Linux Audio

Check our new training course

Embedded Linux Audio

Check our new training course
with Creative Commons CC-BY-SA
lecture materials

Bootlin logo

Elixir Cross Referencer

Loading...
   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
/*
 *  linux/kernel/timer.c
 *
 *  Kernel internal timers, kernel timekeeping, basic process system calls
 *
 *  Copyright (C) 1991, 1992  Linus Torvalds
 *
 *  1997-01-28  Modified by Finn Arne Gangstad to make timers scale better.
 *
 *  1997-09-10  Updated NTP code according to technical memorandum Jan '96
 *              "A Kernel Model for Precision Timekeeping" by Dave Mills
 *  1998-12-24  Fixed a xtime SMP race (we need the xtime_lock rw spinlock to
 *              serialize accesses to xtime/lost_ticks).
 *                              Copyright (C) 1998  Andrea Arcangeli
 *  1999-03-10  Improved NTP compatibility by Ulrich Windl
 *  2002-05-31	Move sys_sysinfo here and make its locking sane, Robert Love
 *  2000-10-05  Implemented scalable SMP per-CPU timer handling.
 *                              Copyright (C) 2000, 2001, 2002  Ingo Molnar
 *              Designed by David S. Miller, Alexey Kuznetsov and Ingo Molnar
 */

#include <linux/kernel_stat.h>
#include <linux/interrupt.h>
#include <linux/percpu.h>
#include <linux/init.h>
#include <linux/mm.h>
#include <linux/notifier.h>
#include <linux/thread_info.h>

#include <asm/uaccess.h>

/*
 * per-CPU timer vector definitions:
 */
#define TVN_BITS 6
#define TVR_BITS 8
#define TVN_SIZE (1 << TVN_BITS)
#define TVR_SIZE (1 << TVR_BITS)
#define TVN_MASK (TVN_SIZE - 1)
#define TVR_MASK (TVR_SIZE - 1)

typedef struct tvec_s {
	int index;
	struct list_head vec[TVN_SIZE];
} tvec_t;

typedef struct tvec_root_s {
	int index;
	struct list_head vec[TVR_SIZE];
} tvec_root_t;

typedef struct timer_list timer_t;

struct tvec_t_base_s {
	spinlock_t lock;
	unsigned long timer_jiffies;
	timer_t *running_timer;
	tvec_root_t tv1;
	tvec_t tv2;
	tvec_t tv3;
	tvec_t tv4;
	tvec_t tv5;
} ____cacheline_aligned_in_smp;

typedef struct tvec_t_base_s tvec_base_t;

/* Fake initialization */
static DEFINE_PER_CPU(tvec_base_t, tvec_bases) = { SPIN_LOCK_UNLOCKED };

static void check_timer_failed(timer_t *timer)
{
	static int whine_count;
	if (whine_count < 16) {
		whine_count++;
		printk("Uninitialised timer!\n");
		printk("This is just a warning.  Your computer is OK\n");
		printk("function=0x%p, data=0x%lx\n",
			timer->function, timer->data);
		dump_stack();
	}
	/*
	 * Now fix it up
	 */
	spin_lock_init(&timer->lock);
	timer->magic = TIMER_MAGIC;
}

static inline void check_timer(timer_t *timer)
{
	if (timer->magic != TIMER_MAGIC)
		check_timer_failed(timer);
}

static inline void internal_add_timer(tvec_base_t *base, timer_t *timer)
{
	unsigned long expires = timer->expires;
	unsigned long idx = expires - base->timer_jiffies;
	struct list_head *vec;

	if (idx < TVR_SIZE) {
		int i = expires & TVR_MASK;
		vec = base->tv1.vec + i;
	} else if (idx < 1 << (TVR_BITS + TVN_BITS)) {
		int i = (expires >> TVR_BITS) & TVN_MASK;
		vec = base->tv2.vec + i;
	} else if (idx < 1 << (TVR_BITS + 2 * TVN_BITS)) {
		int i = (expires >> (TVR_BITS + TVN_BITS)) & TVN_MASK;
		vec = base->tv3.vec + i;
	} else if (idx < 1 << (TVR_BITS + 3 * TVN_BITS)) {
		int i = (expires >> (TVR_BITS + 2 * TVN_BITS)) & TVN_MASK;
		vec = base->tv4.vec + i;
	} else if ((signed long) idx < 0) {
		/*
		 * Can happen if you add a timer with expires == jiffies,
		 * or you set a timer to go off in the past
		 */
		vec = base->tv1.vec + base->tv1.index;
	} else if (idx <= 0xffffffffUL) {
		int i = (expires >> (TVR_BITS + 3 * TVN_BITS)) & TVN_MASK;
		vec = base->tv5.vec + i;
	} else {
		/* Can only get here on architectures with 64-bit jiffies */
		INIT_LIST_HEAD(&timer->entry);
		return;
	}
	/*
	 * Timers are FIFO:
	 */
	list_add_tail(&timer->entry, vec);
}

/***
 * add_timer - start a timer
 * @timer: the timer to be added
 *
 * The kernel will do a ->function(->data) callback from the
 * timer interrupt at the ->expired point in the future. The
 * current time is 'jiffies'.
 *
 * The timer's ->expired, ->function (and if the handler uses it, ->data)
 * fields must be set prior calling this function.
 *
 * Timers with an ->expired field in the past will be executed in the next
 * timer tick. It's illegal to add an already pending timer.
 */
void add_timer(timer_t *timer)
{
	int cpu = get_cpu();
	tvec_base_t *base = &per_cpu(tvec_bases, cpu);
  	unsigned long flags;
  
  	BUG_ON(timer_pending(timer) || !timer->function);

	check_timer(timer);

	spin_lock_irqsave(&base->lock, flags);
	internal_add_timer(base, timer);
	timer->base = base;
	spin_unlock_irqrestore(&base->lock, flags);
	put_cpu();
}

/***
 * add_timer_on - start a timer on a particular CPU
 * @timer: the timer to be added
 * @cpu: the CPU to start it on
 *
 * This is not very scalable on SMP.
 */
void add_timer_on(struct timer_list *timer, int cpu)
{
	tvec_base_t *base = &per_cpu(tvec_bases, cpu);
  	unsigned long flags;
  
  	BUG_ON(timer_pending(timer) || !timer->function);

	check_timer(timer);

	spin_lock_irqsave(&base->lock, flags);
	internal_add_timer(base, timer);
	timer->base = base;
	spin_unlock_irqrestore(&base->lock, flags);
}

/***
 * mod_timer - modify a timer's timeout
 * @timer: the timer to be modified
 *
 * mod_timer is a more efficient way to update the expire field of an
 * active timer (if the timer is inactive it will be activated)
 *
 * mod_timer(timer, expires) is equivalent to:
 *
 *     del_timer(timer); timer->expires = expires; add_timer(timer);
 *
 * Note that if there are multiple unserialized concurrent users of the
 * same timer, then mod_timer() is the only safe way to modify the timeout,
 * since add_timer() cannot modify an already running timer.
 *
 * The function returns whether it has modified a pending timer or not.
 * (ie. mod_timer() of an inactive timer returns 0, mod_timer() of an
 * active timer returns 1.)
 */
int mod_timer(timer_t *timer, unsigned long expires)
{
	tvec_base_t *old_base, *new_base;
	unsigned long flags;
	int ret = 0;

	BUG_ON(!timer->function);

	check_timer(timer);

	/*
	 * This is a common optimization triggered by the
	 * networking code - if the timer is re-modified
	 * to be the same thing then just return:
	 */
	if (timer->expires == expires && timer_pending(timer))
		return 1;

	spin_lock_irqsave(&timer->lock, flags);
	new_base = &per_cpu(tvec_bases, smp_processor_id());
repeat:
	old_base = timer->base;

	/*
	 * Prevent deadlocks via ordering by old_base < new_base.
	 */
	if (old_base && (new_base != old_base)) {
		if (old_base < new_base) {
			spin_lock(&new_base->lock);
			spin_lock(&old_base->lock);
		} else {
			spin_lock(&old_base->lock);
			spin_lock(&new_base->lock);
		}
		/*
		 * The timer base might have been cancelled while we were
		 * trying to take the lock(s):
		 */
		if (timer->base != old_base) {
			spin_unlock(&new_base->lock);
			spin_unlock(&old_base->lock);
			goto repeat;
		}
	} else
		spin_lock(&new_base->lock);

	/*
	 * Delete the previous timeout (if there was any), and install
	 * the new one:
	 */
	if (old_base) {
		list_del(&timer->entry);
		ret = 1;
	}
	timer->expires = expires;
	internal_add_timer(new_base, timer);
	timer->base = new_base;

	if (old_base && (new_base != old_base))
		spin_unlock(&old_base->lock);
	spin_unlock(&new_base->lock);
	spin_unlock_irqrestore(&timer->lock, flags);

	return ret;
}

/***
 * del_timer - deactive a timer.
 * @timer: the timer to be deactivated
 *
 * del_timer() deactivates a timer - this works on both active and inactive
 * timers.
 *
 * The function returns whether it has deactivated a pending timer or not.
 * (ie. del_timer() of an inactive timer returns 0, del_timer() of an
 * active timer returns 1.)
 */
int del_timer(timer_t *timer)
{
	unsigned long flags;
	tvec_base_t *base;

	check_timer(timer);

repeat:
 	base = timer->base;
	if (!base)
		return 0;
	spin_lock_irqsave(&base->lock, flags);
	if (base != timer->base) {
		spin_unlock_irqrestore(&base->lock, flags);
		goto repeat;
	}
	list_del(&timer->entry);
	timer->base = NULL;
	spin_unlock_irqrestore(&base->lock, flags);

	return 1;
}

#ifdef CONFIG_SMP
/***
 * del_timer_sync - deactivate a timer and wait for the handler to finish.
 * @timer: the timer to be deactivated
 *
 * This function only differs from del_timer() on SMP: besides deactivating
 * the timer it also makes sure the handler has finished executing on other
 * CPUs.
 *
 * Synchronization rules: callers must prevent restarting of the timer,
 * otherwise this function is meaningless. It must not be called from
 * interrupt contexts. Upon exit the timer is not queued and the handler
 * is not running on any CPU.
 *
 * The function returns whether it has deactivated a pending timer or not.
 */
int del_timer_sync(timer_t *timer)
{
	tvec_base_t *base;
	int i, ret = 0;

	check_timer(timer);

del_again:
	ret += del_timer(timer);

	for (i = 0; i < NR_CPUS; i++) {
		if (!cpu_online(i))
			continue;

		base = &per_cpu(tvec_bases, i);
		if (base->running_timer == timer) {
			while (base->running_timer == timer) {
				cpu_relax();
				preempt_check_resched();
			}
			break;
		}
	}
	if (timer_pending(timer))
		goto del_again;

	return ret;
}
#endif


static int cascade(tvec_base_t *base, tvec_t *tv)
{
	/* cascade all the timers from tv up one level */
	struct list_head *head, *curr, *next;

	head = tv->vec + tv->index;
	curr = head->next;
	/*
	 * We are removing _all_ timers from the list, so we don't  have to
	 * detach them individually, just clear the list afterwards.
	 */
	while (curr != head) {
		timer_t *tmp;

		tmp = list_entry(curr, timer_t, entry);
		if (tmp->base != base)
			BUG();
		next = curr->next;
		internal_add_timer(base, tmp);
		curr = next;
	}
	INIT_LIST_HEAD(head);

	return tv->index = (tv->index + 1) & TVN_MASK;
}

/***
 * __run_timers - run all expired timers (if any) on this CPU.
 * @base: the timer vector to be processed.
 *
 * This function cascades all vectors and executes all expired timer
 * vectors.
 */
static inline void __run_timers(tvec_base_t *base)
{
	spin_lock_irq(&base->lock);
	while ((long)(jiffies - base->timer_jiffies) >= 0) {
		struct list_head *head, *curr;

		/*
		 * Cascade timers:
		 */
		if (!base->tv1.index &&
			(cascade(base, &base->tv2) == 1) &&
				(cascade(base, &base->tv3) == 1) &&
					cascade(base, &base->tv4) == 1)
			cascade(base, &base->tv5);
repeat:
		head = base->tv1.vec + base->tv1.index;
		curr = head->next;
		if (curr != head) {
			void (*fn)(unsigned long);
			unsigned long data;
			timer_t *timer;

			timer = list_entry(curr, timer_t, entry);
 			fn = timer->function;
 			data = timer->data;

			list_del(&timer->entry);
			timer->base = NULL;
#if CONFIG_SMP
			base->running_timer = timer;
#endif
			spin_unlock_irq(&base->lock);
			if (!fn)
				printk("Bad: timer %p has NULL fn. (data: %08lx)\n", timer, data);
			else
				fn(data);
			spin_lock_irq(&base->lock);
			goto repeat;
		}
		++base->timer_jiffies; 
		base->tv1.index = (base->tv1.index + 1) & TVR_MASK;
	}
#if CONFIG_SMP
	base->running_timer = NULL;
#endif
	spin_unlock_irq(&base->lock);
}

/******************************************************************/

/*
 * Timekeeping variables
 */
unsigned long tick_usec = TICK_USEC; 		/* ACTHZ   period (usec) */
unsigned long tick_nsec = TICK_NSEC(TICK_USEC);	/* USER_HZ period (nsec) */

/* The current time */
struct timespec xtime __attribute__ ((aligned (16)));

/* Don't completely fail for HZ > 500.  */
int tickadj = 500/HZ ? : 1;		/* microsecs */


/*
 * phase-lock loop variables
 */
/* TIME_ERROR prevents overwriting the CMOS clock */
int time_state = TIME_OK;		/* clock synchronization status	*/
int time_status = STA_UNSYNC;		/* clock status bits		*/
long time_offset;			/* time adjustment (us)		*/
long time_constant = 2;			/* pll time constant		*/
long time_tolerance = MAXFREQ;		/* frequency tolerance (ppm)	*/
long time_precision = 1;		/* clock precision (us)		*/
long time_maxerror = NTP_PHASE_LIMIT;	/* maximum error (us)		*/
long time_esterror = NTP_PHASE_LIMIT;	/* estimated error (us)		*/
long time_phase;			/* phase offset (scaled us)	*/
long time_freq = ((1000000 + HZ/2) % HZ - HZ/2) << SHIFT_USEC;
					/* frequency offset (scaled ppm)*/
long time_adj;				/* tick adjust (scaled 1 / HZ)	*/
long time_reftime;			/* time at last adjustment (s)	*/
long time_adjust;

/*
 * this routine handles the overflow of the microsecond field
 *
 * The tricky bits of code to handle the accurate clock support
 * were provided by Dave Mills (Mills@UDEL.EDU) of NTP fame.
 * They were originally developed for SUN and DEC kernels.
 * All the kudos should go to Dave for this stuff.
 *
 */
static void second_overflow(void)
{
    long ltemp;

    /* Bump the maxerror field */
    time_maxerror += time_tolerance >> SHIFT_USEC;
    if ( time_maxerror > NTP_PHASE_LIMIT ) {
	time_maxerror = NTP_PHASE_LIMIT;
	time_status |= STA_UNSYNC;
    }

    /*
     * Leap second processing. If in leap-insert state at
     * the end of the day, the system clock is set back one
     * second; if in leap-delete state, the system clock is
     * set ahead one second. The microtime() routine or
     * external clock driver will insure that reported time
     * is always monotonic. The ugly divides should be
     * replaced.
     */
    switch (time_state) {

    case TIME_OK:
	if (time_status & STA_INS)
	    time_state = TIME_INS;
	else if (time_status & STA_DEL)
	    time_state = TIME_DEL;
	break;

    case TIME_INS:
	if (xtime.tv_sec % 86400 == 0) {
	    xtime.tv_sec--;
	    time_state = TIME_OOP;
	    printk(KERN_NOTICE "Clock: inserting leap second 23:59:60 UTC\n");
	}
	break;

    case TIME_DEL:
	if ((xtime.tv_sec + 1) % 86400 == 0) {
	    xtime.tv_sec++;
	    time_state = TIME_WAIT;
	    printk(KERN_NOTICE "Clock: deleting leap second 23:59:59 UTC\n");
	}
	break;

    case TIME_OOP:
	time_state = TIME_WAIT;
	break;

    case TIME_WAIT:
	if (!(time_status & (STA_INS | STA_DEL)))
	    time_state = TIME_OK;
    }

    /*
     * Compute the phase adjustment for the next second. In
     * PLL mode, the offset is reduced by a fixed factor
     * times the time constant. In FLL mode the offset is
     * used directly. In either mode, the maximum phase
     * adjustment for each second is clamped so as to spread
     * the adjustment over not more than the number of
     * seconds between updates.
     */
    if (time_offset < 0) {
	ltemp = -time_offset;
	if (!(time_status & STA_FLL))
	    ltemp >>= SHIFT_KG + time_constant;
	if (ltemp > (MAXPHASE / MINSEC) << SHIFT_UPDATE)
	    ltemp = (MAXPHASE / MINSEC) << SHIFT_UPDATE;
	time_offset += ltemp;
	time_adj = -ltemp << (SHIFT_SCALE - SHIFT_HZ - SHIFT_UPDATE);
    } else {
	ltemp = time_offset;
	if (!(time_status & STA_FLL))
	    ltemp >>= SHIFT_KG + time_constant;
	if (ltemp > (MAXPHASE / MINSEC) << SHIFT_UPDATE)
	    ltemp = (MAXPHASE / MINSEC) << SHIFT_UPDATE;
	time_offset -= ltemp;
	time_adj = ltemp << (SHIFT_SCALE - SHIFT_HZ - SHIFT_UPDATE);
    }

    /*
     * Compute the frequency estimate and additional phase
     * adjustment due to frequency error for the next
     * second. When the PPS signal is engaged, gnaw on the
     * watchdog counter and update the frequency computed by
     * the pll and the PPS signal.
     */
    pps_valid++;
    if (pps_valid == PPS_VALID) {	/* PPS signal lost */
	pps_jitter = MAXTIME;
	pps_stabil = MAXFREQ;
	time_status &= ~(STA_PPSSIGNAL | STA_PPSJITTER |
			 STA_PPSWANDER | STA_PPSERROR);
    }
    ltemp = time_freq + pps_freq;
    if (ltemp < 0)
	time_adj -= -ltemp >>
	    (SHIFT_USEC + SHIFT_HZ - SHIFT_SCALE);
    else
	time_adj += ltemp >>
	    (SHIFT_USEC + SHIFT_HZ - SHIFT_SCALE);

#if HZ == 100
    /* Compensate for (HZ==100) != (1 << SHIFT_HZ).
     * Add 25% and 3.125% to get 128.125; => only 0.125% error (p. 14)
     */
    if (time_adj < 0)
	time_adj -= (-time_adj >> 2) + (-time_adj >> 5);
    else
	time_adj += (time_adj >> 2) + (time_adj >> 5);
#endif
}

/* in the NTP reference this is called "hardclock()" */
static void update_wall_time_one_tick(void)
{
	long time_adjust_step;

	if ( (time_adjust_step = time_adjust) != 0 ) {
	    /* We are doing an adjtime thing. 
	     *
	     * Prepare time_adjust_step to be within bounds.
	     * Note that a positive time_adjust means we want the clock
	     * to run faster.
	     *
	     * Limit the amount of the step to be in the range
	     * -tickadj .. +tickadj
	     */
	     if (time_adjust > tickadj)
		time_adjust_step = tickadj;
	     else if (time_adjust < -tickadj)
		time_adjust_step = -tickadj;
	     
	    /* Reduce by this step the amount of time left  */
	    time_adjust -= time_adjust_step;
	}
	xtime.tv_nsec += tick_nsec + time_adjust_step * 1000;
	/*
	 * Advance the phase, once it gets to one microsecond, then
	 * advance the tick more.
	 */
	time_phase += time_adj;
	if (time_phase <= -FINEUSEC) {
		long ltemp = -time_phase >> (SHIFT_SCALE - 10);
		time_phase += ltemp << (SHIFT_SCALE - 10);
		xtime.tv_nsec -= ltemp;
	}
	else if (time_phase >= FINEUSEC) {
		long ltemp = time_phase >> (SHIFT_SCALE - 10);
		time_phase -= ltemp << (SHIFT_SCALE - 10);
		xtime.tv_nsec += ltemp;
	}
}

/*
 * Using a loop looks inefficient, but "ticks" is
 * usually just one (we shouldn't be losing ticks,
 * we're doing this this way mainly for interrupt
 * latency reasons, not because we think we'll
 * have lots of lost timer ticks
 */
static void update_wall_time(unsigned long ticks)
{
	do {
		ticks--;
		update_wall_time_one_tick();
	} while (ticks);

	if (xtime.tv_nsec >= 1000000000) {
	    xtime.tv_nsec -= 1000000000;
	    xtime.tv_sec++;
	    second_overflow();
	}
}

static inline void do_process_times(struct task_struct *p,
	unsigned long user, unsigned long system)
{
	unsigned long psecs;

	psecs = (p->utime += user);
	psecs += (p->stime += system);
	if (psecs / HZ > p->rlim[RLIMIT_CPU].rlim_cur) {
		/* Send SIGXCPU every second.. */
		if (!(psecs % HZ))
			send_sig(SIGXCPU, p, 1);
		/* and SIGKILL when we go over max.. */
		if (psecs / HZ > p->rlim[RLIMIT_CPU].rlim_max)
			send_sig(SIGKILL, p, 1);
	}
}

static inline void do_it_virt(struct task_struct * p, unsigned long ticks)
{
	unsigned long it_virt = p->it_virt_value;

	if (it_virt) {
		it_virt -= ticks;
		if (!it_virt) {
			it_virt = p->it_virt_incr;
			send_sig(SIGVTALRM, p, 1);
		}
		p->it_virt_value = it_virt;
	}
}

static inline void do_it_prof(struct task_struct *p)
{
	unsigned long it_prof = p->it_prof_value;

	if (it_prof) {
		if (--it_prof == 0) {
			it_prof = p->it_prof_incr;
			send_sig(SIGPROF, p, 1);
		}
		p->it_prof_value = it_prof;
	}
}

void update_one_process(struct task_struct *p, unsigned long user,
			unsigned long system, int cpu)
{
	do_process_times(p, user, system);
	do_it_virt(p, user);
	do_it_prof(p);
}	

/*
 * Called from the timer interrupt handler to charge one tick to the current 
 * process.  user_tick is 1 if the tick is user time, 0 for system.
 */
void update_process_times(int user_tick)
{
	struct task_struct *p = current;
	int cpu = smp_processor_id(), system = user_tick ^ 1;

	update_one_process(p, user_tick, system, cpu);
	run_local_timers();
	scheduler_tick(user_tick, system);
}

/*
 * Nr of active tasks - counted in fixed-point numbers
 */
static unsigned long count_active_tasks(void)
{
	return (nr_running() + nr_uninterruptible()) * FIXED_1;
}

/*
 * Hmm.. Changed this, as the GNU make sources (load.c) seems to
 * imply that avenrun[] is the standard name for this kind of thing.
 * Nothing else seems to be standardized: the fractional size etc
 * all seem to differ on different machines.
 *
 * Requires xtime_lock to access.
 */
unsigned long avenrun[3];

/*
 * calc_load - given tick count, update the avenrun load estimates.
 * This is called while holding a write_lock on xtime_lock.
 */
static inline void calc_load(unsigned long ticks)
{
	unsigned long active_tasks; /* fixed-point */
	static int count = LOAD_FREQ;

	count -= ticks;
	if (count < 0) {
		count += LOAD_FREQ;
		active_tasks = count_active_tasks();
		CALC_LOAD(avenrun[0], EXP_1, active_tasks);
		CALC_LOAD(avenrun[1], EXP_5, active_tasks);
		CALC_LOAD(avenrun[2], EXP_15, active_tasks);
	}
}

/* jiffies at the most recent update of wall time */
unsigned long wall_jiffies;

/*
 * This read-write spinlock protects us from races in SMP while
 * playing with xtime and avenrun.
 */
rwlock_t xtime_lock __cacheline_aligned_in_smp = RW_LOCK_UNLOCKED;
unsigned long last_time_offset;

/*
 * This function runs timers and the timer-tq in bottom half context.
 */
static void run_timer_softirq(struct softirq_action *h)
{
	tvec_base_t *base = &per_cpu(tvec_bases, smp_processor_id());

	if ((long)(jiffies - base->timer_jiffies) >= 0)
		__run_timers(base);
}

/*
 * Called by the local, per-CPU timer interrupt on SMP.
 */
void run_local_timers(void)
{
	raise_softirq(TIMER_SOFTIRQ);
}

/*
 * Called by the timer interrupt. xtime_lock must already be taken
 * by the timer IRQ!
 */
static inline void update_times(void)
{
	unsigned long ticks;

	ticks = jiffies - wall_jiffies;
	if (ticks) {
		wall_jiffies += ticks;
		update_wall_time(ticks);
	}
	last_time_offset = 0;
	calc_load(ticks);
}
  
/*
 * The 64-bit jiffies value is not atomic - you MUST NOT read it
 * without holding read_lock_irq(&xtime_lock).
 * jiffies is defined in the linker script...
 */

void do_timer(struct pt_regs *regs)
{
	jiffies_64++;
#ifndef CONFIG_SMP
	/* SMP process accounting uses the local APIC timer */

	update_process_times(user_mode(regs));
#endif
	update_times();
}

#if !defined(__alpha__) && !defined(__ia64__)

extern int do_setitimer(int, struct itimerval *, struct itimerval *);

/*
 * For backwards compatibility?  This can be done in libc so Alpha
 * and all newer ports shouldn't need it.
 */
asmlinkage unsigned long sys_alarm(unsigned int seconds)
{
	struct itimerval it_new, it_old;
	unsigned int oldalarm;

	it_new.it_interval.tv_sec = it_new.it_interval.tv_usec = 0;
	it_new.it_value.tv_sec = seconds;
	it_new.it_value.tv_usec = 0;
	do_setitimer(ITIMER_REAL, &it_new, &it_old);
	oldalarm = it_old.it_value.tv_sec;
	/* ehhh.. We can't return 0 if we have an alarm pending.. */
	/* And we'd better return too much than too little anyway */
	if (it_old.it_value.tv_usec)
		oldalarm++;
	return oldalarm;
}

#endif

#ifndef __alpha__

/*
 * The Alpha uses getxpid, getxuid, and getxgid instead.  Maybe this
 * should be moved into arch/i386 instead?
 */

/**
 * sys_getpid - return the thread group id of the current process
 *
 * Note, despite the name, this returns the tgid not the pid.  The tgid and
 * the pid are identical unless CLONE_THREAD was specified on clone() in
 * which case the tgid is the same in all threads of the same group.
 *
 * This is SMP safe as current->tgid does not change.
 */
asmlinkage long sys_getpid(void)
{
	return current->tgid;
}

/*
 * Accessing ->group_leader->real_parent is not SMP-safe, it could
 * change from under us. However, rather than getting any lock
 * we can use an optimistic algorithm: get the parent
 * pid, and go back and check that the parent is still
 * the same. If it has changed (which is extremely unlikely
 * indeed), we just try again..
 *
 * NOTE! This depends on the fact that even if we _do_
 * get an old value of "parent", we can happily dereference
 * the pointer (it was and remains a dereferencable kernel pointer
 * no matter what): we just can't necessarily trust the result
 * until we know that the parent pointer is valid.
 *
 * NOTE2: ->group_leader never changes from under us.
 */
asmlinkage long sys_getppid(void)
{
	int pid;
	struct task_struct *me = current;
	struct task_struct *parent;

	parent = me->group_leader->real_parent;
	for (;;) {
		pid = parent->tgid;
#if CONFIG_SMP
{
		struct task_struct *old = parent;

		/*
		 * Make sure we read the pid before re-reading the
		 * parent pointer:
		 */
		rmb();
		parent = me->group_leader->real_parent;
		if (old != parent)
			continue;
}
#endif
		break;
	}
	return pid;
}

asmlinkage long sys_getuid(void)
{
	/* Only we change this so SMP safe */
	return current->uid;
}

asmlinkage long sys_geteuid(void)
{
	/* Only we change this so SMP safe */
	return current->euid;
}

asmlinkage long sys_getgid(void)
{
	/* Only we change this so SMP safe */
	return current->gid;
}

asmlinkage long sys_getegid(void)
{
	/* Only we change this so SMP safe */
	return  current->egid;
}

#endif

static void process_timeout(unsigned long __data)
{
	wake_up_process((task_t *)__data);
}

/**
 * schedule_timeout - sleep until timeout
 * @timeout: timeout value in jiffies
 *
 * Make the current task sleep until @timeout jiffies have
 * elapsed. The routine will return immediately unless
 * the current task state has been set (see set_current_state()).
 *
 * You can set the task state as follows -
 *
 * %TASK_UNINTERRUPTIBLE - at least @timeout jiffies are guaranteed to
 * pass before the routine returns. The routine will return 0
 *
 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
 * delivered to the current task. In this case the remaining time
 * in jiffies will be returned, or 0 if the timer expired in time
 *
 * The current task state is guaranteed to be TASK_RUNNING when this
 * routine returns.
 *
 * Specifying a @timeout value of %MAX_SCHEDULE_TIMEOUT will schedule
 * the CPU away without a bound on the timeout. In this case the return
 * value will be %MAX_SCHEDULE_TIMEOUT.
 *
 * In all cases the return value is guaranteed to be non-negative.
 */
signed long schedule_timeout(signed long timeout)
{
	timer_t timer;
	unsigned long expire;

	switch (timeout)
	{
	case MAX_SCHEDULE_TIMEOUT:
		/*
		 * These two special cases are useful to be comfortable
		 * in the caller. Nothing more. We could take
		 * MAX_SCHEDULE_TIMEOUT from one of the negative value
		 * but I' d like to return a valid offset (>=0) to allow
		 * the caller to do everything it want with the retval.
		 */
		schedule();
		goto out;
	default:
		/*
		 * Another bit of PARANOID. Note that the retval will be
		 * 0 since no piece of kernel is supposed to do a check
		 * for a negative retval of schedule_timeout() (since it
		 * should never happens anyway). You just have the printk()
		 * that will tell you if something is gone wrong and where.
		 */
		if (timeout < 0)
		{
			printk(KERN_ERR "schedule_timeout: wrong timeout "
			       "value %lx from %p\n", timeout,
			       __builtin_return_address(0));
			current->state = TASK_RUNNING;
			goto out;
		}
	}

	expire = timeout + jiffies;

	init_timer(&timer);
	timer.expires = expire;
	timer.data = (unsigned long) current;
	timer.function = process_timeout;

	add_timer(&timer);
	schedule();
	del_timer_sync(&timer);

	timeout = expire - jiffies;

 out:
	return timeout < 0 ? 0 : timeout;
}

/* Thread ID - the internal kernel "pid" */
asmlinkage long sys_gettid(void)
{
	return current->pid;
}

static long nanosleep_restart(struct restart_block *restart)
{
	unsigned long expire = restart->arg0, now = jiffies;
	struct timespec *rmtp = (struct timespec *) restart->arg1;
	long ret;

	/* Did it expire while we handled signals? */
	if (!time_after(expire, now))
		return 0;

	current->state = TASK_INTERRUPTIBLE;
	expire = schedule_timeout(expire - now);

	ret = 0;
	if (expire) {
		struct timespec t;
		jiffies_to_timespec(expire, &t);

		ret = -ERESTART_RESTARTBLOCK;
		if (rmtp && copy_to_user(rmtp, &t, sizeof(t)))
			ret = -EFAULT;
		/* The 'restart' block is already filled in */
	}
	return ret;
}

asmlinkage long sys_nanosleep(struct timespec *rqtp, struct timespec *rmtp)
{
	struct timespec t;
	unsigned long expire;
	long ret;

	if (copy_from_user(&t, rqtp, sizeof(t)))
		return -EFAULT;

	if ((t.tv_nsec >= 1000000000L) || (t.tv_nsec < 0) || (t.tv_sec < 0))
		return -EINVAL;

	expire = timespec_to_jiffies(&t) + (t.tv_sec || t.tv_nsec);
	current->state = TASK_INTERRUPTIBLE;
	expire = schedule_timeout(expire);

	ret = 0;
	if (expire) {
		struct restart_block *restart;
		jiffies_to_timespec(expire, &t);
		if (rmtp && copy_to_user(rmtp, &t, sizeof(t)))
			return -EFAULT;

		restart = &current_thread_info()->restart_block;
		restart->fn = nanosleep_restart;
		restart->arg0 = jiffies + expire;
		restart->arg1 = (unsigned long) rmtp;
		ret = -ERESTART_RESTARTBLOCK;
	}
	return ret;
}

/*
 * sys_sysinfo - fill in sysinfo struct
 */ 
asmlinkage long sys_sysinfo(struct sysinfo *info)
{
	struct sysinfo val;
	unsigned long mem_total, sav_total;
	unsigned int mem_unit, bitcount;

	memset((char *)&val, 0, sizeof(struct sysinfo));

	read_lock_irq(&xtime_lock);
	val.uptime = jiffies / HZ;

	val.loads[0] = avenrun[0] << (SI_LOAD_SHIFT - FSHIFT);
	val.loads[1] = avenrun[1] << (SI_LOAD_SHIFT - FSHIFT);
	val.loads[2] = avenrun[2] << (SI_LOAD_SHIFT - FSHIFT);

	val.procs = nr_threads;
	read_unlock_irq(&xtime_lock);

	si_meminfo(&val);
	si_swapinfo(&val);

	/*
	 * If the sum of all the available memory (i.e. ram + swap)
	 * is less than can be stored in a 32 bit unsigned long then
	 * we can be binary compatible with 2.2.x kernels.  If not,
	 * well, in that case 2.2.x was broken anyways...
	 *
	 *  -Erik Andersen <andersee@debian.org>
	 */

	mem_total = val.totalram + val.totalswap;
	if (mem_total < val.totalram || mem_total < val.totalswap)
		goto out;
	bitcount = 0;
	mem_unit = val.mem_unit;
	while (mem_unit > 1) {
		bitcount++;
		mem_unit >>= 1;
		sav_total = mem_total;
		mem_total <<= 1;
		if (mem_total < sav_total)
			goto out;
	}

	/*
	 * If mem_total did not overflow, multiply all memory values by
	 * val.mem_unit and set it to 1.  This leaves things compatible
	 * with 2.2.x, and also retains compatibility with earlier 2.4.x
	 * kernels...
	 */

	val.mem_unit = 1;
	val.totalram <<= bitcount;
	val.freeram <<= bitcount;
	val.sharedram <<= bitcount;
	val.bufferram <<= bitcount;
	val.totalswap <<= bitcount;
	val.freeswap <<= bitcount;
	val.totalhigh <<= bitcount;
	val.freehigh <<= bitcount;

out:
	if (copy_to_user(info, &val, sizeof(struct sysinfo)))
		return -EFAULT;

	return 0;
}

static void __devinit init_timers_cpu(int cpu)
{
	int j;
	tvec_base_t *base;
       
	base = &per_cpu(tvec_bases, cpu);
	spin_lock_init(&base->lock);
	for (j = 0; j < TVN_SIZE; j++) {
		INIT_LIST_HEAD(base->tv5.vec + j);
		INIT_LIST_HEAD(base->tv4.vec + j);
		INIT_LIST_HEAD(base->tv3.vec + j);
		INIT_LIST_HEAD(base->tv2.vec + j);
	}
	for (j = 0; j < TVR_SIZE; j++)
		INIT_LIST_HEAD(base->tv1.vec + j);
}
	
static int __devinit timer_cpu_notify(struct notifier_block *self, 
				unsigned long action, void *hcpu)
{
	long cpu = (long)hcpu;
	switch(action) {
	case CPU_UP_PREPARE:
		init_timers_cpu(cpu);
		break;
	default:
		break;
	}
	return NOTIFY_OK;
}

static struct notifier_block __devinitdata timers_nb = {
	.notifier_call	= timer_cpu_notify,
};


void __init init_timers(void)
{
	timer_cpu_notify(&timers_nb, (unsigned long)CPU_UP_PREPARE,
				(void *)(long)smp_processor_id());
	register_cpu_notifier(&timers_nb);
	open_softirq(TIMER_SOFTIRQ, run_timer_softirq, NULL);
}