Linux Audio

Check our new training course

Embedded Linux Audio

Check our new training course
with Creative Commons CC-BY-SA
lecture materials

Bootlin logo

Elixir Cross Referencer

Loading...
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
/*
 *  linux/arch/i386/mm/init.c
 *
 *  Copyright (C) 1995  Linus Torvalds
 *
 *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
 */

#include <linux/config.h>
#include <linux/signal.h>
#include <linux/sched.h>
#include <linux/kernel.h>
#include <linux/errno.h>
#include <linux/string.h>
#include <linux/types.h>
#include <linux/ptrace.h>
#include <linux/mman.h>
#include <linux/mm.h>
#include <linux/swap.h>
#include <linux/smp.h>
#include <linux/init.h>
#ifdef CONFIG_BLK_DEV_INITRD
#include <linux/blk.h>
#endif
#include <linux/highmem.h>
#include <linux/pagemap.h>
#include <linux/bootmem.h>
#include <linux/slab.h>

#include <asm/processor.h>
#include <asm/system.h>
#include <asm/uaccess.h>
#include <asm/pgtable.h>
#include <asm/pgalloc.h>
#include <asm/dma.h>
#include <asm/fixmap.h>
#include <asm/e820.h>
#include <asm/apic.h>
#include <asm/tlb.h>

mmu_gather_t mmu_gathers[NR_CPUS];
unsigned long highstart_pfn, highend_pfn;
static unsigned long totalram_pages;
static unsigned long totalhigh_pages;

/*
 * NOTE: pagetable_init alloc all the fixmap pagetables contiguous on the
 * physical space so we can cache the place of the first one and move
 * around without checking the pgd every time.
 */

#if CONFIG_HIGHMEM
pte_t *kmap_pte;
pgprot_t kmap_prot;

#define kmap_get_fixmap_pte(vaddr)					\
	pte_offset_kernel(pmd_offset(pgd_offset_k(vaddr), (vaddr)), (vaddr))

void __init kmap_init(void)
{
	unsigned long kmap_vstart;

	/* cache the first kmap pte */
	kmap_vstart = __fix_to_virt(FIX_KMAP_BEGIN);
	kmap_pte = kmap_get_fixmap_pte(kmap_vstart);

	kmap_prot = PAGE_KERNEL;
}
#endif /* CONFIG_HIGHMEM */

void show_mem(void)
{
	int i, total = 0, reserved = 0;
	int shared = 0, cached = 0;
	int highmem = 0;

	printk("Mem-info:\n");
	show_free_areas();
	printk("Free swap:       %6dkB\n",nr_swap_pages<<(PAGE_SHIFT-10));
	i = max_mapnr;
	while (i-- > 0) {
		total++;
		if (PageHighMem(mem_map+i))
			highmem++;
		if (PageReserved(mem_map+i))
			reserved++;
		else if (PageSwapCache(mem_map+i))
			cached++;
		else if (page_count(mem_map+i))
			shared += page_count(mem_map+i) - 1;
	}
	printk("%d pages of RAM\n", total);
	printk("%d pages of HIGHMEM\n",highmem);
	printk("%d reserved pages\n",reserved);
	printk("%d pages shared\n",shared);
	printk("%d pages swap cached\n",cached);
	show_buffers();
}

/* References to section boundaries */

extern char _text, _etext, _edata, __bss_start, _end;
extern char __init_begin, __init_end;

static inline void set_pte_phys (unsigned long vaddr,
			unsigned long phys, pgprot_t flags)
{
	pgd_t *pgd;
	pmd_t *pmd;
	pte_t *pte;

	pgd = swapper_pg_dir + __pgd_offset(vaddr);
	if (pgd_none(*pgd)) {
		printk("PAE BUG #00!\n");
		return;
	}
	pmd = pmd_offset(pgd, vaddr);
	if (pmd_none(*pmd)) {
		printk("PAE BUG #01!\n");
		return;
	}
	pte = pte_offset_kernel(pmd, vaddr);
	/* <phys,flags> stored as-is, to permit clearing entries */
	set_pte(pte, mk_pte_phys(phys, flags));

	/*
	 * It's enough to flush this one mapping.
	 * (PGE mappings get flushed as well)
	 */
	__flush_tlb_one(vaddr);
}

void __set_fixmap (enum fixed_addresses idx, unsigned long phys, pgprot_t flags)
{
	unsigned long address = __fix_to_virt(idx);

	if (idx >= __end_of_fixed_addresses) {
		printk("Invalid __set_fixmap\n");
		return;
	}
	set_pte_phys(address, phys, flags);
}

static void __init fixrange_init (unsigned long start, unsigned long end, pgd_t *pgd_base)
{
	pgd_t *pgd;
	pmd_t *pmd;
	pte_t *pte;
	int i, j;
	unsigned long vaddr;

	vaddr = start;
	i = __pgd_offset(vaddr);
	j = __pmd_offset(vaddr);
	pgd = pgd_base + i;

	for ( ; (i < PTRS_PER_PGD) && (vaddr != end); pgd++, i++) {
#if CONFIG_X86_PAE
		if (pgd_none(*pgd)) {
			pmd = (pmd_t *) alloc_bootmem_low_pages(PAGE_SIZE);
			set_pgd(pgd, __pgd(__pa(pmd) + 0x1));
			if (pmd != pmd_offset(pgd, 0))
				printk("PAE BUG #02!\n");
		}
		pmd = pmd_offset(pgd, vaddr);
#else
		pmd = (pmd_t *)pgd;
#endif
		for (; (j < PTRS_PER_PMD) && (vaddr != end); pmd++, j++) {
			if (pmd_none(*pmd)) {
				pte = (pte_t *) alloc_bootmem_low_pages(PAGE_SIZE);
				set_pmd(pmd, __pmd(_KERNPG_TABLE + __pa(pte)));
				if (pte != pte_offset_kernel(pmd, 0))
					BUG();
			}
			vaddr += PMD_SIZE;
		}
		j = 0;
	}
}

static void __init pagetable_init (void)
{
	unsigned long vaddr, end;
	pgd_t *pgd, *pgd_base;
	int i, j, k;
	pmd_t *pmd;
	pte_t *pte, *pte_base;

	/*
	 * This can be zero as well - no problem, in that case we exit
	 * the loops anyway due to the PTRS_PER_* conditions.
	 */
	end = (unsigned long)__va(max_low_pfn*PAGE_SIZE);

	pgd_base = swapper_pg_dir;
#if CONFIG_X86_PAE
	for (i = 0; i < PTRS_PER_PGD; i++)
		set_pgd(pgd_base + i, __pgd(1 + __pa(empty_zero_page)));
#endif
	i = __pgd_offset(PAGE_OFFSET);
	pgd = pgd_base + i;

	for (; i < PTRS_PER_PGD; pgd++, i++) {
		vaddr = i*PGDIR_SIZE;
		if (end && (vaddr >= end))
			break;
#if CONFIG_X86_PAE
		pmd = (pmd_t *) alloc_bootmem_low_pages(PAGE_SIZE);
		set_pgd(pgd, __pgd(__pa(pmd) + 0x1));
#else
		pmd = (pmd_t *)pgd;
#endif
		if (pmd != pmd_offset(pgd, 0))
			BUG();
		for (j = 0; j < PTRS_PER_PMD; pmd++, j++) {
			vaddr = i*PGDIR_SIZE + j*PMD_SIZE;
			if (end && (vaddr >= end))
				break;
			if (cpu_has_pse) {
				unsigned long __pe;

				set_in_cr4(X86_CR4_PSE);
				boot_cpu_data.wp_works_ok = 1;
				__pe = _KERNPG_TABLE + _PAGE_PSE + __pa(vaddr);
				/* Make it "global" too if supported */
				if (cpu_has_pge) {
					set_in_cr4(X86_CR4_PGE);
					__pe += _PAGE_GLOBAL;
				}
				set_pmd(pmd, __pmd(__pe));
				continue;
			}

			pte_base = pte = (pte_t *) alloc_bootmem_low_pages(PAGE_SIZE);

			for (k = 0; k < PTRS_PER_PTE; pte++, k++) {
				vaddr = i*PGDIR_SIZE + j*PMD_SIZE + k*PAGE_SIZE;
				if (end && (vaddr >= end))
					break;
				*pte = mk_pte_phys(__pa(vaddr), PAGE_KERNEL);
			}
			set_pmd(pmd, __pmd(_KERNPG_TABLE + __pa(pte_base)));
			if (pte_base != pte_offset_kernel(pmd, 0))
				BUG();

		}
	}

	/*
	 * Fixed mappings, only the page table structure has to be
	 * created - mappings will be set by set_fixmap():
	 */
	vaddr = __fix_to_virt(__end_of_fixed_addresses - 1) & PMD_MASK;
	fixrange_init(vaddr, 0, pgd_base);

#if CONFIG_HIGHMEM
	/*
	 * Permanent kmaps:
	 */
	vaddr = PKMAP_BASE;
	fixrange_init(vaddr, vaddr + PAGE_SIZE*LAST_PKMAP, pgd_base);

	pgd = swapper_pg_dir + __pgd_offset(vaddr);
	pmd = pmd_offset(pgd, vaddr);
	pte = pte_offset_kernel(pmd, vaddr);
	pkmap_page_table = pte;
#endif

#if CONFIG_X86_PAE
	/*
	 * Add low memory identity-mappings - SMP needs it when
	 * starting up on an AP from real-mode. In the non-PAE
	 * case we already have these mappings through head.S.
	 * All user-space mappings are explicitly cleared after
	 * SMP startup.
	 */
	pgd_base[0] = pgd_base[USER_PTRS_PER_PGD];
#endif
}

void __init zap_low_mappings (void)
{
	int i;
	/*
	 * Zap initial low-memory mappings.
	 *
	 * Note that "pgd_clear()" doesn't do it for
	 * us, because pgd_clear() is a no-op on i386.
	 */
	for (i = 0; i < USER_PTRS_PER_PGD; i++)
#if CONFIG_X86_PAE
		set_pgd(swapper_pg_dir+i, __pgd(1 + __pa(empty_zero_page)));
#else
		set_pgd(swapper_pg_dir+i, __pgd(0));
#endif
	flush_tlb_all();
}

/*
 * paging_init() sets up the page tables - note that the first 8MB are
 * already mapped by head.S.
 *
 * This routines also unmaps the page at virtual kernel address 0, so
 * that we can trap those pesky NULL-reference errors in the kernel.
 */
void __init paging_init(void)
{
	pagetable_init();

	__asm__( "movl %0,%%cr3\n" ::"r"(__pa(swapper_pg_dir)));

#if CONFIG_X86_PAE
	/*
	 * We will bail out later - printk doesnt work right now so
	 * the user would just see a hanging kernel.
	 */
	if (cpu_has_pae)
		set_in_cr4(X86_CR4_PAE);
#endif

	__flush_tlb_all();

#ifdef CONFIG_HIGHMEM
	kmap_init();
#endif
	{
		unsigned long zones_size[MAX_NR_ZONES] = {0, 0, 0};
		unsigned int max_dma, high, low;

		max_dma = virt_to_phys((char *)MAX_DMA_ADDRESS) >> PAGE_SHIFT;
		low = max_low_pfn;
		high = highend_pfn;

		if (low < max_dma)
			zones_size[ZONE_DMA] = low;
		else {
			zones_size[ZONE_DMA] = max_dma;
			zones_size[ZONE_NORMAL] = low - max_dma;
#ifdef CONFIG_HIGHMEM
			zones_size[ZONE_HIGHMEM] = high - low;
#endif
		}
		free_area_init(zones_size);
	}
	return;
}

/*
 * Test if the WP bit works in supervisor mode. It isn't supported on 386's
 * and also on some strange 486's (NexGen etc.). All 586+'s are OK. The jumps
 * before and after the test are here to work-around some nasty CPU bugs.
 */

/*
 * This function cannot be __init, since exceptions don't work in that
 * section.
 */
static int do_test_wp_bit(unsigned long vaddr);

void __init test_wp_bit(void)
{
/*
 * Ok, all PSE-capable CPUs are definitely handling the WP bit right.
 */
	const unsigned long vaddr = PAGE_OFFSET;
	pgd_t *pgd;
	pmd_t *pmd;
	pte_t *pte, old_pte;

	printk("Checking if this processor honours the WP bit even in supervisor mode... ");

	pgd = swapper_pg_dir + __pgd_offset(vaddr);
	pmd = pmd_offset(pgd, vaddr);
	pte = pte_offset_kernel(pmd, vaddr);
	old_pte = *pte;
	*pte = mk_pte_phys(0, PAGE_READONLY);
	local_flush_tlb();

	boot_cpu_data.wp_works_ok = do_test_wp_bit(vaddr);

	*pte = old_pte;
	local_flush_tlb();

	if (!boot_cpu_data.wp_works_ok) {
		printk("No.\n");
#ifdef CONFIG_X86_WP_WORKS_OK
		panic("This kernel doesn't support CPU's with broken WP. Recompile it for a 386!");
#endif
	} else {
		printk("Ok.\n");
	}
}

static inline int page_is_ram (unsigned long pagenr)
{
	int i;

	for (i = 0; i < e820.nr_map; i++) {
		unsigned long addr, end;

		if (e820.map[i].type != E820_RAM)	/* not usable memory */
			continue;
		/*
		 *	!!!FIXME!!! Some BIOSen report areas as RAM that
		 *	are not. Notably the 640->1Mb area. We need a sanity
		 *	check here.
		 */
		addr = (e820.map[i].addr+PAGE_SIZE-1) >> PAGE_SHIFT;
		end = (e820.map[i].addr+e820.map[i].size) >> PAGE_SHIFT;
		if  ((pagenr >= addr) && (pagenr < end))
			return 1;
	}
	return 0;
}

static inline int page_kills_ppro(unsigned long pagenr)
{
	if(pagenr >= 0x70000 && pagenr <= 0x7003F)
		return 1;
	return 0;
}
	
void __init mem_init(void)
{
	extern int ppro_with_ram_bug(void);
	int codesize, reservedpages, datasize, initsize;
	int tmp;
	int bad_ppro;

	if (!mem_map)
		BUG();
	
	bad_ppro = ppro_with_ram_bug();

#ifdef CONFIG_HIGHMEM
	highmem_start_page = mem_map + highstart_pfn;
	max_mapnr = num_physpages = highend_pfn;
#else
	max_mapnr = num_physpages = max_low_pfn;
#endif
	high_memory = (void *) __va(max_low_pfn * PAGE_SIZE);

	/* clear the zero-page */
	memset(empty_zero_page, 0, PAGE_SIZE);

	/* this will put all low memory onto the freelists */
	totalram_pages += free_all_bootmem();

	reservedpages = 0;
	for (tmp = 0; tmp < max_low_pfn; tmp++)
		/*
		 * Only count reserved RAM pages
		 */
		if (page_is_ram(tmp) && PageReserved(mem_map+tmp))
			reservedpages++;
#ifdef CONFIG_HIGHMEM
	for (tmp = highstart_pfn; tmp < highend_pfn; tmp++) {
		struct page *page = mem_map + tmp;

		if (!page_is_ram(tmp)) {
			SetPageReserved(page);
			continue;
		}
		if (bad_ppro && page_kills_ppro(tmp))
		{
			SetPageReserved(page);
			continue;
		}
		ClearPageReserved(page);
		set_bit(PG_highmem, &page->flags);
		atomic_set(&page->count, 1);
		__free_page(page);
		totalhigh_pages++;
	}
	totalram_pages += totalhigh_pages;
#endif
	codesize =  (unsigned long) &_etext - (unsigned long) &_text;
	datasize =  (unsigned long) &_edata - (unsigned long) &_etext;
	initsize =  (unsigned long) &__init_end - (unsigned long) &__init_begin;

	printk("Memory: %luk/%luk available (%dk kernel code, %dk reserved, %dk data, %dk init, %ldk highmem)\n",
		(unsigned long) nr_free_pages() << (PAGE_SHIFT-10),
		max_mapnr << (PAGE_SHIFT-10),
		codesize >> 10,
		reservedpages << (PAGE_SHIFT-10),
		datasize >> 10,
		initsize >> 10,
		(unsigned long) (totalhigh_pages << (PAGE_SHIFT-10))
	       );

#if CONFIG_X86_PAE
	if (!cpu_has_pae)
		panic("cannot execute a PAE-enabled kernel on a PAE-less CPU!");
#endif
	if (boot_cpu_data.wp_works_ok < 0)
		test_wp_bit();

	/*
	 * Subtle. SMP is doing it's boot stuff late (because it has to
	 * fork idle threads) - but it also needs low mappings for the
	 * protected-mode entry to work. We zap these entries only after
	 * the WP-bit has been tested.
	 */
#ifndef CONFIG_SMP
	zap_low_mappings();
#endif

}

/* Put this after the callers, so that it cannot be inlined */
static int do_test_wp_bit(unsigned long vaddr)
{
	char tmp_reg;
	int flag;

	__asm__ __volatile__(
		"	movb %0,%1	\n"
		"1:	movb %1,%0	\n"
		"	xorl %2,%2	\n"
		"2:			\n"
		".section __ex_table,\"a\"\n"
		"	.align 4	\n"
		"	.long 1b,2b	\n"
		".previous		\n"
		:"=m" (*(char *) vaddr),
		 "=q" (tmp_reg),
		 "=r" (flag)
		:"2" (1)
		:"memory");
	
	return flag;
}

void free_initmem(void)
{
	unsigned long addr;

	addr = (unsigned long)(&__init_begin);
	for (; addr < (unsigned long)(&__init_end); addr += PAGE_SIZE) {
		ClearPageReserved(virt_to_page(addr));
		set_page_count(virt_to_page(addr), 1);
		free_page(addr);
		totalram_pages++;
	}
	printk ("Freeing unused kernel memory: %dk freed\n", (&__init_end - &__init_begin) >> 10);
}

#ifdef CONFIG_BLK_DEV_INITRD
void free_initrd_mem(unsigned long start, unsigned long end)
{
	if (start < end)
		printk ("Freeing initrd memory: %ldk freed\n", (end - start) >> 10);
	for (; start < end; start += PAGE_SIZE) {
		ClearPageReserved(virt_to_page(start));
		set_page_count(virt_to_page(start), 1);
		free_page(start);
		totalram_pages++;
	}
}
#endif

void si_meminfo(struct sysinfo *val)
{
	val->totalram = totalram_pages;
	val->sharedram = 0;
	val->freeram = nr_free_pages();
	val->bufferram = atomic_read(&buffermem_pages);
	val->totalhigh = totalhigh_pages;
	val->freehigh = nr_free_highpages();
	val->mem_unit = PAGE_SIZE;
	return;
}

#if defined(CONFIG_X86_PAE)
struct kmem_cache_s *pae_pgd_cachep;
void __init pgtable_cache_init(void)
{
	/*
	 * PAE pgds must be 16-byte aligned:
	 */
	pae_pgd_cachep = kmem_cache_create("pae_pgd", 32, 0,
		SLAB_HWCACHE_ALIGN | SLAB_MUST_HWCACHE_ALIGN, NULL, NULL);
	if (!pae_pgd_cachep)
		panic("init_pae(): Cannot alloc pae_pgd SLAB cache");
}
#endif /* CONFIG_X86_PAE */