Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 | # # File system configuration # menu "File systems" config QUOTA bool "Quota support" help If you say Y here, you will be able to set per user limits for disk usage (also called disk quotas). Currently, it works for the ext2, ext3, and reiserfs file system. You need additional software in order to use quota support (you can download sources from <http://www.sf.net/projects/linuxquota/>). For further details, read the Quota mini-HOWTO, available from <http://www.linuxdoc.org/docs.html#howto>. Probably the quota support is only useful for multi user systems. If unsure, say N. config QFMT_V1 tristate "Old quota format support" depends on QUOTA help This quota format was (is) used by kernels earlier than 2.4.??. If you have quota working and you don't want to convert to new quota format say Y here. config QFMT_V2 tristate "Quota format v2 support" depends on QUOTA help This quota format allows using quotas with 32-bit UIDs/GIDs. If you need this functionality say Y here. Note that you will need latest quota utilities for new quota format with this kernel. config QUOTACTL bool depends on XFS_QUOTA || QUOTA default y config AUTOFS_FS tristate "Kernel automounter support" ---help--- The automounter is a tool to automatically mount remote file systems on demand. This implementation is partially kernel-based to reduce overhead in the already-mounted case; this is unlike the BSD automounter (amd), which is a pure user space daemon. To use the automounter you need the user-space tools from the autofs package; you can find the location in <file:Documentation/Changes>. You also want to answer Y to "NFS file system support", below. If you want to use the newer version of the automounter with more features, say N here and say Y to "Kernel automounter v4 support", below. If you want to compile this as a module ( = code which can be inserted in and removed from the running kernel whenever you want), say M here and read <file:Documentation/modules.txt>. The module will be called autofs.o. If you are not a part of a fairly large, distributed network, you probably do not need an automounter, and can say N here. config AUTOFS4_FS tristate "Kernel automounter version 4 support (also supports v3)" ---help--- The automounter is a tool to automatically mount remote file systems on demand. This implementation is partially kernel-based to reduce overhead in the already-mounted case; this is unlike the BSD automounter (amd), which is a pure user space daemon. To use the automounter you need the user-space tools from <ftp://ftp.kernel.org/pub/linux/daemons/autofs/testing-v4/>; you also want to answer Y to "NFS file system support", below. If you want to compile this as a module ( = code which can be inserted in and removed from the running kernel whenever you want), say M here and read <file:Documentation/modules.txt>. The module will be called autofs4.o. You will need to add "alias autofs autofs4" to your modules configuration file. If you are not a part of a fairly large, distributed network or don't have a laptop which needs to dynamically reconfigure to the local network, you probably do not need an automounter, and can say N here. config REISERFS_FS tristate "Reiserfs support" ---help--- Stores not just filenames but the files themselves in a balanced tree. Uses journaling. Balanced trees are more efficient than traditional file system architectural foundations. In general, ReiserFS is as fast as ext2, but is very efficient with large directories and small files. Additional patches are needed for NFS and quotas, please see <http://www.reiserfs.org/> for links. It is more easily extended to have features currently found in database and keyword search systems than block allocation based file systems are. The next version will be so extended, and will support plugins consistent with our motto ``It takes more than a license to make source code open.'' Read <http://www.reiserfs.org/> to learn more about reiserfs. Sponsored by Threshold Networks, Emusic.com, and Bigstorage.com. If you like it, you can pay us to add new features to it that you need, buy a support contract, or pay us to port it to another OS. config REISERFS_CHECK bool "Enable reiserfs debug mode" depends on REISERFS_FS help If you set this to Y, then ReiserFS will perform every check it can possibly imagine of its internal consistency throughout its operation. It will also go substantially slower. More than once we have forgotten that this was on, and then gone despondent over the latest benchmarks.:-) Use of this option allows our team to go all out in checking for consistency when debugging without fear of its effect on end users. If you are on the verge of sending in a bug report, say Y and you might get a useful error message. Almost everyone should say N. config REISERFS_PROC_INFO bool "Stats in /proc/fs/reiserfs" depends on REISERFS_FS help Create under /proc/fs/reiserfs a hierarchy of files, displaying various ReiserFS statistics and internal data at the expense of making your kernel or module slightly larger (+8 KB). This also increases the amount of kernel memory required for each mount. Almost everyone but ReiserFS developers and people fine-tuning reiserfs or tracing problems should say N. config ADFS_FS tristate "ADFS file system support (EXPERIMENTAL)" depends on EXPERIMENTAL ---help--- The Acorn Disc Filing System is the standard file system of the RiscOS operating system which runs on Acorn's ARM-based Risc PC systems and the Acorn Archimedes range of machines. If you say Y here, Linux will be able to read from ADFS partitions on hard drives and from ADFS-formatted floppy discs. If you also want to be able to write to those devices, say Y to "ADFS write support" below. The ADFS partition should be the first partition (i.e., /dev/[hs]d?1) on each of your drives. Please read the file <file:Documentation/filesystems/adfs.txt> for further details. This code is also available as a module called adfs.o ( = code which can be inserted in and removed from the running kernel whenever you want). If you want to compile it as a module, say M here and read <file:Documentation/modules.txt>. If unsure, say N. config ADFS_FS_RW bool "ADFS write support (DANGEROUS)" depends on ADFS_FS help If you say Y here, you will be able to write to ADFS partitions on hard drives and ADFS-formatted floppy disks. This is experimental codes, so if you're unsure, say N. config AFFS_FS tristate "Amiga FFS file system support (EXPERIMENTAL)" depends on EXPERIMENTAL ---help--- The Fast File System (FFS) is the common file system used on hard disks by Amiga(tm) systems since AmigaOS Version 1.3 (34.20). Say Y if you want to be able to read and write files from and to an Amiga FFS partition on your hard drive. Amiga floppies however cannot be read with this driver due to an incompatibility of the floppy controller used in an Amiga and the standard floppy controller in PCs and workstations. Read <file:Documentation/filesystems/affs.txt> and <file:fs/affs/Changes>. With this driver you can also mount disk files used by Bernd Schmidt's Un*X Amiga Emulator (<http://www.freiburg.linux.de/~uae/>). If you want to do this, you will also need to say Y or M to "Loop device support", above. This file system is also available as a module ( = code which can be inserted in and removed from the running kernel whenever you want). The module is called affs.o. If you want to compile it as a module, say M here and read <file:Documentation/modules.txt>. If unsure, say N. config HFS_FS tristate "Apple Macintosh file system support (EXPERIMENTAL)" depends on EXPERIMENTAL ---help--- If you say Y here, you will be able to mount Macintosh-formatted floppy disks and hard drive partitions with full read-write access. Please read <file:fs/hfs/HFS.txt> to learn about the available mount options. This file system support is also available as a module ( = code which can be inserted in and removed from the running kernel whenever you want). The module is called hfs.o. If you want to compile it as a module, say M here and read <file:Documentation/modules.txt>. config BEFS_FS tristate "BeOS file systemv(BeFS) support (read only) (EXPERIMENTAL)" depends on EXPERIMENTAL ---help--- The BeOS File System (BeFS) is the native file system of Be, Inc's BeOS. Notable features include support for arbitrary attributes on files and directories, and database-like indices on selected attributes. (Also note that this driver doesn't make those features available at this time). It is a 64 bit filesystem, so it supports extreemly large volumes and files. If you use this filesystem, you should also say Y to at least one of the NLS (native language support) options below. If you don't know what this is about, say N. If you want to compile this as a module ( = code which can be inserted in and removed from the running kernel whenever you want), say M here and read Documentation/modules.txt. The module will be called befs.o. config BEFS_DEBUG bool "Debug BeFS" depends on BEFS_FS help If you say Y here, you can use the 'debug' mount option to enable debugging output from the driver. config BFS_FS tristate "BFS file system support (EXPERIMENTAL)" depends on EXPERIMENTAL ---help--- Boot File System (BFS) is a file system used under SCO UnixWare to allow the bootloader access to the kernel image and other important files during the boot process. It is usually mounted under /stand and corresponds to the slice marked as "STAND" in the UnixWare partition. You should say Y if you want to read or write the files on your /stand slice from within Linux. You then also need to say Y to "UnixWare slices support", below. More information about the BFS file system is contained in the file <file:Documentation/filesystems/bfs.txt>. If you don't know what this is about, say N. If you want to compile this as a module ( = code which can be inserted in and removed from the running kernel whenever you want), say M here and read <file:Documentation/modules.txt>. The module will be called bfs.o. Note that the file system of your root partition (the one containing the directory /) cannot be compiled as a module. config EXT3_FS tristate "Ext3 journalling file system support" ---help--- This is the journaling version of the Second extended file system (often called ext3), the de facto standard Linux file system (method to organize files on a storage device) for hard disks. The journaling code included in this driver means you do not have to run e2fsck (file system checker) on your file systems after a crash. The journal keeps track of any changes that were being made at the time the system crashed, and can ensure that your file system is consistent without the need for a lengthy check. Other than adding the journal to the file system, the on-disk format of ext3 is identical to ext2. It is possible to freely switch between using the ext3 driver and the ext2 driver, as long as the file system has been cleanly unmounted, or e2fsck is run on the file system. To add a journal on an existing ext2 file system or change the behavior of ext3 file systems, you can use the tune2fs utility ("man tune2fs"). To modify attributes of files and directories on ext3 file systems, use chattr ("man chattr"). You need to be using e2fsprogs version 1.20 or later in order to create ext3 journals (available at <http://sourceforge.net/projects/e2fsprogs/>). If you want to compile this file system as a module ( = code which can be inserted in and removed from the running kernel whenever you want), say M here and read <file:Documentation/modules.txt>. The module will be called ext3.o. Be aware however that the file system of your root partition (the one containing the directory /) cannot be compiled as a module, and so this may be dangerous. config EXT3_FS_XATTR bool "Ext3 extended attributes" depends on EXT3_FS default y ---help--- Extended attributes are name:value pairs associated with inodes by the kernel or by users (see the attr(5) manual page, or visit <http://acl.bestbits.at/> for details). If unsure, say N. You need this for POSIX ACL support on ext3. config EXT3_FS_POSIX_ACL bool "Ext3 POSIX Access Control Lists" depends on EXT3_FS_XATTR ---help--- Posix Access Control Lists (ACLs) support permissions for users and groups beyond the owner/group/world scheme. To learn more about Access Control Lists, visit the Posix ACLs for Linux website <http://acl.bestbits.at/>. If you don't know what Access Control Lists are, say N # CONFIG_JBD could be its own option (even modular), but until there are # other users than ext3, we will simply make it be the same as CONFIG_EXT3_FS # dep_tristate ' Journal Block Device support (JBD for ext3)' CONFIG_JBD $CONFIG_EXT3_FS config JBD bool default EXT3_FS ---help--- This is a generic journaling layer for block devices. It is currently used by the ext3 file system, but it could also be used to add journal support to other file systems or block devices such as RAID or LVM. If you are using the ext3 file system, you need to say Y here. If you are not using ext3 then you will probably want to say N. If you want to compile this device as a module ( = code which can be inserted in and removed from the running kernel whenever you want), say M here and read <file:Documentation/modules.txt>. The module will be called jbd.o. If you are compiling ext3 into the kernel, you cannot compile this code as a module. config JBD_DEBUG bool "JBD (ext3) debugging support" depends on JBD ---help--- If you are using the ext3 journaled file system (or potentially any other file system/device using JBD), this option allows you to enable debugging output while the system is running, in order to help track down any problems you are having. By default the debugging output will be turned off. If you select Y here, then you will be able to turn on debugging with "echo N > /proc/sys/fs/jbd-debug", where N is a number between 1 and 5, the higher the number, the more debugging output is generated. To turn debugging off again, do "echo 0 > /proc/sys/fs/jbd-debug". # msdos file systems config FAT_FS tristate "DOS FAT fs support" ---help--- If you want to use one of the FAT-based file systems (the MS-DOS, VFAT (Windows 95) and UMSDOS (used to run Linux on top of an ordinary DOS partition) file systems), then you must say Y or M here to include FAT support. You will then be able to mount partitions or diskettes with FAT-based file systems and transparently access the files on them, i.e. MSDOS files will look and behave just like all other Unix files. This FAT support is not a file system in itself, it only provides the foundation for the other file systems. You will have to say Y or M to at least one of "MSDOS fs support" or "VFAT fs support" in order to make use of it. Another way to read and write MSDOS floppies and hard drive partitions from within Linux (but not transparently) is with the mtools ("man mtools") program suite. You don't need to say Y here in order to do that. If you need to move large files on floppies between a DOS and a Linux box, say Y here, mount the floppy under Linux with an MSDOS file system and use GNU tar's M option. GNU tar is a program available for Unix and DOS ("man tar" or "info tar"). It is now also becoming possible to read and write compressed FAT file systems; read <file:Documentation/filesystems/fat_cvf.txt> for details. The FAT support will enlarge your kernel by about 37 KB. If unsure, say Y. If you want to compile this as a module however ( = code which can be inserted in and removed from the running kernel whenever you want), say M here and read <file:Documentation/modules.txt>. The module will be called fat.o. Note that if you compile the FAT support as a module, you cannot compile any of the FAT-based file systems into the kernel -- they will have to be modules as well. The file system of your root partition (the one containing the directory /) cannot be a module, so don't say M here if you intend to use UMSDOS as your root file system. config MSDOS_FS tristate "MSDOS fs support" depends on FAT_FS ---help--- This allows you to mount MSDOS partitions of your hard drive (unless they are compressed; to access compressed MSDOS partitions under Linux, you can either use the DOS emulator DOSEMU, described in the DOSEMU-HOWTO, available from <http://www.linuxdoc.org/docs.html#howto>, or try dmsdosfs in <ftp://ibiblio.org/pub/Linux/system/filesystems/dosfs/>. If you intend to use dosemu with a non-compressed MSDOS partition, say Y here) and MSDOS floppies. This means that file access becomes transparent, i.e. the MSDOS files look and behave just like all other Unix files. If you want to use UMSDOS, the Unix-like file system on top of a DOS file system, which allows you to run Linux from within a DOS partition without repartitioning, you'll have to say Y or M here. If you have Windows 95 or Windows NT installed on your MSDOS partitions, you should use the VFAT file system (say Y to "VFAT fs support" below), or you will not be able to see the long filenames generated by Windows 95 / Windows NT. This option will enlarge your kernel by about 7 KB. If unsure, answer Y. This will only work if you said Y to "DOS FAT fs support" as well. If you want to compile this as a module however ( = code which can be inserted in and removed from the running kernel whenever you want), say M here and read <file:Documentation/modules.txt>. The module will be called msdos.o. #dep_tristate ' UMSDOS: Unix-like file system on top of standard MSDOS fs' CONFIG_UMSDOS_FS $CONFIG_MSDOS_FS # UMSDOS is temprory broken config UMSDOS_FS bool ---help--- Say Y here if you want to run Linux from within an existing DOS partition of your hard drive. The advantage of this is that you can get away without repartitioning your hard drive (which often implies backing everything up and restoring afterwards) and hence you're able to quickly try out Linux or show it to your friends; the disadvantage is that Linux becomes susceptible to DOS viruses and that UMSDOS is somewhat slower than ext2fs. Another use of UMSDOS is to write files with long unix filenames to MSDOS floppies; it also allows Unix-style soft-links and owner/permissions of files on MSDOS floppies. You will need a program called umssync in order to make use of UMSDOS; read <file:Documentation/filesystems/umsdos.txt>. To get utilities for initializing/checking UMSDOS file system, or latest patches and/or information, visit the UMSDOS home page at <http://www.voyager.hr/~mnalis/umsdos/>. This option enlarges your kernel by about 28 KB and it only works if you said Y to both "DOS FAT fs support" and "MSDOS fs support" above. If you want to compile this as a module ( = code which can be inserted in and removed from the running kernel whenever you want), say M here and read <file:Documentation/modules.txt>. The module will be called umsdos.o. Note that the file system of your root partition (the one containing the directory /) cannot be a module, so saying M could be dangerous. If unsure, say N. config VFAT_FS tristate "VFAT (Windows-95) fs support" depends on FAT_FS ---help--- This option provides support for normal Windows file systems with long filenames. That includes non-compressed FAT-based file systems used by Windows 95, Windows 98, Windows NT 4.0, and the Unix programs from the mtools package. You cannot use the VFAT file system for your Linux root partition (the one containing the directory /); use UMSDOS instead if you want to run Linux from within a DOS partition (i.e. say Y to "Unix like fs on top of std MSDOS fs", below). The VFAT support enlarges your kernel by about 10 KB and it only works if you said Y to the "DOS FAT fs support" above. Please read the file <file:Documentation/filesystems/vfat.txt> for details. If unsure, say Y. If you want to compile this as a module ( = code which can be inserted in and removed from the running kernel whenever you want), say M here and read <file:Documentation/modules.txt>. The module will be called vfat.o. config EFS_FS tristate "EFS file system support (read only) (EXPERIMENTAL)" depends on EXPERIMENTAL ---help--- EFS is an older file system used for non-ISO9660 CD-ROMs and hard disk partitions by SGI's IRIX operating system (IRIX 6.0 and newer uses the XFS file system for hard disk partitions however). This implementation only offers read-only access. If you don't know what all this is about, it's safe to say N. For more information about EFS see its home page at <http://aeschi.ch.eu.org/efs/>. If you want to compile the EFS file system support as a module ( = code which can be inserted in and removed from the running kernel whenever you want), say M here and read <file:Documentation/modules.txt>. The module will be called efs.o. config JFFS_FS tristate "Journalling Flash File System (JFFS) support" depends on MTD help JFFS is the Journaling Flash File System developed by Axis Communications in Sweden, aimed at providing a crash/powerdown-safe file system for disk-less embedded devices. Further information is available at (<http://developer.axis.com/software/jffs/>). config JFFS_FS_VERBOSE int "JFFS debugging verbosity (0 = quiet, 3 = noisy)" depends on JFFS_FS default "0" help Determines the verbosity level of the JFFS debugging messages. config JFFS_PROC_FS bool "JFFS stats available in /proc filesystem" depends on JFFS_FS help Enabling this option will cause statistics from mounted JFFS file systems to be made available to the user in the /proc/fs/jffs/ directory. config JFFS2_FS tristate "Journalling Flash File System v2 (JFFS2) support" depends on MTD help JFFS2 is the second generation of the Journalling Flash File System for use on diskless embedded devices. It provides improved wear levelling, compression and support for hard links. You cannot use this on normal block devices, only on 'MTD' devices. Further information on the design and implementation of JFFS2 is available at <http://sources.redhat.com/jffs2/>. config JFFS2_FS_DEBUG int "JFFS2 debugging verbosity (0 = quiet, 2 = noisy)" depends on JFFS2_FS default "0" ---help--- This controls the amount of debugging messages produced by the JFFS2 code. Set it to zero for use in production systems. For evaluation, testing and debugging, it's advisable to set it to one. This will enable a few assertions and will print debugging messages at the KERN_DEBUG loglevel, where they won't normally be visible. Level 2 is unlikely to be useful - it enables extra debugging in certain areas which at one point needed debugging, but when the bugs were located and fixed, the detailed messages were relegated to level 2. If reporting bugs, please try to have available a full dump of the messages at debug level 1 while the misbehaviour was occurring. config JFFS2_FS_NAND bool "JFFS2 support for NAND flash (EXPERIMENTAL)" depends on JFFS2_FS && EXPERIMENTAL default n ---help--- This enables the experimental support for NAND flash in JFFS2. NAND is a newer type of flash chip design than the traditional NOR flash, with higher density but a handful of characteristics which make it more interesting for the file system to use. Support for NAND flash is not yet complete and may corrupt data. For further information, including a link to the mailing list where details of the remaining work to be completed for NAND flash support can be found, see the JFFS2 web site at <http://sources.redhat.com/jffs2>. Say 'N' unless you have NAND flash and you are willing to test and develop JFFS2 support for it. config CRAMFS tristate "Compressed ROM file system support" ---help--- Saying Y here includes support for CramFs (Compressed ROM File System). CramFs is designed to be a simple, small, and compressed file system for ROM based embedded systems. CramFs is read-only, limited to 256MB file systems (with 16MB files), and doesn't support 16/32 bits uid/gid, hard links and timestamps. See <file:Documentation/filesystems/cramfs.txt> and <file:fs/cramfs/README> for further information. If you want to compile this as a module ( = code which can be inserted in and removed from the running kernel whenever you want), say M here and read <file:Documentation/modules.txt>. The module will be called cramfs.o. Note that the root file system (the one containing the directory /) cannot be compiled as a module. If unsure, say N. config TMPFS bool "Virtual memory file system support (former shm fs)" help Tmpfs is a file system which keeps all files in virtual memory. Everything in tmpfs is temporary in the sense that no files will be created on your hard drive. The files live in memory and swap space. If you unmount a tmpfs instance, everything stored therein is lost. See <file:Documentation/filesystems/tmpfs.txt> for details. config RAMFS bool default y ---help--- Ramfs is a file system which keeps all files in RAM. It allows read and write access. It is more of an programming example than a useable file system. If you need a file system which lives in RAM with limit checking use tmpfs. If you want to compile this as a module ( = code which can be inserted in and removed from the running kernel whenever you want), say M here and read <file:Documentation/modules.txt>. The module will be called ramfs.o. config HUGETLBFS bool "HugeTLB file system support" depends on HUGETLB_PAGE config ISO9660_FS tristate "ISO 9660 CDROM file system support" ---help--- This is the standard file system used on CD-ROMs. It was previously known as "High Sierra File System" and is called "hsfs" on other Unix systems. The so-called Rock-Ridge extensions which allow for long Unix filenames and symbolic links are also supported by this driver. If you have a CD-ROM drive and want to do more with it than just listen to audio CDs and watch its LEDs, say Y (and read <file:Documentation/filesystems/isofs.txt> and the CD-ROM-HOWTO, available from <http://www.linuxdoc.org/docs.html#howto>), thereby enlarging your kernel by about 27 KB; otherwise say N. If you want to compile this as a module ( = code which can be inserted in and removed from the running kernel whenever you want), say M here and read <file:Documentation/modules.txt>. The module will be called isofs.o. config JOLIET bool "Microsoft Joliet CDROM extensions" depends on ISO9660_FS help Joliet is a Microsoft extension for the ISO 9660 CD-ROM file system which allows for long filenames in unicode format (unicode is the new 16 bit character code, successor to ASCII, which encodes the characters of almost all languages of the world; see <http://www.unicode.org/> for more information). Say Y here if you want to be able to read Joliet CD-ROMs under Linux. config ZISOFS bool "Transparent decompression extension" depends on ISO9660_FS help This is a Linux-specific extension to RockRidge which lets you store data in compressed form on a CD-ROM and have it transparently decompressed when the CD-ROM is accessed. See <http://www.kernel.org/pub/linux/utils/fs/zisofs/> for the tools necessary to create such a filesystem. Say Y here if you want to be able to read such compressed CD-ROMs. config JFS_FS tristate "JFS filesystem support" help This is a port of IBM's Journaled Filesystem . More information is available in the file Documentation/filesystems/jfs.txt. If you do not intend to use the JFS filesystem, say N. config JFS_POSIX_ACL bool "JFS POSIX Access Control Lists" depends on JFS_FS ---help--- Posix Access Control Lists (ACLs) support permissions for users and groups beyond the owner/group/world scheme. To learn more about Access Control Lists, visit the Posix ACLs for Linux website <http://acl.bestbits.at/>. If you don't know what Access Control Lists are, say N config JFS_DEBUG bool "JFS debugging" depends on JFS_FS help If you are experiencing any problems with the JFS filesystem, say Y here. This will result in additional debugging messages to be written to the system log. Under normal circumstances, this results in very little overhead. config JFS_STATISTICS bool "JFS statistics" depends on JFS_FS help Enabling this option will cause statistics from the JFS file system to be made available to the user in the /proc/fs/jfs/ directory. config MINIX_FS tristate "Minix fs support" ---help--- Minix is a simple operating system used in many classes about OS's. The minix file system (method to organize files on a hard disk partition or a floppy disk) was the original file system for Linux, but has been superseded by the second extended file system ext2fs. You don't want to use the minix file system on your hard disk because of certain built-in restrictions, but it is sometimes found on older Linux floppy disks. This option will enlarge your kernel by about 28 KB. If unsure, say N. If you want to compile this as a module ( = code which can be inserted in and removed from the running kernel whenever you want), say M here and read <file:Documentation/modules.txt>. The module will be called minix.o. Note that the file system of your root partition (the one containing the directory /) cannot be compiled as a module. config VXFS_FS tristate "FreeVxFS file system support (VERITAS VxFS(TM) compatible)" ---help--- FreeVxFS is a file system driver that support the VERITAS VxFS(TM) file system format. VERITAS VxFS(TM) is the standard file system of SCO UnixWare (and possibly others) and optionally available for Sunsoft Solaris, HP-UX and many other operating systems. Currently only readonly access is supported. NOTE: the file system type as used by mount(1), mount(2) and fstab(5) is 'vxfs' as it describes the file system format, not the actual driver. This file system is also available as a module ( = code which can be inserted in and removed from the running kernel whenever you want). The module is called freevxfs.o. If you want to compile it as a module, say M here and read <file:Documentation/modules.txt>. If unsure, say N. config NTFS_FS tristate "NTFS file system support (read only)" ---help--- NTFS is the file system of Microsoft Windows NT/2000/XP. For more information see <file:Documentation/filesystems/ntfs.txt>. Saying Y here would allow you to read from NTFS partitions. This file system is also available as a module ( = code which can be inserted in and removed from the running kernel whenever you want). The module will be called ntfs.o. If you want to compile it as a module, say M here and read <file:Documentation/modules.txt>. If you are not using Windows NT/2000/XP in addition to Linux on your computer it is safe to say N. config NTFS_DEBUG bool "NTFS debugging support" depends on NTFS_FS ---help--- If you are experiencing any problems with the NTFS file system, say Y here. This will result in additional consistency checks to be performed by the driver as well as additional debugging messages to be written to the system log. Note that debugging messages are disabled by default. To enable them, supply the option debug_msgs=1 at the kernel command line when booting the kernel or as an option to insmod when loading the ntfs module. Once the driver is active, you can enable debugging messages by doing (as root): echo 1 > /proc/sys/fs/ntfs-debug Replacing the "1" with "0" would disable debug messages. If you leave debugging messages disabled, this results in little overhead, but enabling debug messages results in very significant slowdown of the system. When reporting bugs, please try to have available a full dump of debugging messages while the misbehaviour was occurring. config NTFS_RW bool "NTFS write support (DANGEROUS)" depends on NTFS_FS && EXPERIMENTAL help This enables the experimental write support in the NTFS driver. WARNING: Do not use this option unless you are actively developing NTFS as it is currently guaranteed to be broken and you may lose all your data! It is strongly recommended and perfectly safe to say N here. config HPFS_FS tristate "OS/2 HPFS file system support" ---help--- OS/2 is IBM's operating system for PC's, the same as Warp, and HPFS is the file system used for organizing files on OS/2 hard disk partitions. Say Y if you want to be able to read files from and write files to an OS/2 HPFS partition on your hard drive. OS/2 floppies however are in regular MSDOS format, so you don't need this option in order to be able to read them. Read <file:Documentation/filesystems/hpfs.txt>. This file system is also available as a module ( = code which can be inserted in and removed from the running kernel whenever you want). The module is called hpfs.o. If you want to compile it as a module, say M here and read <file:Documentation/modules.txt>. If unsure, say N. config PROC_FS bool "/proc file system support" ---help--- This is a virtual file system providing information about the status of the system. "Virtual" means that it doesn't take up any space on your hard disk: the files are created on the fly by the kernel when you try to access them. Also, you cannot read the files with older version of the program less: you need to use more or cat. It's totally cool; for example, "cat /proc/interrupts" gives information about what the different IRQs are used for at the moment (there is a small number of Interrupt ReQuest lines in your computer that are used by the attached devices to gain the CPU's attention -- often a source of trouble if two devices are mistakenly configured to use the same IRQ). The program procinfo to display some information about your system gathered from the /proc file system. Before you can use the /proc file system, it has to be mounted, meaning it has to be given a location in the directory hierarchy. That location should be /proc. A command such as "mount -t proc proc /proc" or the equivalent line in /etc/fstab does the job. The /proc file system is explained in the file <file:Documentation/filesystems/proc.txt> and on the proc(5) manpage ("man 5 proc"). This option will enlarge your kernel by about 67 KB. Several programs depend on this, so everyone should say Y here. config DEVFS_FS bool "/dev file system support (EXPERIMENTAL)" depends on EXPERIMENTAL ---help--- This is support for devfs, a virtual file system (like /proc) which provides the file system interface to device drivers, normally found in /dev. Devfs does not depend on major and minor number allocations. Device drivers register entries in /dev which then appear automatically, which means that the system administrator does not have to create character and block special device files in the /dev directory using the mknod command (or MAKEDEV script) anymore. This is work in progress. If you want to use this, you *must* read the material in <file:Documentation/filesystems/devfs/>, especially the file README there. If unsure, say N. config DEVFS_MOUNT bool "Automatically mount at boot" depends on DEVFS_FS help This option appears if you have CONFIG_DEVFS_FS enabled. Setting this to 'Y' will make the kernel automatically mount devfs onto /dev when the system is booted, before the init thread is started. You can override this with the "devfs=nomount" boot option. If unsure, say N. config DEVFS_DEBUG bool "Debug devfs" depends on DEVFS_FS help If you say Y here, then the /dev file system code will generate debugging messages. See the file <file:Documentation/filesystems/devfs/boot-options> for more details. If unsure, say N. # It compiles as a module for testing only. It should not be used # as a module in general. If we make this "tristate", a bunch of people # who don't know what they are doing turn it on and complain when it # breaks. config DEVPTS_FS bool "/dev/pts file system for Unix98 PTYs" depends on UNIX98_PTYS ---help--- You should say Y here if you said Y to "Unix98 PTY support" above. You'll then get a virtual file system which can be mounted on /dev/pts with "mount -t devpts". This, together with the pseudo terminal master multiplexer /dev/ptmx, is used for pseudo terminal support as described in The Open Group's Unix98 standard: in order to acquire a pseudo terminal, a process opens /dev/ptmx; the number of the pseudo terminal is then made available to the process and the pseudo terminal slave can be accessed as /dev/pts/<number>. What was traditionally /dev/ttyp2 will then be /dev/pts/2, for example. The GNU C library glibc 2.1 contains the requisite support for this mode of operation; you also need client programs that use the Unix98 API. Please read <file:Documentation/Changes> for more information about the Unix98 pty devices. Note that the experimental "/dev file system support" (CONFIG_DEVFS_FS) is a more general facility. config QNX4FS_FS tristate "QNX4 file system support (read only)" ---help--- This is the file system used by the real-time operating systems QNX 4 and QNX 6 (the latter is also called QNX RTP). Further information is available at <http://www.qnx.com/>. Say Y if you intend to mount QNX hard disks or floppies. Unless you say Y to "QNX4FS read-write support" below, you will only be able to read these file systems. This file system support is also available as a module ( = code which can be inserted in and removed from the running kernel whenever you want). The module is called qnx4.o. If you want to compile it as a module, say M here and read <file:Documentation/modules.txt>. If you don't know whether you need it, then you don't need it: answer N. config QNX4FS_RW bool "QNX4FS write support (DANGEROUS)" depends on QNX4FS_FS && EXPERIMENTAL help Say Y if you want to test write support for QNX4 file systems. It's currently broken, so for now: answer N. config ROMFS_FS tristate "ROM file system support" ---help--- This is a very small read-only file system mainly intended for initial ram disks of installation disks, but it could be used for other read-only media as well. Read <file:Documentation/filesystems/romfs.txt> for details. This file system support is also available as a module ( = code which can be inserted in and removed from the running kernel whenever you want). The module is called romfs.o. If you want to compile it as a module, say M here and read <file:Documentation/modules.txt>. Note that the file system of your root partition (the one containing the directory /) cannot be a module. If you don't know whether you need it, then you don't need it: answer N. config EXT2_FS tristate "Second extended fs support" ---help--- This is the de facto standard Linux file system (method to organize files on a storage device) for hard disks. You want to say Y here, unless you intend to use Linux exclusively from inside a DOS partition using the UMSDOS file system. The advantage of the latter is that you can get away without repartitioning your hard drive (which often implies backing everything up and restoring afterwards); the disadvantage is that Linux becomes susceptible to DOS viruses and that UMSDOS is somewhat slower than ext2fs. Even if you want to run Linux in this fashion, it might be a good idea to have ext2fs around: it enables you to read more floppy disks and facilitates the transition to a *real* Linux partition later. Another (rare) case which doesn't require ext2fs is a diskless Linux box which mounts all files over the network using NFS (in this case it's sufficient to say Y to "NFS file system support" below). Saying Y here will enlarge your kernel by about 44 KB. The Ext2fs-Undeletion mini-HOWTO, available from <http://www.linuxdoc.org/docs.html#howto>, gives information about how to retrieve deleted files on ext2fs file systems. To change the behavior of ext2 file systems, you can use the tune2fs utility ("man tune2fs"). To modify attributes of files and directories on ext2 file systems, use chattr ("man chattr"). Ext2fs partitions can be read from within DOS using the ext2tool command line tool package (available from <ftp://ibiblio.org/pub/Linux/system/filesystems/ext2/>) and from within Windows NT using the ext2nt command line tool package from <ftp://ibiblio.org/pub/Linux/utils/dos/>. Explore2fs is a graphical explorer for ext2fs partitions which runs on Windows 95 and Windows NT and includes experimental write support; it is available from <http://jnewbigin-pc.it.swin.edu.au/Linux/Explore2fs.htm>. If you want to compile this file system as a module ( = code which can be inserted in and removed from the running kernel whenever you want), say M here and read <file:Documentation/modules.txt>. The module will be called ext2.o. Be aware however that the file system of your root partition (the one containing the directory /) cannot be compiled as a module, and so this could be dangerous. Most everyone wants to say Y here. config EXT2_FS_XATTR bool "Ext2 extended attributes" depends on EXT2_FS ---help--- Extended attributes are name:value pairs associated with inodes by the kernel or by users (see the attr(5) manual page, or visit <http://acl.bestbits.at/> for details). If unsure, say N. config EXT2_FS_POSIX_ACL bool "Ext2 POSIX Access Control Lists" depends on EXT2_FS_XATTR ---help--- Posix Access Control Lists (ACLs) support permissions for users and groups beyond the owner/group/world scheme. To learn more about Access Control Lists, visit the Posix ACLs for Linux website <http://acl.bestbits.at/>. If you don't know what Access Control Lists are, say N config SYSV_FS tristate "System V/Xenix/V7/Coherent file system support" ---help--- SCO, Xenix and Coherent are commercial Unix systems for Intel machines, and Version 7 was used on the DEC PDP-11. Saying Y here would allow you to read from their floppies and hard disk partitions. If you have floppies or hard disk partitions like that, it is likely that they contain binaries from those other Unix systems; in order to run these binaries, you will want to install linux-abi which is a a set of kernel modules that lets you run SCO, Xenix, Wyse, UnixWare, Dell Unix and System V programs under Linux. It is available via FTP (user: ftp) from <ftp://ftp.openlinux.org/pub/people/hch/linux-abi/>). NOTE: that will work only for binaries from Intel-based systems; PDP ones will have to wait until somebody ports Linux to -11 ;-) If you only intend to mount files from some other Unix over the network using NFS, you don't need the System V file system support (but you need NFS file system support obviously). Note that this option is generally not needed for floppies, since a good portable way to transport files and directories between unixes (and even other operating systems) is given by the tar program ("man tar" or preferably "info tar"). Note also that this option has nothing whatsoever to do with the option "System V IPC". Read about the System V file system in <file:Documentation/filesystems/sysv-fs.txt>. Saying Y here will enlarge your kernel by about 27 KB. If you want to compile this as a module ( = code which can be inserted in and removed from the running kernel whenever you want), say M here and read <file:Documentation/modules.txt>. The module will be called sysv.o. If you haven't heard about all of this before, it's safe to say N. config UDF_FS tristate "UDF file system support" ---help--- This is the new file system used on some CD-ROMs and DVDs. Say Y if you intend to mount DVD discs or CDRW's written in packet mode, or if written to by other UDF utilities, such as DirectCD. Please read <file:Documentation/filesystems/udf.txt>. This file system support is also available as a module ( = code which can be inserted in and removed from the running kernel whenever you want). The module is called udf.o. If you want to compile it as a module, say M here and read <file:Documentation/modules.txt>. If unsure, say N. config UFS_FS tristate "UFS file system support (read only)" ---help--- BSD and derivate versions of Unix (such as SunOS, FreeBSD, NetBSD, OpenBSD and NeXTstep) use a file system called UFS. Some System V Unixes can create and mount hard disk partitions and diskettes using this file system as well. Saying Y here will allow you to read from these partitions; if you also want to write to them, say Y to the experimental "UFS file system write support", below. Please read the file <file:Documentation/filesystems/ufs.txt> for more information. If you only intend to mount files from some other Unix over the network using NFS, you don't need the UFS file system support (but you need NFS file system support obviously). Note that this option is generally not needed for floppies, since a good portable way to transport files and directories between unixes (and even other operating systems) is given by the tar program ("man tar" or preferably "info tar"). When accessing NeXTstep files, you may need to convert them from the NeXT character set to the Latin1 character set; use the program recode ("info recode") for this purpose. If you want to compile the UFS file system support as a module ( = code which can be inserted in and removed from the running kernel whenever you want), say M here and read <file:Documentation/modules.txt>. The module will be called ufs.o. If you haven't heard about all of this before, it's safe to say N. config UFS_FS_WRITE bool "UFS file system write support (DANGEROUS)" depends on UFS_FS && EXPERIMENTAL help Say Y here if you want to try writing to UFS partitions. This is experimental, so you should back up your UFS partitions beforehand. config XFS_FS tristate "XFS filesystem support" ---help--- XFS is a high performance journaling filesystem which originated on the SGI IRIX platform. It is completely multi-threaded, can support large files and large filesystems, extended attributes, variable block sizes, is extent based, and makes extensive use of Btrees (directories, extents, free space) to aid both performance and scalability. Refer to the documentation at <http://oss.sgi.com/projects/xfs/> for complete details. This implementation is on-disk compatible with the IRIX version of XFS. If you want to compile this file system as a module ( = code which can be inserted in and removed from the running kernel whenever you want), say M here and read <file:Documentation/modules.txt>. The module will be called xfs.o. Be aware, however, that if the file system of your root partition is compiled as a module, you'll need to use an initial ramdisk (initrd) to boot. config XFS_RT bool "Realtime support (EXPERIMENTAL)" depends on XFS_FS && EXPERIMENTAL ---help--- If you say Y here you will be able to mount and use XFS filesystems which contain a realtime subvolume. The realtime subvolume is a separate area of disk space where only file data is stored. The realtime subvolume is designed to provide very deterministic data rates suitable for media streaming applications. See the xfs man page in section 5 for a bit more information. This feature is unsupported at this time, is not yet fully functional, and may cause serious problems. If unsure, say N. config XFS_QUOTA bool "Quota support" depends on XFS_FS ---help--- If you say Y here, you will be able to set limits for disk usage on a per user and/or a per group basis under XFS. XFS considers quota information as filesystem metadata and uses journaling to provide a higher level guarantee of consistency. The on-disk data format for quota is also compatible with the IRIX version of XFS, allowing a filesystem to be migrated between Linux and IRIX without any need for conversion. If unsure, say N. More comprehensive documentation can be found in README.quota in the xfsprogs package. XFS quota can be used either with or without the generic quota support enabled (CONFIG_QUOTA) - they are completely independent subsystems. config XFS_POSIX_ACL bool "ACL support" depends on XFS_FS ---help--- Posix Access Control Lists (ACLs) support permissions for users and groups beyond the owner/group/world scheme. To learn more about Access Control Lists, visit the Posix ACLs for Linux website <http://acl.bestbits.at/>. If you don't know what Access Control Lists are, say N menu "Network File Systems" depends on NET config CODA_FS tristate "Coda file system support (advanced network fs)" depends on INET ---help--- Coda is an advanced network file system, similar to NFS in that it enables you to mount file systems of a remote server and access them with regular Unix commands as if they were sitting on your hard disk. Coda has several advantages over NFS: support for disconnected operation (e.g. for laptops), read/write server replication, security model for authentication and encryption, persistent client caches and write back caching. If you say Y here, your Linux box will be able to act as a Coda *client*. You will need user level code as well, both for the client and server. Servers are currently user level, i.e. they need no kernel support. Please read <file:Documentation/filesystems/coda.txt> and check out the Coda home page <http://www.coda.cs.cmu.edu/>. If you want to compile the coda client support as a module ( = code which can be inserted in and removed from the running kernel whenever you want), say M here and read <file:Documentation/modules.txt>. The module will be called coda.o. config INTERMEZZO_FS tristate "InterMezzo file system support (replicating fs) (EXPERIMENTAL)" depends on INET && EXPERIMENTAL help InterMezzo is a networked file system with disconnected operation and kernel level write back caching. It is most often used for replicating potentially large trees or keeping laptop/desktop copies in sync. If you say Y or M your kernel or module will provide InterMezzo support. You will also need a file server daemon, which you can get from <http://www.inter-mezzo.org/>. config NFS_FS tristate "NFS file system support" depends on INET ---help--- If you are connected to some other (usually local) Unix computer (using SLIP, PLIP, PPP or Ethernet) and want to mount files residing on that computer (the NFS server) using the Network File Sharing protocol, say Y. "Mounting files" means that the client can access the files with usual UNIX commands as if they were sitting on the client's hard disk. For this to work, the server must run the programs nfsd and mountd (but does not need to have NFS file system support enabled in its kernel). NFS is explained in the Network Administrator's Guide, available from <http://www.linuxdoc.org/docs.html#guide>, on its man page: "man nfs", and in the NFS-HOWTO. A superior but less widely used alternative to NFS is provided by the Coda file system; see "Coda file system support" below. If you say Y here, you should have said Y to TCP/IP networking also. This option would enlarge your kernel by about 27 KB. This file system is also available as a module ( = code which can be inserted in and removed from the running kernel whenever you want). The module is called nfs.o. If you want to compile it as a module, say M here and read <file:Documentation/modules.txt>. If you are configuring a diskless machine which will mount its root file system over NFS at boot time, say Y here and to "Kernel level IP autoconfiguration" above and to "Root file system on NFS" below. You cannot compile this driver as a module in this case. There are two packages designed for booting diskless machines over the net: netboot, available from <http://ftp1.sourceforge.net/netboot/>, and Etherboot, available from <http://ftp1.sourceforge.net/etherboot/>. If you don't know what all this is about, say N. config NFS_V3 bool "Provide NFSv3 client support" depends on NFS_FS help Say Y here if you want your NFS client to be able to speak the newer version 3 of the NFS protocol. If unsure, say N. config NFS_V4 bool "Provide NFSv4 client support (EXPERIMENTAL)" depends on NFS_FS && EXPERIMENTAL help Say Y here if you want your NFS client to be able to speak the newer version 4 of the NFS protocol. This feature is experimental, and should only be used if you are interested in helping to test NFSv4. If unsure, say N. config ROOT_NFS bool "Root file system on NFS" depends on NFS_FS=y && IP_PNP help If you want your Linux box to mount its whole root file system (the one containing the directory /) from some other computer over the net via NFS (presumably because your box doesn't have a hard disk), say Y. Read <file:Documentation/nfsroot.txt> for details. It is likely that in this case, you also want to say Y to "Kernel level IP autoconfiguration" so that your box can discover its network address at boot time. Most people say N here. config NFSD tristate "NFS server support" depends on INET ---help--- If you want your Linux box to act as an NFS *server*, so that other computers on your local network which support NFS can access certain directories on your box transparently, you have two options: you can use the self-contained user space program nfsd, in which case you should say N here, or you can say Y and use the kernel based NFS server. The advantage of the kernel based solution is that it is faster. In either case, you will need support software; the respective locations are given in the file <file:Documentation/Changes> in the NFS section. If you say Y here, you will get support for version 2 of the NFS protocol (NFSv2). If you also want NFSv3, say Y to the next question as well. Please read the NFS-HOWTO, available from <http://www.linuxdoc.org/docs.html#howto>. The NFS server is also available as a module ( = code which can be inserted in and removed from the running kernel whenever you want). The module is called nfsd.o. If you want to compile it as a module, say M here and read <file:Documentation/modules.txt>. If unsure, say N. config NFSD_V3 bool "Provide NFSv3 server support" depends on NFSD help If you would like to include the NFSv3 server as well as the NFSv2 server, say Y here. If unsure, say Y. config NFSD_V4 bool "Provide NFSv4 server support (EXPERIMENTAL)" depends on NFSD_V3 && EXPERIMENTAL help If you would like to include the NFSv4 server as well as the NFSv2 and NFSv3 servers, say Y here. This feature is experimental, and should only be used if you are interested in helping to test NFSv4. If unsure, say N. config NFSD_TCP bool "Provide NFS server over TCP support (EXPERIMENTAL)" depends on NFSD && EXPERIMENTAL help Enable NFS service over TCP connections. This the officially still experimental, but seems to work well. config SUNRPC tristate default m if NFS_FS!=y && NFSD!=y && (NFS_FS=m || NFSD=m) default y if NFS_FS=y || NFSD=y config SUNRPC_GSS tristate "Provide RPCSEC_GSS authentication (EXPERIMENTAL)" depends on SUNRPC && EXPERIMENTAL default SUNRPC if NFS_V4=y help Provides cryptographic authentication for NFS rpc requests. To make this useful, you must also select at least one rpcsec_gss mechanism. Note: You should always select this option if you wish to use NFSv4. config RPCSEC_GSS_KRB5 tristate "Kerberos V mechanism for RPCSEC_GSS (EXPERIMENTAL)" depends on SUNRPC_GSS && CRYPTO_DES && CRYPTO_MD5 default SUNRPC_GSS if NFS_V4=y help Provides a gss-api mechanism based on Kerberos V5 (this is mandatory for RFC3010-compliant NFSv4 implementations). Requires a userspace daemon; see http://www.citi.umich.edu/projects/nfsv4/. Note: If you select this option, please ensure that you also enable the MD5 and DES crypto ciphers. config LOCKD tristate default m if NFS_FS!=y && NFSD!=y && (NFS_FS=m || NFSD=m) default y if NFS_FS=y || NFSD=y config LOCKD_V4 bool depends on NFSD_V3 || NFS_V3 default y config EXPORTFS tristate default NFSD config CIFS tristate "CIFS support (advanced network filesystem for Samba, Window and other CIFS compliant servers)(EXPERIMENTAL)" depends on INET ---help--- This is the client VFS module for the Common Internet File System (CIFS) protocol which is the successor to the Server Message Block (SMB) protocol, the native file sharing mechanism for most early PC operating systems. CIFS is fully supported by current network file servers such as Windows 2000 (including Windows NT version 4 and Windows XP) as well by Samba (which provides excellent CIFS server support for Linux and many other operating systems). For production systems the smbfs module may be used instead of this cifs module since smbfs is currently more stable and provides support for older servers. The intent of this module is to provide the most advanced network file system function for CIFS compliant servers, including support for dfs (heirarchical name space), secure per-user session establishment, safe distributed caching (oplock), optional packet signing, Unicode and other internationalization improvements, and optional Winbind (nsswitch) integration. This module is in an early development stage, so unless you are specifically interested in this filesystem, just say N. config SMB_FS tristate "SMB file system support (to mount Windows shares etc.)" depends on INET ---help--- SMB (Server Message Block) is the protocol Windows for Workgroups (WfW), Windows 95/98, Windows NT and OS/2 Lan Manager use to share files and printers over local networks. Saying Y here allows you to mount their file systems (often called "shares" in this context) and access them just like any other Unix directory. Currently, this works only if the Windows machines use TCP/IP as the underlying transport protocol, and not NetBEUI. For details, read <file:Documentation/filesystems/smbfs.txt> and the SMB-HOWTO, available from <http://www.linuxdoc.org/docs.html#howto>. Note: if you just want your box to act as an SMB *server* and make files and printing services available to Windows clients (which need to have a TCP/IP stack), you don't need to say Y here; you can use the program SAMBA (available from <ftp://ftp.samba.org/pub/samba/>) for that. General information about how to connect Linux, Windows machines and Macs is on the WWW at <http://www.eats.com/linux_mac_win.html>. If you want to compile the SMB support as a module ( = code which can be inserted in and removed from the running kernel whenever you want), say M here and read <file:Documentation/modules.txt>. The module will be called smbfs.o. Most people say N, however. config SMB_NLS_DEFAULT bool "Use a default NLS" depends on SMB_FS help Enabling this will make smbfs use nls translations by default. You need to specify the local charset (CONFIG_NLS_DEFAULT) in the nls settings and you need to give the default nls for the SMB server as CONFIG_SMB_NLS_REMOTE. The nls settings can be changed at mount time, if your smbmount supports that, using the codepage and iocharset parameters. smbmount from samba 2.2.0 or later supports this. config SMB_NLS_REMOTE string "Default Remote NLS Option" depends on SMB_NLS_DEFAULT default "cp437" help This setting allows you to specify a default value for which codepage the server uses. If this field is left blank no translations will be done by default. The local codepage/charset default to CONFIG_NLS_DEFAULT. The nls settings can be changed at mount time, if your smbmount supports that, using the codepage and iocharset parameters. smbmount from samba 2.2.0 or later supports this. config NCP_FS tristate "NCP file system support (to mount NetWare volumes)" depends on IPX!=n || INET ---help--- NCP (NetWare Core Protocol) is a protocol that runs over IPX and is used by Novell NetWare clients to talk to file servers. It is to IPX what NFS is to TCP/IP, if that helps. Saying Y here allows you to mount NetWare file server volumes and to access them just like any other Unix directory. For details, please read the file <file:Documentation/filesystems/ncpfs.txt> in the kernel source and the IPX-HOWTO from <http://www.linuxdoc.org/docs.html#howto>. You do not have to say Y here if you want your Linux box to act as a file *server* for Novell NetWare clients. General information about how to connect Linux, Windows machines and Macs is on the WWW at <http://www.eats.com/linux_mac_win.html>. If you want to compile this as a module ( = code which can be inserted in and removed from the running kernel whenever you want), say M here and read <file:Documentation/modules.txt>. The module will be called ncpfs.o. Say N unless you are connected to a Novell network. source "fs/ncpfs/Kconfig" # for fs/nls/Config.in config AFS_FS tristate "Andrew File System support (AFS) (Experimental)" depends on INET && EXPERIMENTAL help If you say Y here, you will get an experimental Andrew File System driver. It currently only supports unsecured read-only AFS access. See Documentation/filesystems/afs.txt for more intormation. If unsure, say N. config RXRPC tristate default m if AFS_FS=m default y if AFS_FS=y endmenu # for fs/nls/Config.in config ZISOFS_FS tristate depends on ZISOFS default ISO9660_FS # Meta block cache for Extended Attributes (ext2/ext3) config FS_MBCACHE tristate depends on EXT2_FS_XATTR || EXT3_FS_XATTR default y if EXT2_FS=y || EXT3_FS=y default m if EXT2_FS=m || EXT3_FS=m # Posix ACL utility routines (for now, only ext2/ext3/jfs) # # NOTE: you can implement Posix ACLs without these helpers (XFS does). # Never use this symbol for ifdefs. # config FS_POSIX_ACL bool depends on EXT2_FS_POSIX_ACL || EXT3_FS_POSIX_ACL || JFS_POSIX_ACL default y menu "Partition Types" source "fs/partitions/Kconfig" endmenu source "fs/nls/Kconfig" endmenu |