW_NOUPDATE: ror.l &0x8,%d0 # get Dest[15:8] movs.b %d0,(%a0)+ # Dest[15:8] -> DEST movc %a2,%buscr # assert LOCKE* rol.l &0x8,%d0 # get Dest[7:0] bra.b CASW_NOUPDATE2 bra.b ~+16 CASW_NOUPDATE2: movs.b %d0,(%a0) # Dest[7:0] -> DEST+0x1 movc %a3,%buscr # unlock the bus bra.b casw_noupdate_done nop nop bra.b ~+16 CASW_FILLER: nop nop nop nop nop nop nop bra.b CASW_START ################################################################# # THIS MUST BE THE STATE OF THE INTEGER REGISTER FILE UPON # # CALLING _isp_cas_finish(). # # # # D0 = destination[15:0] operand # # D1 = 'xxxxxx11 -> no reg update; 'xxxxxx00 -> update required # # D2 = xxxxxxxx # # D3 = xxxxxxxx # # D4 = compare[15:0] operand # # D5 = xxxxxxxx # # D6 = xxxxxxxx # # D7 = xxxxxxxx # # A0 = xxxxxxxx # # A1 = xxxxxxxx # # A2 = xxxxxxxx # # A3 = xxxxxxxx # # A4 = xxxxxxxx # # A5 = xxxxxxxx # # A6 = frame pointer # # A7 = stack pointer # ################################################################# casw_noupdate_done: # restore previous SFC/DFC value. movc %d6,%sfc # restore old SFC movc %d6,%dfc # restore old DFC # restore previous interrupt mask level. mov.w %d7,%sr # restore old SR sf %d1 # indicate no update was done bra.l _isp_cas_finish casw_update_done: # restore previous SFC/DFC value. movc %d6,%sfc # restore old SFC movc %d6,%dfc # restore old DFC # restore previous interrupt mask level. mov.w %d7,%sr # restore old SR st %d1 # indicate update was done bra.l _isp_cas_finish ################ # there are two possible mis-aligned cases for longword cas. they # are separated because the final write which asserts LOCKE* must # be an aligned write. casl: mov.l %a0,%a1 # make copy for plpaw1 mov.l %a0,%a2 # make copy for plpaw2 addq.l &0x3,%a2 # plpaw2 points to end of longword mov.l %a0,%d1 # byte or word misaligned? btst &0x0,%d1 bne.w casl2 # byte misaligned mov.l %d2,%d3 # d3 = update[15:0] swap %d2 # d2 = update[31:16] # mask interrupts levels 0-6. save old mask value. mov.w %sr,%d7 # save current SR ori.w &0x0700,%sr # inhibit interrupts # load the SFC and DFC with the appropriate mode. movc %sfc,%d6 # save old SFC/DFC movc %d0,%sfc # load new sfc movc %d0,%dfc # load new dfc # pre-load the operand ATC. no page faults should occur here because # _real_lock_page() should have taken care of this. plpaw (%a1) # load atc for ADDR plpaw (%a2) # load atc for ADDR+3 # push the operand lines from the cache if they exist. cpushl %dc,(%a1) # push dirty data cpushl %dc,(%a2) # push dirty data # load the BUSCR values. mov.l &0x80000000,%a1 # assert LOCK* buscr value mov.l &0xa0000000,%a2 # assert LOCKE* buscr value mov.l &0x00000000,%a3 # buscr unlock value bra.b CASL_ENTER # start pre-loading icache # # D0 = dst operand <- # D1 = xxxxxxxx # D2 = update[31:16] operand # D3 = update[15:0] operand # D4 = compare[31:0] operand # D5 = xxxxxxxx # D6 = old SFC/DFC # D7 = old SR # A0 = ADDR # A1 = bus LOCK* value # A2 = bus LOCKE* value # A3 = bus unlock value # A4 = xxxxxxxx # A5 = xxxxxxxx # align 0x10 CASL_START: movc %a1,%buscr # assert LOCK* movs.l (%a0),%d0 # fetch Dest[31:0] cmp.l %d0,%d4 # Dest - Compare bne.b CASL_NOUPDATE bra.b CASL_UPDATE CASL_ENTER: bra.b ~+16 CASL_UPDATE: movs.w %d2,(%a0)+ # Update[31:16] -> DEST movc %a2,%buscr # assert LOCKE* movs.w %d3,(%a0) # Update[15:0] -> DEST+0x2 bra.b CASL_UPDATE2 bra.b ~+16 CASL_UPDATE2: movc %a3,%buscr # unlock the bus bra.b casl_update_done nop nop nop nop bra.b ~+16 CASL_NOUPDATE: swap %d0 # get Dest[31:16] movs.w %d0,(%a0)+ # Dest[31:16] -> DEST swap %d0 # get Dest[15:0] movc %a2,%buscr # assert LOCKE* bra.b CASL_NOUPDATE2 bra.b ~+16 CASL_NOUPDATE2: movs.w %d0,(%a0) # Dest[15:0] -> DEST+0x2 movc %a3,%buscr # unlock the bus bra.b casl_noupdate_done nop nop bra.b ~+16 CASL_FILLER: nop nop nop nop nop nop nop bra.b CASL_START ################################################################# # THIS MUST BE THE STATE OF THE INTEGER REGISTER FILE UPON # # CALLING _isp_cas_finish(). # # # # D0 = destination[31:0] operand # # D1 = 'xxxxxx11 -> no reg update; 'xxxxxx00 -> update required # # D2 = xxxxxxxx # # D3 = xxxxxxxx # # D4 = compare[31:0] operand # # D5 = xxxxxxxx # # D6 = xxxxxxxx # # D7 = xxxxxxxx # # A0 = xxxxxxxx # # A1 = xxxxxxxx # # A2 = xxxxxxxx # # A3 = xxxxxxxx # # A4 = xxxxxxxx # # A5 = xxxxxxxx # # A6 = frame pointer # # A7 = stack pointer # ################################################################# casl_noupdate_done: # restore previous SFC/DFC value. movc %d6,%sfc # restore old SFC movc %d6,%dfc # restore old DFC # restore previous interrupt mask level. mov.w %d7,%sr # restore old SR sf %d1 # indicate no update was done bra.l _isp_cas_finish casl_update_done: # restore previous SFC/DFC value. movc %d6,%sfc # restore old SFC movc %d6,%dfc # restore old DFC # restore previous interrupts mask level. mov.w %d7,%sr # restore old SR st %d1 # indicate update was done bra.l _isp_cas_finish ####################################### casl2: mov.l %d2,%d5 # d5 = Update[7:0] lsr.l &0x8,%d2 mov.l %d2,%d3 # d3 = Update[23:8] swap %d2 # d2 = Update[31:24] # mask interrupts levels 0-6. save old mask value. mov.w %sr,%d7 # save current SR ori.w &0x0700,%sr # inhibit interrupts # load the SFC and DFC with the appropriate mode. movc %sfc,%d6 # save old SFC/DFC movc %d0,%sfc # load new sfc movc %d0,%dfc # load new dfc # pre-load the operand ATC. no page faults should occur here because # _real_lock_page() should have taken care of this already. plpaw (%a1) # load atc for ADDR plpaw (%a2) # load atc for ADDR+3 # puch the operand lines from the cache if they exist. cpushl %dc,(%a1) # push dirty data cpushl %dc,(%a2) # push dirty data # load the BUSCR values. mov.l &0x80000000,%a1 # assert LOCK* buscr value mov.l &0xa0000000,%a2 # assert LOCKE* buscr value mov.l &0x00000000,%a3 # buscr unlock value # pre-load the instruction cache for the following algorithm. # this will minimize the number of cycles that LOCK* will be asserted. bra.b CASL2_ENTER # start pre-loading icache # # D0 = dst operand <- # D1 = xxxxxxxx # D2 = update[31:24] operand # D3 = update[23:8] operand # D4 = compare[31:0] operand # D5 = update[7:0] operand # D6 = old SFC/DFC # D7 = old SR # A0 = ADDR # A1 = bus LOCK* value # A2 = bus LOCKE* value # A3 = bus unlock value # A4 = xxxxxxxx # A5 = xxxxxxxx # align 0x10 CASL2_START: movc %a1,%buscr # assert LOCK* movs.l (%a0),%d0 # fetch Dest[31:0] cmp.l %d0,%d4 # Dest - Compare bne.b CASL2_NOUPDATE bra.b CASL2_UPDATE CASL2_ENTER: bra.b ~+16 CASL2_UPDATE: movs.b %d2,(%a0)+ # Update[31:24] -> DEST movs.w %d3,(%a0)+ # Update[23:8] -> DEST+0x1 movc %a2,%buscr # assert LOCKE* bra.b CASL2_UPDATE2 bra.b ~+16 CASL2_UPDATE2: movs.b %d5,(%a0) # Update[7:0] -> DEST+0x3 movc %a3,%buscr # unlock the bus bra.w casl_update_done nop bra.b ~+16 CASL2_NOUPDATE: rol.l &0x8,%d0 # get Dest[31:24] movs.b %d0,(%a0)+ # Dest[31:24] -> DEST swap %d0 # get Dest[23:8] movs.w %d0,(%a0)+ # Dest[23:8] -> DEST+0x1 bra.b CASL2_NOUPDATE2 bra.b ~+16 CASL2_NOUPDATE2: rol.l &0x8,%d0 # get Dest[7:0] movc %a2,%buscr # assert LOCKE* movs.b %d0,(%a0) # Dest[7:0] -> DEST+0x3 bra.b CASL2_NOUPDATE3 nop bra.b ~+16 CASL2_NOUPDATE3: movc %a3,%buscr # unlock the bus bra.w casl_noupdate_done nop nop nop bra.b ~+16 CASL2_FILLER: nop nop nop nop nop nop nop bra.b CASL2_START #### #### # end label used by _isp_cas_inrange() global _CASHI _CASHI: |