Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 | /* * fs/direct-io.c * * Copyright (C) 2002, Linus Torvalds. * * O_DIRECT * * 04Jul2002 akpm@zip.com.au * Initial version * 11Sep2002 janetinc@us.ibm.com * added readv/writev support. * 29Oct2002 akpm@zip.com.au * rewrote bio_add_page() support. * 30Oct2002 pbadari@us.ibm.com * added support for non-aligned IO. * 06Nov2002 pbadari@us.ibm.com * added asynchronous IO support. */ #include <linux/kernel.h> #include <linux/types.h> #include <linux/fs.h> #include <linux/mm.h> #include <linux/slab.h> #include <linux/highmem.h> #include <linux/pagemap.h> #include <linux/bio.h> #include <linux/wait.h> #include <linux/err.h> #include <linux/blkdev.h> #include <linux/buffer_head.h> #include <linux/rwsem.h> #include <linux/uio.h> #include <asm/atomic.h> /* * How many user pages to map in one call to get_user_pages(). This determines * the size of a structure on the stack. */ #define DIO_PAGES 64 /* * This code generally works in units of "dio_blocks". A dio_block is * somewhere between the hard sector size and the filesystem block size. it * is determined on a per-invokation basis. When talking to the filesystem * we need to convert dio_blocks to fs_blocks by scaling the dio_block quantity * down by dio->blkfactor. Similarly, fs-blocksize quantities are converted * to bio_block quantities by shifting left by blkfactor. * * If blkfactor is zero then the user's request was aligned to the filesystem's * blocksize. */ struct dio { /* BIO submission state */ struct bio *bio; /* bio under assembly */ struct inode *inode; int rw; unsigned blkbits; /* doesn't change */ unsigned blkfactor; /* When we're using an aligment which is finer than the filesystem's soft blocksize, this specifies how much finer. blkfactor=2 means 1/4-block alignment. Does not change */ unsigned start_zero_done; /* flag: sub-blocksize zeroing has been performed at the start of a write */ int pages_in_io; /* approximate total IO pages */ sector_t block_in_file; /* Current offset into the underlying file in dio_block units. */ unsigned blocks_available; /* At block_in_file. changes */ sector_t final_block_in_request;/* doesn't change */ unsigned first_block_in_page; /* doesn't change, Used only once */ int boundary; /* prev block is at a boundary */ int reap_counter; /* rate limit reaping */ get_blocks_t *get_blocks; /* block mapping function */ sector_t final_block_in_bio; /* current final block in bio + 1 */ sector_t next_block_for_io; /* next block to be put under IO, in dio_blocks units */ struct buffer_head map_bh; /* last get_blocks() result */ /* * Deferred addition of a page to the dio. These variables are * private to dio_send_cur_page(), submit_page_section() and * dio_bio_add_page(). */ struct page *cur_page; /* The page */ unsigned cur_page_offset; /* Offset into it, in bytes */ unsigned cur_page_len; /* Nr of bytes at cur_page_offset */ sector_t cur_page_block; /* Where it starts */ /* * Page fetching state. These variables belong to dio_refill_pages(). */ int curr_page; /* changes */ int total_pages; /* doesn't change */ unsigned long curr_user_address;/* changes */ /* * Page queue. These variables belong to dio_refill_pages() and * dio_get_page(). */ struct page *pages[DIO_PAGES]; /* page buffer */ unsigned head; /* next page to process */ unsigned tail; /* last valid page + 1 */ int page_errors; /* errno from get_user_pages() */ /* BIO completion state */ atomic_t bio_count; /* nr bios to be completed */ atomic_t bios_in_flight; /* nr bios in flight */ spinlock_t bio_list_lock; /* protects bio_list */ struct bio *bio_list; /* singly linked via bi_private */ struct task_struct *waiter; /* waiting task (NULL if none) */ /* AIO related stuff */ struct kiocb *iocb; /* kiocb */ int is_async; /* is IO async ? */ int result; /* IO result */ }; /* * How many pages are in the queue? */ static inline unsigned dio_pages_present(struct dio *dio) { return dio->tail - dio->head; } /* * Go grab and pin some userspace pages. Typically we'll get 64 at a time. */ static int dio_refill_pages(struct dio *dio) { int ret; int nr_pages; nr_pages = min(dio->total_pages - dio->curr_page, DIO_PAGES); down_read(¤t->mm->mmap_sem); ret = get_user_pages( current, /* Task for fault acounting */ current->mm, /* whose pages? */ dio->curr_user_address, /* Where from? */ nr_pages, /* How many pages? */ dio->rw == READ, /* Write to memory? */ 0, /* force (?) */ &dio->pages[0], NULL); /* vmas */ up_read(¤t->mm->mmap_sem); if (ret < 0 && dio->blocks_available && (dio->rw == WRITE)) { /* * A memory fault, but the filesystem has some outstanding * mapped blocks. We need to use those blocks up to avoid * leaking stale data in the file. */ if (dio->page_errors == 0) dio->page_errors = ret; dio->pages[0] = ZERO_PAGE(dio->curr_user_address); dio->head = 0; dio->tail = 1; ret = 0; goto out; } if (ret >= 0) { dio->curr_user_address += ret * PAGE_SIZE; dio->curr_page += ret; dio->head = 0; dio->tail = ret; ret = 0; } out: return ret; } /* * Get another userspace page. Returns an ERR_PTR on error. Pages are * buffered inside the dio so that we can call get_user_pages() against a * decent number of pages, less frequently. To provide nicer use of the * L1 cache. */ static struct page *dio_get_page(struct dio *dio) { if (dio_pages_present(dio) == 0) { int ret; ret = dio_refill_pages(dio); if (ret) return ERR_PTR(ret); BUG_ON(dio_pages_present(dio) == 0); } return dio->pages[dio->head++]; } /* * Called when a BIO has been processed. If the count goes to zero then IO is * complete and we can signal this to the AIO layer. */ static void finished_one_bio(struct dio *dio) { if (atomic_dec_and_test(&dio->bio_count)) { if(dio->is_async) { aio_complete(dio->iocb, dio->result, 0); kfree(dio); } } } static int dio_bio_complete(struct dio *dio, struct bio *bio); /* * Asynchronous IO callback. */ static int dio_bio_end_aio(struct bio *bio, unsigned int bytes_done, int error) { struct dio *dio = bio->bi_private; if (bio->bi_size) return 1; /* cleanup the bio */ dio_bio_complete(dio, bio); return 0; } /* * The BIO completion handler simply queues the BIO up for the process-context * handler. * * During I/O bi_private points at the dio. After I/O, bi_private is used to * implement a singly-linked list of completed BIOs, at dio->bio_list. */ static int dio_bio_end_io(struct bio *bio, unsigned int bytes_done, int error) { struct dio *dio = bio->bi_private; unsigned long flags; if (bio->bi_size) return 1; spin_lock_irqsave(&dio->bio_list_lock, flags); bio->bi_private = dio->bio_list; dio->bio_list = bio; atomic_dec(&dio->bios_in_flight); if (dio->waiter && atomic_read(&dio->bios_in_flight) == 0) wake_up_process(dio->waiter); spin_unlock_irqrestore(&dio->bio_list_lock, flags); return 0; } static int dio_bio_alloc(struct dio *dio, struct block_device *bdev, sector_t first_sector, int nr_vecs) { struct bio *bio; bio = bio_alloc(GFP_KERNEL, nr_vecs); if (bio == NULL) return -ENOMEM; bio->bi_bdev = bdev; bio->bi_sector = first_sector; if (dio->is_async) bio->bi_end_io = dio_bio_end_aio; else bio->bi_end_io = dio_bio_end_io; dio->bio = bio; return 0; } /* * In the AIO read case we speculatively dirty the pages before starting IO. * During IO completion, any of these pages which happen to have been written * back will be redirtied by bio_check_pages_dirty(). */ static void dio_bio_submit(struct dio *dio) { struct bio *bio = dio->bio; bio->bi_private = dio; atomic_inc(&dio->bio_count); atomic_inc(&dio->bios_in_flight); if (dio->is_async && dio->rw == READ) bio_set_pages_dirty(bio); submit_bio(dio->rw, bio); dio->bio = NULL; dio->boundary = 0; } /* * Release any resources in case of a failure */ static void dio_cleanup(struct dio *dio) { while (dio_pages_present(dio)) page_cache_release(dio_get_page(dio)); } /* * Wait for the next BIO to complete. Remove it and return it. */ static struct bio *dio_await_one(struct dio *dio) { unsigned long flags; struct bio *bio; spin_lock_irqsave(&dio->bio_list_lock, flags); while (dio->bio_list == NULL) { set_current_state(TASK_UNINTERRUPTIBLE); if (dio->bio_list == NULL) { dio->waiter = current; spin_unlock_irqrestore(&dio->bio_list_lock, flags); blk_run_queues(); io_schedule(); spin_lock_irqsave(&dio->bio_list_lock, flags); dio->waiter = NULL; } set_current_state(TASK_RUNNING); } bio = dio->bio_list; dio->bio_list = bio->bi_private; spin_unlock_irqrestore(&dio->bio_list_lock, flags); return bio; } /* * Process one completed BIO. No locks are held. */ static int dio_bio_complete(struct dio *dio, struct bio *bio) { const int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags); struct bio_vec *bvec = bio->bi_io_vec; int page_no; if (!uptodate) dio->result = -EIO; if (dio->is_async && dio->rw == READ) { bio_check_pages_dirty(bio); /* transfers ownership */ } else { for (page_no = 0; page_no < bio->bi_vcnt; page_no++) { struct page *page = bvec[page_no].bv_page; if (dio->rw == READ) set_page_dirty_lock(page); page_cache_release(page); } bio_put(bio); } finished_one_bio(dio); return uptodate ? 0 : -EIO; } /* * Wait on and process all in-flight BIOs. */ static int dio_await_completion(struct dio *dio) { int ret = 0; if (dio->bio) dio_bio_submit(dio); while (atomic_read(&dio->bio_count)) { struct bio *bio = dio_await_one(dio); int ret2; ret2 = dio_bio_complete(dio, bio); if (ret == 0) ret = ret2; } return ret; } /* * A really large O_DIRECT read or write can generate a lot of BIOs. So * to keep the memory consumption sane we periodically reap any completed BIOs * during the BIO generation phase. * * This also helps to limit the peak amount of pinned userspace memory. */ static int dio_bio_reap(struct dio *dio) { int ret = 0; if (dio->reap_counter++ >= 64) { while (dio->bio_list) { unsigned long flags; struct bio *bio; spin_lock_irqsave(&dio->bio_list_lock, flags); bio = dio->bio_list; dio->bio_list = bio->bi_private; spin_unlock_irqrestore(&dio->bio_list_lock, flags); ret = dio_bio_complete(dio, bio); } dio->reap_counter = 0; } return ret; } /* * Call into the fs to map some more disk blocks. We record the current number * of available blocks at dio->blocks_available. These are in units of the * fs blocksize, (1 << inode->i_blkbits). * * The fs is allowed to map lots of blocks at once. If it wants to do that, * it uses the passed inode-relative block number as the file offset, as usual. * * get_blocks() is passed the number of i_blkbits-sized blocks which direct_io * has remaining to do. The fs should not map more than this number of blocks. * * If the fs has mapped a lot of blocks, it should populate bh->b_size to * indicate how much contiguous disk space has been made available at * bh->b_blocknr. * * If *any* of the mapped blocks are new, then the fs must set buffer_new(). * This isn't very efficient... * * In the case of filesystem holes: the fs may return an arbitrarily-large * hole by returning an appropriate value in b_size and by clearing * buffer_mapped(). However the direct-io code will only process holes one * block at a time - it will repeatedly call get_blocks() as it walks the hole. */ static int get_more_blocks(struct dio *dio) { int ret; struct buffer_head *map_bh = &dio->map_bh; sector_t fs_startblk; /* Into file, in filesystem-sized blocks */ unsigned long fs_count; /* Number of filesystem-sized blocks */ unsigned long dio_count;/* Number of dio_block-sized blocks */ unsigned long blkmask; /* * If there was a memory error and we've overwritten all the * mapped blocks then we can now return that memory error */ ret = dio->page_errors; if (ret == 0) { map_bh->b_state = 0; map_bh->b_size = 0; BUG_ON(dio->block_in_file >= dio->final_block_in_request); fs_startblk = dio->block_in_file >> dio->blkfactor; dio_count = dio->final_block_in_request - dio->block_in_file; fs_count = dio_count >> dio->blkfactor; blkmask = (1 << dio->blkfactor) - 1; if (dio_count & blkmask) fs_count++; ret = (*dio->get_blocks)(dio->inode, fs_startblk, fs_count, map_bh, dio->rw == WRITE); } return ret; } /* * There is no bio. Make one now. */ static int dio_new_bio(struct dio *dio, sector_t start_sector) { sector_t sector; int ret, nr_pages; ret = dio_bio_reap(dio); if (ret) goto out; sector = start_sector << (dio->blkbits - 9); nr_pages = min(dio->pages_in_io, bio_get_nr_vecs(dio->map_bh.b_bdev)); BUG_ON(nr_pages <= 0); ret = dio_bio_alloc(dio, dio->map_bh.b_bdev, sector, nr_pages); dio->boundary = 0; out: return ret; } /* * Attempt to put the current chunk of 'cur_page' into the current BIO. If * that was successful then update final_block_in_bio and take a ref against * the just-added page. * * Return zero on success. Non-zero means the caller needs to start a new BIO. */ static int dio_bio_add_page(struct dio *dio) { int ret; ret = bio_add_page(dio->bio, dio->cur_page, dio->cur_page_len, dio->cur_page_offset); if (ret == dio->cur_page_len) { dio->pages_in_io--; page_cache_get(dio->cur_page); dio->final_block_in_bio = dio->cur_page_block + (dio->cur_page_len >> dio->blkbits); ret = 0; } else { ret = 1; } return ret; } /* * Put cur_page under IO. The section of cur_page which is described by * cur_page_offset,cur_page_len is put into a BIO. The section of cur_page * starts on-disk at cur_page_block. * * We take a ref against the page here (on behalf of its presence in the bio). * * The caller of this function is responsible for removing cur_page from the * dio, and for dropping the refcount which came from that presence. */ static int dio_send_cur_page(struct dio *dio) { int ret = 0; if (dio->bio) { /* * See whether this new request is contiguous with the old */ if (dio->final_block_in_bio != dio->cur_page_block) dio_bio_submit(dio); /* * Submit now if the underlying fs is about to perform a * metadata read */ if (dio->boundary) dio_bio_submit(dio); } if (dio->bio == NULL) { ret = dio_new_bio(dio, dio->cur_page_block); if (ret) goto out; } if (dio_bio_add_page(dio) != 0) { dio_bio_submit(dio); ret = dio_new_bio(dio, dio->cur_page_block); if (ret == 0) { ret = dio_bio_add_page(dio); BUG_ON(ret != 0); } } out: return ret; } /* * An autonomous function to put a chunk of a page under deferred IO. * * The caller doesn't actually know (or care) whether this piece of page is in * a BIO, or is under IO or whatever. We just take care of all possible * situations here. The separation between the logic of do_direct_IO() and * that of submit_page_section() is important for clarity. Please don't break. * * The chunk of page starts on-disk at blocknr. * * We perform deferred IO, by recording the last-submitted page inside our * private part of the dio structure. If possible, we just expand the IO * across that page here. * * If that doesn't work out then we put the old page into the bio and add this * page to the dio instead. */ static int submit_page_section(struct dio *dio, struct page *page, unsigned offset, unsigned len, sector_t blocknr) { int ret = 0; /* * Can we just grow the current page's presence in the dio? */ if ( (dio->cur_page == page) && (dio->cur_page_offset + dio->cur_page_len == offset) && (dio->cur_page_block + (dio->cur_page_len >> dio->blkbits) == blocknr)) { dio->cur_page_len += len; /* * If dio->boundary then we want to schedule the IO now to * avoid metadata seeks. */ if (dio->boundary) { ret = dio_send_cur_page(dio); page_cache_release(dio->cur_page); dio->cur_page = NULL; } goto out; } /* * If there's a deferred page already there then send it. */ if (dio->cur_page) { ret = dio_send_cur_page(dio); page_cache_release(dio->cur_page); dio->cur_page = NULL; if (ret) goto out; } page_cache_get(page); /* It is in dio */ dio->cur_page = page; dio->cur_page_offset = offset; dio->cur_page_len = len; dio->cur_page_block = blocknr; out: return ret; } /* * Clean any dirty buffers in the blockdev mapping which alias newly-created * file blocks. Only called for S_ISREG files - blockdevs do not set * buffer_new */ static void clean_blockdev_aliases(struct dio *dio) { unsigned i; for (i = 0; i < dio->blocks_available; i++) { unmap_underlying_metadata(dio->map_bh.b_bdev, dio->map_bh.b_blocknr + i); } } /* * If we are not writing the entire block and get_block() allocated * the block for us, we need to fill-in the unused portion of the * block with zeros. This happens only if user-buffer, fileoffset or * io length is not filesystem block-size multiple. * * `end' is zero if we're doing the start of the IO, 1 at the end of the * IO. */ static void dio_zero_block(struct dio *dio, int end) { unsigned dio_blocks_per_fs_block; unsigned this_chunk_blocks; /* In dio_blocks */ unsigned this_chunk_bytes; struct page *page; dio->start_zero_done = 1; if (!dio->blkfactor || !buffer_new(&dio->map_bh)) return; dio_blocks_per_fs_block = 1 << dio->blkfactor; this_chunk_blocks = dio->block_in_file & (dio_blocks_per_fs_block - 1); if (!this_chunk_blocks) return; /* * We need to zero out part of an fs block. It is either at the * beginning or the end of the fs block. */ if (end) this_chunk_blocks = dio_blocks_per_fs_block - this_chunk_blocks; this_chunk_bytes = this_chunk_blocks << dio->blkbits; page = ZERO_PAGE(dio->cur_user_address); if (submit_page_section(dio, page, 0, this_chunk_bytes, dio->next_block_for_io)) return; dio->next_block_for_io += this_chunk_blocks; } /* * Walk the user pages, and the file, mapping blocks to disk and generating * a sequence of (page,offset,len,block) mappings. These mappings are injected * into submit_page_section(), which takes care of the next stage of submission * * Direct IO against a blockdev is different from a file. Because we can * happily perform page-sized but 512-byte aligned IOs. It is important that * blockdev IO be able to have fine alignment and large sizes. * * So what we do is to permit the ->get_blocks function to populate bh.b_size * with the size of IO which is permitted at this offset and this i_blkbits. * * For best results, the blockdev should be set up with 512-byte i_blkbits and * it should set b_size to PAGE_SIZE or more inside get_blocks(). This gives * fine alignment but still allows this function to work in PAGE_SIZE units. */ static int do_direct_IO(struct dio *dio) { const unsigned blkbits = dio->blkbits; const unsigned blocks_per_page = PAGE_SIZE >> blkbits; struct page *page; unsigned block_in_page; struct buffer_head *map_bh = &dio->map_bh; int ret = 0; /* The I/O can start at any block offset within the first page */ block_in_page = dio->first_block_in_page; while (dio->block_in_file < dio->final_block_in_request) { page = dio_get_page(dio); if (IS_ERR(page)) { ret = PTR_ERR(page); goto out; } while (block_in_page < blocks_per_page) { unsigned offset_in_page = block_in_page << blkbits; unsigned this_chunk_bytes; /* # of bytes mapped */ unsigned this_chunk_blocks; /* # of blocks */ unsigned u; if (dio->blocks_available == 0) { /* * Need to go and map some more disk */ unsigned long blkmask; unsigned long dio_remainder; ret = get_more_blocks(dio); if (ret) { page_cache_release(page); goto out; } if (!buffer_mapped(map_bh)) goto do_holes; dio->blocks_available = map_bh->b_size >> dio->blkbits; dio->next_block_for_io = map_bh->b_blocknr << dio->blkfactor; if (buffer_new(map_bh)) clean_blockdev_aliases(dio); if (!dio->blkfactor) goto do_holes; blkmask = (1 << dio->blkfactor) - 1; dio_remainder = (dio->block_in_file & blkmask); /* * If we are at the start of IO and that IO * starts partway into a fs-block, * dio_remainder will be non-zero. If the IO * is a read then we can simply advance the IO * cursor to the first block which is to be * read. But if the IO is a write and the * block was newly allocated we cannot do that; * the start of the fs block must be zeroed out * on-disk */ if (!buffer_new(map_bh)) dio->next_block_for_io += dio_remainder; dio->blocks_available -= dio_remainder; } do_holes: /* Handle holes */ if (!buffer_mapped(map_bh)) { char *kaddr = kmap_atomic(page, KM_USER0); memset(kaddr + (block_in_page << blkbits), 0, 1 << blkbits); flush_dcache_page(page); kunmap_atomic(kaddr, KM_USER0); dio->block_in_file++; block_in_page++; goto next_block; } /* * If we're performing IO which has an alignment which * is finer than the underlying fs, go check to see if * we must zero out the start of this block. */ if (unlikely(dio->blkfactor && !dio->start_zero_done)) dio_zero_block(dio, 0); /* * Work out, in this_chunk_blocks, how much disk we * can add to this page */ this_chunk_blocks = dio->blocks_available; u = (PAGE_SIZE - offset_in_page) >> blkbits; if (this_chunk_blocks > u) this_chunk_blocks = u; u = dio->final_block_in_request - dio->block_in_file; if (this_chunk_blocks > u) this_chunk_blocks = u; this_chunk_bytes = this_chunk_blocks << blkbits; BUG_ON(this_chunk_bytes == 0); dio->boundary = buffer_boundary(map_bh); ret = submit_page_section(dio, page, offset_in_page, this_chunk_bytes, dio->next_block_for_io); if (ret) { page_cache_release(page); goto out; } dio->next_block_for_io += this_chunk_blocks; dio->block_in_file += this_chunk_blocks; block_in_page += this_chunk_blocks; dio->blocks_available -= this_chunk_blocks; next_block: if (dio->block_in_file > dio->final_block_in_request) BUG(); if (dio->block_in_file == dio->final_block_in_request) break; } /* Drop the ref which was taken in get_user_pages() */ page_cache_release(page); block_in_page = 0; } out: return ret; } static int direct_io_worker(int rw, struct kiocb *iocb, struct inode *inode, const struct iovec *iov, loff_t offset, unsigned long nr_segs, unsigned blkbits, get_blocks_t get_blocks) { unsigned long user_addr; int seg; int ret = 0; int ret2; struct dio *dio; size_t bytes; dio = kmalloc(sizeof(*dio), GFP_KERNEL); if (!dio) return -ENOMEM; dio->is_async = !is_sync_kiocb(iocb); dio->bio = NULL; dio->inode = inode; dio->rw = rw; dio->blkbits = blkbits; dio->blkfactor = inode->i_blkbits - blkbits; dio->start_zero_done = 0; dio->block_in_file = offset >> blkbits; dio->blocks_available = 0; dio->cur_page = NULL; dio->boundary = 0; dio->reap_counter = 0; dio->get_blocks = get_blocks; dio->final_block_in_bio = -1; dio->next_block_for_io = -1; dio->page_errors = 0; dio->result = 0; dio->iocb = iocb; /* * BIO completion state. * * ->bio_count starts out at one, and we decrement it to zero after all * BIOs are submitted. This to avoid the situation where a really fast * (or synchronous) device could take the count to zero while we're * still submitting BIOs. */ atomic_set(&dio->bio_count, 1); atomic_set(&dio->bios_in_flight, 0); spin_lock_init(&dio->bio_list_lock); dio->bio_list = NULL; dio->waiter = NULL; dio->pages_in_io = 0; for (seg = 0; seg < nr_segs; seg++) dio->pages_in_io += (iov[seg].iov_len >> blkbits) + 2; for (seg = 0; seg < nr_segs; seg++) { user_addr = (unsigned long)iov[seg].iov_base; bytes = iov[seg].iov_len; /* Index into the first page of the first block */ dio->first_block_in_page = (user_addr & ~PAGE_MASK) >> blkbits; dio->final_block_in_request = dio->block_in_file + (bytes >> blkbits); /* Page fetching state */ dio->head = 0; dio->tail = 0; dio->curr_page = 0; dio->total_pages = 0; if (user_addr & (PAGE_SIZE-1)) { dio->total_pages++; bytes -= PAGE_SIZE - (user_addr & (PAGE_SIZE - 1)); } dio->total_pages += (bytes + PAGE_SIZE - 1) / PAGE_SIZE; dio->curr_user_address = user_addr; ret = do_direct_IO(dio); if (ret) { dio_cleanup(dio); break; } dio->result += iov[seg].iov_len - ((dio->final_block_in_request - dio->block_in_file) << blkbits); } /* end iovec loop */ /* * There may be some unwritten disk at the end of a part-written * fs-block-sized block. Go zero that now. */ dio_zero_block(dio, 1); if (dio->cur_page) { ret2 = dio_send_cur_page(dio); if (ret == 0) ret = ret2; page_cache_release(dio->cur_page); dio->cur_page = NULL; } if (dio->bio) dio_bio_submit(dio); /* * OK, all BIOs are submitted, so we can decrement bio_count to truly * reflect the number of to-be-processed BIOs. */ if (dio->is_async) { if (ret == 0) ret = dio->result; /* Bytes written */ finished_one_bio(dio); /* This can free the dio */ blk_run_queues(); goto out; } finished_one_bio(dio); ret2 = dio_await_completion(dio); if (ret == 0) ret = ret2; if (ret == 0) ret = dio->page_errors; if (dio->result) ret = dio->result; kfree(dio); out: return ret; } /* * This is a library function for use by filesystem drivers. */ int blockdev_direct_IO(int rw, struct kiocb *iocb, struct inode *inode, struct block_device *bdev, const struct iovec *iov, loff_t offset, unsigned long nr_segs, get_blocks_t get_blocks) { int seg; size_t size; unsigned long addr; unsigned blkbits = inode->i_blkbits; unsigned bdev_blkbits = 0; unsigned blocksize_mask = (1 << blkbits) - 1; ssize_t retval = -EINVAL; if (bdev) bdev_blkbits = blksize_bits(bdev_hardsect_size(bdev)); if (offset & blocksize_mask) { if (bdev) blkbits = bdev_blkbits; blocksize_mask = (1 << blkbits) - 1; if (offset & blocksize_mask) goto out; } /* Check the memory alignment. Blocks cannot straddle pages */ for (seg = 0; seg < nr_segs; seg++) { addr = (unsigned long)iov[seg].iov_base; size = iov[seg].iov_len; if ((addr & blocksize_mask) || (size & blocksize_mask)) { if (bdev) blkbits = bdev_blkbits; blocksize_mask = (1 << blkbits) - 1; if ((addr & blocksize_mask) || (size & blocksize_mask)) goto out; } } retval = direct_io_worker(rw, iocb, inode, iov, offset, nr_segs, blkbits, get_blocks); out: return retval; } |