Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 | /* * linux/kernel/timer.c * * Kernel internal timers, kernel timekeeping, basic process system calls * * Copyright (C) 1991, 1992 Linus Torvalds * * 1997-01-28 Modified by Finn Arne Gangstad to make timers scale better. * * 1997-09-10 Updated NTP code according to technical memorandum Jan '96 * "A Kernel Model for Precision Timekeeping" by Dave Mills * 1998-12-24 Fixed a xtime SMP race (we need the xtime_lock rw spinlock to * serialize accesses to xtime/lost_ticks). * Copyright (C) 1998 Andrea Arcangeli * 1999-03-10 Improved NTP compatibility by Ulrich Windl * 2002-05-31 Move sys_sysinfo here and make its locking sane, Robert Love * 2000-10-05 Implemented scalable SMP per-CPU timer handling. * Copyright (C) 2000, 2001, 2002 Ingo Molnar * Designed by David S. Miller, Alexey Kuznetsov and Ingo Molnar */ #include <linux/kernel_stat.h> #include <linux/interrupt.h> #include <linux/percpu.h> #include <linux/init.h> #include <linux/mm.h> #include <linux/notifier.h> #include <linux/thread_info.h> #include <asm/uaccess.h> /* * per-CPU timer vector definitions: */ #define TVN_BITS 6 #define TVR_BITS 8 #define TVN_SIZE (1 << TVN_BITS) #define TVR_SIZE (1 << TVR_BITS) #define TVN_MASK (TVN_SIZE - 1) #define TVR_MASK (TVR_SIZE - 1) typedef struct tvec_s { int index; struct list_head vec[TVN_SIZE]; } tvec_t; typedef struct tvec_root_s { int index; struct list_head vec[TVR_SIZE]; } tvec_root_t; typedef struct timer_list timer_t; struct tvec_t_base_s { spinlock_t lock; unsigned long timer_jiffies; timer_t *running_timer; tvec_root_t tv1; tvec_t tv2; tvec_t tv3; tvec_t tv4; tvec_t tv5; } ____cacheline_aligned_in_smp; typedef struct tvec_t_base_s tvec_base_t; /* Fake initialization */ static DEFINE_PER_CPU(tvec_base_t, tvec_bases) = { SPIN_LOCK_UNLOCKED }; static void check_timer_failed(timer_t *timer) { static int whine_count; if (whine_count < 16) { whine_count++; printk("Uninitialised timer!\n"); printk("This is just a warning. Your computer is OK\n"); printk("function=0x%p, data=0x%lx\n", timer->function, timer->data); dump_stack(); } /* * Now fix it up */ spin_lock_init(&timer->lock); timer->magic = TIMER_MAGIC; } static inline void check_timer(timer_t *timer) { if (timer->magic != TIMER_MAGIC) check_timer_failed(timer); } static inline void internal_add_timer(tvec_base_t *base, timer_t *timer) { unsigned long expires = timer->expires; unsigned long idx = expires - base->timer_jiffies; struct list_head *vec; if (idx < TVR_SIZE) { int i = expires & TVR_MASK; vec = base->tv1.vec + i; } else if (idx < 1 << (TVR_BITS + TVN_BITS)) { int i = (expires >> TVR_BITS) & TVN_MASK; vec = base->tv2.vec + i; } else if (idx < 1 << (TVR_BITS + 2 * TVN_BITS)) { int i = (expires >> (TVR_BITS + TVN_BITS)) & TVN_MASK; vec = base->tv3.vec + i; } else if (idx < 1 << (TVR_BITS + 3 * TVN_BITS)) { int i = (expires >> (TVR_BITS + 2 * TVN_BITS)) & TVN_MASK; vec = base->tv4.vec + i; } else if ((signed long) idx < 0) { /* * Can happen if you add a timer with expires == jiffies, * or you set a timer to go off in the past */ vec = base->tv1.vec + base->tv1.index; } else if (idx <= 0xffffffffUL) { int i = (expires >> (TVR_BITS + 3 * TVN_BITS)) & TVN_MASK; vec = base->tv5.vec + i; } else { /* Can only get here on architectures with 64-bit jiffies */ INIT_LIST_HEAD(&timer->entry); return; } /* * Timers are FIFO: */ list_add_tail(&timer->entry, vec); } /*** * add_timer - start a timer * @timer: the timer to be added * * The kernel will do a ->function(->data) callback from the * timer interrupt at the ->expired point in the future. The * current time is 'jiffies'. * * The timer's ->expired, ->function (and if the handler uses it, ->data) * fields must be set prior calling this function. * * Timers with an ->expired field in the past will be executed in the next * timer tick. It's illegal to add an already pending timer. */ void add_timer(timer_t *timer) { int cpu = get_cpu(); tvec_base_t *base = &per_cpu(tvec_bases, cpu); unsigned long flags; BUG_ON(timer_pending(timer) || !timer->function); check_timer(timer); spin_lock_irqsave(&base->lock, flags); internal_add_timer(base, timer); timer->base = base; spin_unlock_irqrestore(&base->lock, flags); put_cpu(); } /*** * add_timer_on - start a timer on a particular CPU * @timer: the timer to be added * @cpu: the CPU to start it on * * This is not very scalable on SMP. */ void add_timer_on(struct timer_list *timer, int cpu) { tvec_base_t *base = &per_cpu(tvec_bases, cpu); unsigned long flags; BUG_ON(timer_pending(timer) || !timer->function); check_timer(timer); spin_lock_irqsave(&base->lock, flags); internal_add_timer(base, timer); timer->base = base; spin_unlock_irqrestore(&base->lock, flags); } /*** * mod_timer - modify a timer's timeout * @timer: the timer to be modified * * mod_timer is a more efficient way to update the expire field of an * active timer (if the timer is inactive it will be activated) * * mod_timer(timer, expires) is equivalent to: * * del_timer(timer); timer->expires = expires; add_timer(timer); * * Note that if there are multiple unserialized concurrent users of the * same timer, then mod_timer() is the only safe way to modify the timeout, * since add_timer() cannot modify an already running timer. * * The function returns whether it has modified a pending timer or not. * (ie. mod_timer() of an inactive timer returns 0, mod_timer() of an * active timer returns 1.) */ int mod_timer(timer_t *timer, unsigned long expires) { tvec_base_t *old_base, *new_base; unsigned long flags; int ret = 0; BUG_ON(!timer->function); check_timer(timer); /* * This is a common optimization triggered by the * networking code - if the timer is re-modified * to be the same thing then just return: */ if (timer->expires == expires && timer_pending(timer)) return 1; spin_lock_irqsave(&timer->lock, flags); new_base = &per_cpu(tvec_bases, smp_processor_id()); repeat: old_base = timer->base; /* * Prevent deadlocks via ordering by old_base < new_base. */ if (old_base && (new_base != old_base)) { if (old_base < new_base) { spin_lock(&new_base->lock); spin_lock(&old_base->lock); } else { spin_lock(&old_base->lock); spin_lock(&new_base->lock); } /* * The timer base might have been cancelled while we were * trying to take the lock(s): */ if (timer->base != old_base) { spin_unlock(&new_base->lock); spin_unlock(&old_base->lock); goto repeat; } } else spin_lock(&new_base->lock); /* * Delete the previous timeout (if there was any), and install * the new one: */ if (old_base) { list_del(&timer->entry); ret = 1; } timer->expires = expires; internal_add_timer(new_base, timer); timer->base = new_base; if (old_base && (new_base != old_base)) spin_unlock(&old_base->lock); spin_unlock(&new_base->lock); spin_unlock_irqrestore(&timer->lock, flags); return ret; } /*** * del_timer - deactive a timer. * @timer: the timer to be deactivated * * del_timer() deactivates a timer - this works on both active and inactive * timers. * * The function returns whether it has deactivated a pending timer or not. * (ie. del_timer() of an inactive timer returns 0, del_timer() of an * active timer returns 1.) */ int del_timer(timer_t *timer) { unsigned long flags; tvec_base_t *base; check_timer(timer); repeat: base = timer->base; if (!base) return 0; spin_lock_irqsave(&base->lock, flags); if (base != timer->base) { spin_unlock_irqrestore(&base->lock, flags); goto repeat; } list_del(&timer->entry); timer->base = NULL; spin_unlock_irqrestore(&base->lock, flags); return 1; } #ifdef CONFIG_SMP /*** * del_timer_sync - deactivate a timer and wait for the handler to finish. * @timer: the timer to be deactivated * * This function only differs from del_timer() on SMP: besides deactivating * the timer it also makes sure the handler has finished executing on other * CPUs. * * Synchronization rules: callers must prevent restarting of the timer, * otherwise this function is meaningless. It must not be called from * interrupt contexts. Upon exit the timer is not queued and the handler * is not running on any CPU. * * The function returns whether it has deactivated a pending timer or not. */ int del_timer_sync(timer_t *timer) { tvec_base_t *base; int i, ret = 0; check_timer(timer); del_again: ret += del_timer(timer); for (i = 0; i < NR_CPUS; i++) { if (!cpu_online(i)) continue; base = &per_cpu(tvec_bases, i); if (base->running_timer == timer) { while (base->running_timer == timer) { cpu_relax(); preempt_check_resched(); } break; } } if (timer_pending(timer)) goto del_again; return ret; } #endif static int cascade(tvec_base_t *base, tvec_t *tv) { /* cascade all the timers from tv up one level */ struct list_head *head, *curr, *next; head = tv->vec + tv->index; curr = head->next; /* * We are removing _all_ timers from the list, so we don't have to * detach them individually, just clear the list afterwards. */ while (curr != head) { timer_t *tmp; tmp = list_entry(curr, timer_t, entry); if (tmp->base != base) BUG(); next = curr->next; internal_add_timer(base, tmp); curr = next; } INIT_LIST_HEAD(head); return tv->index = (tv->index + 1) & TVN_MASK; } /*** * __run_timers - run all expired timers (if any) on this CPU. * @base: the timer vector to be processed. * * This function cascades all vectors and executes all expired timer * vectors. */ static inline void __run_timers(tvec_base_t *base) { spin_lock_irq(&base->lock); while ((long)(jiffies - base->timer_jiffies) >= 0) { struct list_head *head, *curr; /* * Cascade timers: */ if (!base->tv1.index && (cascade(base, &base->tv2) == 1) && (cascade(base, &base->tv3) == 1) && cascade(base, &base->tv4) == 1) cascade(base, &base->tv5); repeat: head = base->tv1.vec + base->tv1.index; curr = head->next; if (curr != head) { void (*fn)(unsigned long); unsigned long data; timer_t *timer; timer = list_entry(curr, timer_t, entry); fn = timer->function; data = timer->data; list_del(&timer->entry); timer->base = NULL; #if CONFIG_SMP base->running_timer = timer; #endif spin_unlock_irq(&base->lock); if (!fn) printk("Bad: timer %p has NULL fn. (data: %08lx)\n", timer, data); else fn(data); spin_lock_irq(&base->lock); goto repeat; } ++base->timer_jiffies; base->tv1.index = (base->tv1.index + 1) & TVR_MASK; } #if CONFIG_SMP base->running_timer = NULL; #endif spin_unlock_irq(&base->lock); } /******************************************************************/ /* * Timekeeping variables */ unsigned long tick_usec = TICK_USEC; /* ACTHZ period (usec) */ unsigned long tick_nsec = TICK_NSEC(TICK_USEC); /* USER_HZ period (nsec) */ /* The current time */ struct timespec xtime __attribute__ ((aligned (16))); /* Don't completely fail for HZ > 500. */ int tickadj = 500/HZ ? : 1; /* microsecs */ /* * phase-lock loop variables */ /* TIME_ERROR prevents overwriting the CMOS clock */ int time_state = TIME_OK; /* clock synchronization status */ int time_status = STA_UNSYNC; /* clock status bits */ long time_offset; /* time adjustment (us) */ long time_constant = 2; /* pll time constant */ long time_tolerance = MAXFREQ; /* frequency tolerance (ppm) */ long time_precision = 1; /* clock precision (us) */ long time_maxerror = NTP_PHASE_LIMIT; /* maximum error (us) */ long time_esterror = NTP_PHASE_LIMIT; /* estimated error (us) */ long time_phase; /* phase offset (scaled us) */ long time_freq = ((1000000 + HZ/2) % HZ - HZ/2) << SHIFT_USEC; /* frequency offset (scaled ppm)*/ long time_adj; /* tick adjust (scaled 1 / HZ) */ long time_reftime; /* time at last adjustment (s) */ long time_adjust; /* * this routine handles the overflow of the microsecond field * * The tricky bits of code to handle the accurate clock support * were provided by Dave Mills (Mills@UDEL.EDU) of NTP fame. * They were originally developed for SUN and DEC kernels. * All the kudos should go to Dave for this stuff. * */ static void second_overflow(void) { long ltemp; /* Bump the maxerror field */ time_maxerror += time_tolerance >> SHIFT_USEC; if ( time_maxerror > NTP_PHASE_LIMIT ) { time_maxerror = NTP_PHASE_LIMIT; time_status |= STA_UNSYNC; } /* * Leap second processing. If in leap-insert state at * the end of the day, the system clock is set back one * second; if in leap-delete state, the system clock is * set ahead one second. The microtime() routine or * external clock driver will insure that reported time * is always monotonic. The ugly divides should be * replaced. */ switch (time_state) { case TIME_OK: if (time_status & STA_INS) time_state = TIME_INS; else if (time_status & STA_DEL) time_state = TIME_DEL; break; case TIME_INS: if (xtime.tv_sec % 86400 == 0) { xtime.tv_sec--; time_state = TIME_OOP; printk(KERN_NOTICE "Clock: inserting leap second 23:59:60 UTC\n"); } break; case TIME_DEL: if ((xtime.tv_sec + 1) % 86400 == 0) { xtime.tv_sec++; time_state = TIME_WAIT; printk(KERN_NOTICE "Clock: deleting leap second 23:59:59 UTC\n"); } break; case TIME_OOP: time_state = TIME_WAIT; break; case TIME_WAIT: if (!(time_status & (STA_INS | STA_DEL))) time_state = TIME_OK; } /* * Compute the phase adjustment for the next second. In * PLL mode, the offset is reduced by a fixed factor * times the time constant. In FLL mode the offset is * used directly. In either mode, the maximum phase * adjustment for each second is clamped so as to spread * the adjustment over not more than the number of * seconds between updates. */ if (time_offset < 0) { ltemp = -time_offset; if (!(time_status & STA_FLL)) ltemp >>= SHIFT_KG + time_constant; if (ltemp > (MAXPHASE / MINSEC) << SHIFT_UPDATE) ltemp = (MAXPHASE / MINSEC) << SHIFT_UPDATE; time_offset += ltemp; time_adj = -ltemp << (SHIFT_SCALE - SHIFT_HZ - SHIFT_UPDATE); } else { ltemp = time_offset; if (!(time_status & STA_FLL)) ltemp >>= SHIFT_KG + time_constant; if (ltemp > (MAXPHASE / MINSEC) << SHIFT_UPDATE) ltemp = (MAXPHASE / MINSEC) << SHIFT_UPDATE; time_offset -= ltemp; time_adj = ltemp << (SHIFT_SCALE - SHIFT_HZ - SHIFT_UPDATE); } /* * Compute the frequency estimate and additional phase * adjustment due to frequency error for the next * second. When the PPS signal is engaged, gnaw on the * watchdog counter and update the frequency computed by * the pll and the PPS signal. */ pps_valid++; if (pps_valid == PPS_VALID) { /* PPS signal lost */ pps_jitter = MAXTIME; pps_stabil = MAXFREQ; time_status &= ~(STA_PPSSIGNAL | STA_PPSJITTER | STA_PPSWANDER | STA_PPSERROR); } ltemp = time_freq + pps_freq; if (ltemp < 0) time_adj -= -ltemp >> (SHIFT_USEC + SHIFT_HZ - SHIFT_SCALE); else time_adj += ltemp >> (SHIFT_USEC + SHIFT_HZ - SHIFT_SCALE); #if HZ == 100 /* Compensate for (HZ==100) != (1 << SHIFT_HZ). * Add 25% and 3.125% to get 128.125; => only 0.125% error (p. 14) */ if (time_adj < 0) time_adj -= (-time_adj >> 2) + (-time_adj >> 5); else time_adj += (time_adj >> 2) + (time_adj >> 5); #endif } /* in the NTP reference this is called "hardclock()" */ static void update_wall_time_one_tick(void) { long time_adjust_step; if ( (time_adjust_step = time_adjust) != 0 ) { /* We are doing an adjtime thing. * * Prepare time_adjust_step to be within bounds. * Note that a positive time_adjust means we want the clock * to run faster. * * Limit the amount of the step to be in the range * -tickadj .. +tickadj */ if (time_adjust > tickadj) time_adjust_step = tickadj; else if (time_adjust < -tickadj) time_adjust_step = -tickadj; /* Reduce by this step the amount of time left */ time_adjust -= time_adjust_step; } xtime.tv_nsec += tick_nsec + time_adjust_step * 1000; /* * Advance the phase, once it gets to one microsecond, then * advance the tick more. */ time_phase += time_adj; if (time_phase <= -FINEUSEC) { long ltemp = -time_phase >> (SHIFT_SCALE - 10); time_phase += ltemp << (SHIFT_SCALE - 10); xtime.tv_nsec -= ltemp; } else if (time_phase >= FINEUSEC) { long ltemp = time_phase >> (SHIFT_SCALE - 10); time_phase -= ltemp << (SHIFT_SCALE - 10); xtime.tv_nsec += ltemp; } } /* * Using a loop looks inefficient, but "ticks" is * usually just one (we shouldn't be losing ticks, * we're doing this this way mainly for interrupt * latency reasons, not because we think we'll * have lots of lost timer ticks */ static void update_wall_time(unsigned long ticks) { do { ticks--; update_wall_time_one_tick(); } while (ticks); if (xtime.tv_nsec >= 1000000000) { xtime.tv_nsec -= 1000000000; xtime.tv_sec++; second_overflow(); } } static inline void do_process_times(struct task_struct *p, unsigned long user, unsigned long system) { unsigned long psecs; psecs = (p->utime += user); psecs += (p->stime += system); if (psecs / HZ > p->rlim[RLIMIT_CPU].rlim_cur) { /* Send SIGXCPU every second.. */ if (!(psecs % HZ)) send_sig(SIGXCPU, p, 1); /* and SIGKILL when we go over max.. */ if (psecs / HZ > p->rlim[RLIMIT_CPU].rlim_max) send_sig(SIGKILL, p, 1); } } static inline void do_it_virt(struct task_struct * p, unsigned long ticks) { unsigned long it_virt = p->it_virt_value; if (it_virt) { it_virt -= ticks; if (!it_virt) { it_virt = p->it_virt_incr; send_sig(SIGVTALRM, p, 1); } p->it_virt_value = it_virt; } } static inline void do_it_prof(struct task_struct *p) { unsigned long it_prof = p->it_prof_value; if (it_prof) { if (--it_prof == 0) { it_prof = p->it_prof_incr; send_sig(SIGPROF, p, 1); } p->it_prof_value = it_prof; } } void update_one_process(struct task_struct *p, unsigned long user, unsigned long system, int cpu) { do_process_times(p, user, system); do_it_virt(p, user); do_it_prof(p); } /* * Called from the timer interrupt handler to charge one tick to the current * process. user_tick is 1 if the tick is user time, 0 for system. */ void update_process_times(int user_tick) { struct task_struct *p = current; int cpu = smp_processor_id(), system = user_tick ^ 1; update_one_process(p, user_tick, system, cpu); run_local_timers(); scheduler_tick(user_tick, system); } /* * Nr of active tasks - counted in fixed-point numbers */ static unsigned long count_active_tasks(void) { return (nr_running() + nr_uninterruptible()) * FIXED_1; } /* * Hmm.. Changed this, as the GNU make sources (load.c) seems to * imply that avenrun[] is the standard name for this kind of thing. * Nothing else seems to be standardized: the fractional size etc * all seem to differ on different machines. * * Requires xtime_lock to access. */ unsigned long avenrun[3]; /* * calc_load - given tick count, update the avenrun load estimates. * This is called while holding a write_lock on xtime_lock. */ static inline void calc_load(unsigned long ticks) { unsigned long active_tasks; /* fixed-point */ static int count = LOAD_FREQ; count -= ticks; if (count < 0) { count += LOAD_FREQ; active_tasks = count_active_tasks(); CALC_LOAD(avenrun[0], EXP_1, active_tasks); CALC_LOAD(avenrun[1], EXP_5, active_tasks); CALC_LOAD(avenrun[2], EXP_15, active_tasks); } } /* jiffies at the most recent update of wall time */ unsigned long wall_jiffies; /* * This read-write spinlock protects us from races in SMP while * playing with xtime and avenrun. */ rwlock_t xtime_lock __cacheline_aligned_in_smp = RW_LOCK_UNLOCKED; unsigned long last_time_offset; /* * This function runs timers and the timer-tq in bottom half context. */ static void run_timer_softirq(struct softirq_action *h) { tvec_base_t *base = &per_cpu(tvec_bases, smp_processor_id()); if ((long)(jiffies - base->timer_jiffies) >= 0) __run_timers(base); } /* * Called by the local, per-CPU timer interrupt on SMP. */ void run_local_timers(void) { raise_softirq(TIMER_SOFTIRQ); } /* * Called by the timer interrupt. xtime_lock must already be taken * by the timer IRQ! */ static inline void update_times(void) { unsigned long ticks; ticks = jiffies - wall_jiffies; if (ticks) { wall_jiffies += ticks; update_wall_time(ticks); } last_time_offset = 0; calc_load(ticks); } /* * The 64-bit jiffies value is not atomic - you MUST NOT read it * without holding read_lock_irq(&xtime_lock). * jiffies is defined in the linker script... */ void do_timer(struct pt_regs *regs) { jiffies_64++; #ifndef CONFIG_SMP /* SMP process accounting uses the local APIC timer */ update_process_times(user_mode(regs)); #endif update_times(); } #if !defined(__alpha__) && !defined(__ia64__) extern int do_setitimer(int, struct itimerval *, struct itimerval *); /* * For backwards compatibility? This can be done in libc so Alpha * and all newer ports shouldn't need it. */ asmlinkage unsigned long sys_alarm(unsigned int seconds) { struct itimerval it_new, it_old; unsigned int oldalarm; it_new.it_interval.tv_sec = it_new.it_interval.tv_usec = 0; it_new.it_value.tv_sec = seconds; it_new.it_value.tv_usec = 0; do_setitimer(ITIMER_REAL, &it_new, &it_old); oldalarm = it_old.it_value.tv_sec; /* ehhh.. We can't return 0 if we have an alarm pending.. */ /* And we'd better return too much than too little anyway */ if (it_old.it_value.tv_usec) oldalarm++; return oldalarm; } #endif #ifndef __alpha__ /* * The Alpha uses getxpid, getxuid, and getxgid instead. Maybe this * should be moved into arch/i386 instead? */ /** * sys_getpid - return the thread group id of the current process * * Note, despite the name, this returns the tgid not the pid. The tgid and * the pid are identical unless CLONE_THREAD was specified on clone() in * which case the tgid is the same in all threads of the same group. * * This is SMP safe as current->tgid does not change. */ asmlinkage long sys_getpid(void) { return current->tgid; } /* * Accessing ->group_leader->real_parent is not SMP-safe, it could * change from under us. However, rather than getting any lock * we can use an optimistic algorithm: get the parent * pid, and go back and check that the parent is still * the same. If it has changed (which is extremely unlikely * indeed), we just try again.. * * NOTE! This depends on the fact that even if we _do_ * get an old value of "parent", we can happily dereference * the pointer (it was and remains a dereferencable kernel pointer * no matter what): we just can't necessarily trust the result * until we know that the parent pointer is valid. * * NOTE2: ->group_leader never changes from under us. */ asmlinkage long sys_getppid(void) { int pid; struct task_struct *me = current; struct task_struct *parent; parent = me->group_leader->real_parent; for (;;) { pid = parent->tgid; #if CONFIG_SMP { struct task_struct *old = parent; /* * Make sure we read the pid before re-reading the * parent pointer: */ rmb(); parent = me->group_leader->real_parent; if (old != parent) continue; } #endif break; } return pid; } asmlinkage long sys_getuid(void) { /* Only we change this so SMP safe */ return current->uid; } asmlinkage long sys_geteuid(void) { /* Only we change this so SMP safe */ return current->euid; } asmlinkage long sys_getgid(void) { /* Only we change this so SMP safe */ return current->gid; } asmlinkage long sys_getegid(void) { /* Only we change this so SMP safe */ return current->egid; } #endif static void process_timeout(unsigned long __data) { wake_up_process((task_t *)__data); } /** * schedule_timeout - sleep until timeout * @timeout: timeout value in jiffies * * Make the current task sleep until @timeout jiffies have * elapsed. The routine will return immediately unless * the current task state has been set (see set_current_state()). * * You can set the task state as follows - * * %TASK_UNINTERRUPTIBLE - at least @timeout jiffies are guaranteed to * pass before the routine returns. The routine will return 0 * * %TASK_INTERRUPTIBLE - the routine may return early if a signal is * delivered to the current task. In this case the remaining time * in jiffies will be returned, or 0 if the timer expired in time * * The current task state is guaranteed to be TASK_RUNNING when this * routine returns. * * Specifying a @timeout value of %MAX_SCHEDULE_TIMEOUT will schedule * the CPU away without a bound on the timeout. In this case the return * value will be %MAX_SCHEDULE_TIMEOUT. * * In all cases the return value is guaranteed to be non-negative. */ signed long schedule_timeout(signed long timeout) { timer_t timer; unsigned long expire; switch (timeout) { case MAX_SCHEDULE_TIMEOUT: /* * These two special cases are useful to be comfortable * in the caller. Nothing more. We could take * MAX_SCHEDULE_TIMEOUT from one of the negative value * but I' d like to return a valid offset (>=0) to allow * the caller to do everything it want with the retval. */ schedule(); goto out; default: /* * Another bit of PARANOID. Note that the retval will be * 0 since no piece of kernel is supposed to do a check * for a negative retval of schedule_timeout() (since it * should never happens anyway). You just have the printk() * that will tell you if something is gone wrong and where. */ if (timeout < 0) { printk(KERN_ERR "schedule_timeout: wrong timeout " "value %lx from %p\n", timeout, __builtin_return_address(0)); current->state = TASK_RUNNING; goto out; } } expire = timeout + jiffies; init_timer(&timer); timer.expires = expire; timer.data = (unsigned long) current; timer.function = process_timeout; add_timer(&timer); schedule(); del_timer_sync(&timer); timeout = expire - jiffies; out: return timeout < 0 ? 0 : timeout; } /* Thread ID - the internal kernel "pid" */ asmlinkage long sys_gettid(void) { return current->pid; } static long nanosleep_restart(struct restart_block *restart) { unsigned long expire = restart->arg0, now = jiffies; struct timespec *rmtp = (struct timespec *) restart->arg1; long ret; /* Did it expire while we handled signals? */ if (!time_after(expire, now)) return 0; current->state = TASK_INTERRUPTIBLE; expire = schedule_timeout(expire - now); ret = 0; if (expire) { struct timespec t; jiffies_to_timespec(expire, &t); ret = -ERESTART_RESTARTBLOCK; if (rmtp && copy_to_user(rmtp, &t, sizeof(t))) ret = -EFAULT; /* The 'restart' block is already filled in */ } return ret; } asmlinkage long sys_nanosleep(struct timespec *rqtp, struct timespec *rmtp) { struct timespec t; unsigned long expire; long ret; if (copy_from_user(&t, rqtp, sizeof(t))) return -EFAULT; if ((t.tv_nsec >= 1000000000L) || (t.tv_nsec < 0) || (t.tv_sec < 0)) return -EINVAL; expire = timespec_to_jiffies(&t) + (t.tv_sec || t.tv_nsec); current->state = TASK_INTERRUPTIBLE; expire = schedule_timeout(expire); ret = 0; if (expire) { struct restart_block *restart; jiffies_to_timespec(expire, &t); if (rmtp && copy_to_user(rmtp, &t, sizeof(t))) return -EFAULT; restart = ¤t_thread_info()->restart_block; restart->fn = nanosleep_restart; restart->arg0 = jiffies + expire; restart->arg1 = (unsigned long) rmtp; ret = -ERESTART_RESTARTBLOCK; } return ret; } /* * sys_sysinfo - fill in sysinfo struct */ asmlinkage long sys_sysinfo(struct sysinfo *info) { struct sysinfo val; unsigned long mem_total, sav_total; unsigned int mem_unit, bitcount; memset((char *)&val, 0, sizeof(struct sysinfo)); read_lock_irq(&xtime_lock); val.uptime = jiffies / HZ; val.loads[0] = avenrun[0] << (SI_LOAD_SHIFT - FSHIFT); val.loads[1] = avenrun[1] << (SI_LOAD_SHIFT - FSHIFT); val.loads[2] = avenrun[2] << (SI_LOAD_SHIFT - FSHIFT); val.procs = nr_threads; read_unlock_irq(&xtime_lock); si_meminfo(&val); si_swapinfo(&val); /* * If the sum of all the available memory (i.e. ram + swap) * is less than can be stored in a 32 bit unsigned long then * we can be binary compatible with 2.2.x kernels. If not, * well, in that case 2.2.x was broken anyways... * * -Erik Andersen <andersee@debian.org> */ mem_total = val.totalram + val.totalswap; if (mem_total < val.totalram || mem_total < val.totalswap) goto out; bitcount = 0; mem_unit = val.mem_unit; while (mem_unit > 1) { bitcount++; mem_unit >>= 1; sav_total = mem_total; mem_total <<= 1; if (mem_total < sav_total) goto out; } /* * If mem_total did not overflow, multiply all memory values by * val.mem_unit and set it to 1. This leaves things compatible * with 2.2.x, and also retains compatibility with earlier 2.4.x * kernels... */ val.mem_unit = 1; val.totalram <<= bitcount; val.freeram <<= bitcount; val.sharedram <<= bitcount; val.bufferram <<= bitcount; val.totalswap <<= bitcount; val.freeswap <<= bitcount; val.totalhigh <<= bitcount; val.freehigh <<= bitcount; out: if (copy_to_user(info, &val, sizeof(struct sysinfo))) return -EFAULT; return 0; } static void __devinit init_timers_cpu(int cpu) { int j; tvec_base_t *base; base = &per_cpu(tvec_bases, cpu); spin_lock_init(&base->lock); for (j = 0; j < TVN_SIZE; j++) { INIT_LIST_HEAD(base->tv5.vec + j); INIT_LIST_HEAD(base->tv4.vec + j); INIT_LIST_HEAD(base->tv3.vec + j); INIT_LIST_HEAD(base->tv2.vec + j); } for (j = 0; j < TVR_SIZE; j++) INIT_LIST_HEAD(base->tv1.vec + j); } static int __devinit timer_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu) { long cpu = (long)hcpu; switch(action) { case CPU_UP_PREPARE: init_timers_cpu(cpu); break; default: break; } return NOTIFY_OK; } static struct notifier_block __devinitdata timers_nb = { .notifier_call = timer_cpu_notify, }; void __init init_timers(void) { timer_cpu_notify(&timers_nb, (unsigned long)CPU_UP_PREPARE, (void *)(long)smp_processor_id()); register_cpu_notifier(&timers_nb); open_softirq(TIMER_SOFTIRQ, run_timer_softirq, NULL); } |