Linux Audio

Check our new training course

Embedded Linux Audio

Check our new training course
with Creative Commons CC-BY-SA
lecture materials

Bootlin logo

Elixir Cross Referencer

Loading...
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
/*
 *  linux/arch/arm/mm/proc-xscale.S
 *
 *  Author:	Nicolas Pitre
 *  Created:	November 2000
 *  Copyright:	(C) 2000, 2001 MontaVista Software Inc.
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 *
 * MMU functions for the Intel XScale CPUs
 *
 * 2001 Aug 21:
 *	some contributions by Brett Gaines <brett.w.gaines@intel.com>
 *	Copyright 2001 by Intel Corp.
 *
 * 2001 Sep 08:
 *	Completely revisited, many important fixes
 *	Nicolas Pitre <nico@cam.org>
 */

#include <linux/linkage.h>
#include <asm/assembler.h>
#include <asm/constants.h>
#include <asm/procinfo.h>
#include <asm/hardware.h>
#include <asm/proc/pgtable.h>

/*
 * This is the maximum size of an area which will be flushed.  If the area
 * is larger than this, then we flush the whole cache
 */
#define MAX_AREA_SIZE	32768

/*
 * the cache line size of the I and D cache
 */
#define CACHELINESIZE	32

/*
 * the size of the data cache
 */
#define CACHESIZE	32768

/*
 * and the page size
 */
#define PAGESIZE	4096

/*
 * Virtual address used to allocate the cache when flushed
 *
 * This must be an address range which is _never_ used.  It should
 * apparently have a mapping in the corresponding page table for
 * compatibility with future CPUs that _could_ require it.  For instance we
 * don't care.
 *
 * This must be aligned on a 2*CACHESIZE boundary.  The code selects one of
 * the 2 areas in alternance each time the clean_d_cache macro is used.
 * Without this the XScale core exhibits cache eviction problems and no one
 * knows why.
 *
 * Reminder: the vector table is located at 0xffff0000-0xffff0fff.
 */
#define CLEAN_ADDR	0xfffe0000

/*
 * This macro is used to wait for a CP15 write and is needed
 * when we have to ensure that the last operation to the co-pro
 * was completed before continuing with operation.
 */
	.macro	cpwait, rd
	mrc	p15, 0, \rd, c2, c0, 0		@ arbitrary read of cp15
	mov	\rd, \rd			@ wait for completion
	sub 	pc, pc, #4			@ flush instruction pipeline
	.endm

	.macro	cpwait_ret, lr, rd
	mrc	p15, 0, \rd, c2, c0, 0		@ arbitrary read of cp15
	sub	pc, \lr, \rd, LSR #32		@ wait for completion and
						@ flush instruction pipeline
	.endm

/*
 * This macro cleans the entire dcache using line allocate.
 * The main loop has been unrolled to reduce loop overhead.
 * rd and rs are two scratch registers.
 */
	.macro  clean_d_cache, rd, rs
	ldr	\rs, =clean_addr
	ldr	\rd, [\rs]
	eor	\rd, \rd, #CACHESIZE
	str	\rd, [\rs]
	add	\rs, \rd, #CACHESIZE
1:	mcr	p15, 0, \rd, c7, c2, 5		@ allocate D cache line
	add	\rd, \rd, #CACHELINESIZE
	mcr	p15, 0, \rd, c7, c2, 5		@ allocate D cache line
	add	\rd, \rd, #CACHELINESIZE
	mcr	p15, 0, \rd, c7, c2, 5		@ allocate D cache line
	add	\rd, \rd, #CACHELINESIZE
	mcr	p15, 0, \rd, c7, c2, 5		@ allocate D cache line
	add	\rd, \rd, #CACHELINESIZE
	teq	\rd, \rs
	bne	1b
	.endm

	.data
clean_addr:	.word	CLEAN_ADDR

	.text

/*
 * cpu_xscale_check_bugs()
 */
ENTRY(cpu_xscale_check_bugs)
	mrs	ip, cpsr
	bic	ip, ip, #PSR_F_BIT
	msr	cpsr, ip
	mov	pc, lr

/*
 * cpu_xscale_proc_init()
 *
 * Nothing too exciting at the moment
 */
ENTRY(cpu_xscale_proc_init)
	mov	pc, lr

/*
 * cpu_xscale_proc_fin()
 */
ENTRY(cpu_xscale_proc_fin)
	str	lr, [sp, #-4]!
	mov	r0, #PSR_F_BIT|PSR_I_BIT|SVC_MODE
	msr	cpsr_c, r0
	mrc	p15, 0, r0, c1, c0, 0		@ ctrl register
	bic	r0, r0, #0x1800			@ ...IZ...........
	bic	r0, r0, #0x0006			@ .............CA.
	mcr	p15, 0, r0, c1, c0, 0		@ disable caches
	bl	cpu_xscale_cache_clean_invalidate_all	@ clean caches
	ldr	pc, [sp], #4

/*
 * cpu_xscale_reset(loc)
 *
 * Perform a soft reset of the system.  Put the CPU into the
 * same state as it would be if it had been reset, and branch
 * to what would be the reset vector.
 *
 * loc: location to jump to for soft reset
 */
	.align	5
ENTRY(cpu_xscale_reset)
	mov	r1, #PSR_F_BIT|PSR_I_BIT|SVC_MODE
	msr	cpsr_c, r1			@ reset CPSR
	mrc	p15, 0, r1, c1, c0, 0		@ ctrl register
	bic	r1, r1, #0x0086			@ ........B....CA.
	bic	r1, r1, #0x3900			@ ..VIZ..S........
	mcr	p15, 0, r1, c1, c0, 0		@ ctrl register
	mcr	p15, 0, ip, c7, c7, 0		@ invalidate I,D caches & BTB
	bic	r1, r1, #0x0001			@ ...............M
	mcr	p15, 0, r1, c1, c0, 0		@ ctrl register
	@ CAUTION: MMU turned off from this point. We count on the pipeline
	@ already containing those two last instructions to survive.
	mcr	p15, 0, ip, c8, c7, 0		@ invalidate I & D TLBs
	mov	pc, r0

/*
 * cpu_xscale_do_idle(type)
 *
 * Cause the processor to idle
 *
 * type:
 *   0 = slow idle
 *   1 = fast idle
 *   2 = switch to slow processor clock
 *   3 = switch to fast processor clock
 *
 * For now we do nothing but go to idle mode for every case
 *
 * XScale supports clock switching, but using idle mode support
 * allows external hardware to react to system state changes.
 */
	.align	5

ENTRY(cpu_xscale_do_idle)
	mov	r0, #1
	mcr	p14, 0, r0, c7, c0, 0		@ Go to IDLE
	mov	pc, lr

/* ================================= CACHE ================================ */

/*
 * cpu_xscale_cache_clean_invalidate_all (void)
 *
 * clean and invalidate all cache lines
 *
 * Note:
 *  1. We should preserve r0 at all times.
 *  2. Even if this function implies cache "invalidation" by its name,
 *     we don't need to actually use explicit invalidation operations
 *     since the goal is to discard all valid references from the cache
 *     and the cleaning of it already has that effect.
 *  3. Because of 2 above and the fact that kernel space memory is always
 *     coherent across task switches there is no need to worry about
 *     inconsistencies due to interrupts, ence no irq disabling.
 */
	.align	5
ENTRY(cpu_xscale_cache_clean_invalidate_all)
	mov	r2, #1
cpu_xscale_cache_clean_invalidate_all_r2:
	clean_d_cache r0, r1
	teq	r2, #0
	mcrne	p15, 0, ip, c7, c5, 0		@ Invalidate I cache & BTB
	mcr	p15, 0, ip, c7, c10, 4		@ Drain Write (& Fill) Buffer
	mov	pc, lr

/*
 * cpu_xscale_cache_clean_invalidate_range(start, end, flags)
 *
 * clean and invalidate all cache lines associated with this area of memory
 *
 * start: Area start address
 * end:   Area end address
 * flags: nonzero for I cache as well
 */
	.align	5
ENTRY(cpu_xscale_cache_clean_invalidate_range)
	bic	r0, r0, #CACHELINESIZE - 1	@ round down to cache line
	sub	r3, r1, r0
	cmp	r3, #MAX_AREA_SIZE
	bhi	cpu_xscale_cache_clean_invalidate_all_r2
1:	mcr	p15, 0, r0, c7, c10, 1		@ Clean D cache line
	mcr	p15, 0, r0, c7, c6, 1		@ Invalidate D cache line
	add	r0, r0, #CACHELINESIZE
	cmp	r0, r1
	blo	1b
	teq	r2, #0
	mcr	p15, 0, ip, c7, c10, 4		@ Drain Write (& Fill) Buffer
	moveq	pc, lr
	sub	r0, r0, r3
1:	mcr	p15, 0, r0, c7, c5, 1		@ Invalidate I cache line
	add	r0, r0, #CACHELINESIZE
	cmp	r0, r1
	blo	1b
	mcr	p15, 0, ip, c7, c5, 6		@ Invalidate BTB
	mov	pc, lr

/*
 * cpu_xscale_flush_ram_page(page)
 *
 * clean all cache lines associated with this memory page
 *
 * page: page to clean
 */
	.align	5
ENTRY(cpu_xscale_flush_ram_page)
	mov	r1, #PAGESIZE
1:	mcr	p15, 0, r0, c7, c10, 1		@ Clean D cache line
	add	r0, r0, #CACHELINESIZE
	mcr	p15, 0, r0, c7, c10, 1		@ Clean D cache line
	add	r0, r0, #CACHELINESIZE
	subs	r1, r1, #2 * CACHELINESIZE
	bne	1b
	mcr	p15, 0, ip, c7, c10, 4		@ Drain Write (& Fill) Buffer
	mov	pc, lr

/* ================================ D-CACHE =============================== */

/*
 * cpu_xscale_dcache_invalidate_range(start, end)
 *
 * throw away all D-cached data in specified region without an obligation
 * to write them back.  Note however that on XScale we must clean all
 * entries also due to hardware errata (80200 A0 & A1 only).
 *
 * start: virtual start address
 * end:   virtual end address
 */
	.align	5
ENTRY(cpu_xscale_dcache_invalidate_range)
	mrc	p15, 0, r2, c0, c0, 0		@ Read part no.
	eor	r2, r2, #0x69000000
	eor	r2, r2, #0x00052000		@ 80200 XX part no.
	bics	r2, r2, #0x1			@ Clear LSB in revision field
	moveq	r2, #0
	beq	cpu_xscale_cache_clean_invalidate_range	@ An 80200 A0 or A1

	tst	r0, #CACHELINESIZE - 1
	mcrne	p15, 0, r0, c7, c10, 1		@ Clean D cache line
	tst	r1, #CACHELINESIZE - 1
	mcrne	p15, 0, r1, c7, c10, 1		@ Clean D cache line
	bic	r0, r0, #CACHELINESIZE - 1	@ round down to cache line
1:	mcr	p15, 0, r0, c7, c6, 1		@ Invalidate D cache line
	add	r0, r0, #CACHELINESIZE
	cmp	r0, r1
	blo	1b
	mov	pc, lr

/*
 * cpu_xscale_dcache_clean_range(start, end)
 *
 * For the specified virtual address range, ensure that all caches contain
 * clean data, such that peripheral accesses to the physical RAM fetch
 * correct data.
 *
 * start: virtual start address
 * end:   virtual end address
 */
	.align	5
ENTRY(cpu_xscale_dcache_clean_range)
	bic	r0, r0, #CACHELINESIZE - 1
	sub	r2, r1, r0
	cmp	r2, #MAX_AREA_SIZE
	movhi	r2, #0
	bhi	cpu_xscale_cache_clean_invalidate_all_r2

1:	mcr	p15, 0, r0, c7, c10, 1		@ Clean D cache line
	add	r0, r0, #CACHELINESIZE
	mcr	p15, 0, r0, c7, c10, 1		@ Clean D cache line
	add	r0, r0, #CACHELINESIZE
	cmp	r0, r1
	blo	1b
	mcr	p15, 0, ip, c7, c10, 4		@ Drain Write (& Fill) Buffer
	mov	pc, lr

/*
 * cpu_xscale_clean_dcache_page(page)
 *
 * Cleans a single page of dcache so that if we have any future aliased
 * mappings, they will be consistent at the time that they are created.
 *
 * Note:
 *  1. we don't need to flush the write buffer in this case. [really? -Nico]
 *  2. we don't invalidate the entries since when we write the page
 *     out to disk, the entries may get reloaded into the cache.
 */
	.align	5
ENTRY(cpu_xscale_dcache_clean_page)
	mov	r1, #PAGESIZE
1:	mcr	p15, 0, r0, c7, c10, 1		@ Clean D cache line
	add	r0, r0, #CACHELINESIZE
	mcr	p15, 0, r0, c7, c10, 1		@ Clean D cache line
	add	r0, r0, #CACHELINESIZE
	mcr	p15, 0, r0, c7, c10, 1		@ Clean D cache line
	add	r0, r0, #CACHELINESIZE
	mcr	p15, 0, r0, c7, c10, 1		@ Clean D cache line
	add	r0, r0, #CACHELINESIZE
	subs	r1, r1, #4 * CACHELINESIZE
	bne	1b
	mcr	p15, 0, ip, c7, c10, 4		@ Drain Write (& Fill) Buffer
	mov	pc, lr

/*
 * cpu_xscale_dcache_clean_entry(addr)
 *
 * Clean the specified entry of any caches such that the MMU
 * translation fetches will obtain correct data.
 *
 * addr: cache-unaligned virtual address
 */
	.align	5
ENTRY(cpu_xscale_dcache_clean_entry)
	mcr	p15, 0, r0, c7, c10, 1		@ Clean D cache line
	mcr	p15, 0, ip, c7, c10, 4		@ Drain Write (& Fill) Buffer
	mov	pc, lr

/* ================================ I-CACHE =============================== */

/*
 * cpu_xscale_icache_invalidate_range(start, end)
 *
 * invalidate a range of virtual addresses from the Icache
 *
 * start: virtual start address
 * end:   virtual end address
 *
 * Note: This is vaguely defined as supposed to bring the dcache and the
 *       icache in sync by the way this function is used.
 */
	.align	5
ENTRY(cpu_xscale_icache_invalidate_range)
	bic	r0, r0, #CACHELINESIZE - 1
1:	mcr	p15, 0, r0, c7, c10, 1		@ Clean D cache line
	mcr	p15, 0, r0, c7, c5, 1		@ Invalidate I cache line
	add	r0, r0, #CACHELINESIZE
	cmp	r0, r1
	blo	1b
	mcr	p15, 0, ip, c7, c5, 6		@ Invalidate BTB
	mcr	p15, 0, ip, c7, c10, 4		@ Drain Write (& Fill) Buffer
	mov	pc, lr

/*
 * cpu_xscale_icache_invalidate_page(page)
 *
 * invalidate all Icache lines associated with this area of memory
 *
 * page: page to invalidate
 */
	.align	5
ENTRY(cpu_xscale_icache_invalidate_page)
	mov	r1, #PAGESIZE
1:	mcr	p15, 0, r0, c7, c5, 1		@ Invalidate I cache line
	add	r0, r0, #CACHELINESIZE
	mcr	p15, 0, r0, c7, c5, 1		@ Invalidate I cache line
	add	r0, r0, #CACHELINESIZE
	mcr	p15, 0, r0, c7, c5, 1		@ Invalidate I cache line
	add	r0, r0, #CACHELINESIZE
	mcr	p15, 0, r0, c7, c5, 1		@ Invalidate I cache line
	add	r0, r0, #CACHELINESIZE
	subs	r1, r1, #4 * CACHELINESIZE
	bne	1b
	mcr	p15, 0, r0, c7, c5, 6		@ Invalidate BTB
	mov	pc, lr

/* ================================ CACHE LOCKING============================
 *
 * The XScale MicroArchitecture implements support for locking entries into
 * the data and instruction cache.  The following functions implement the core
 * low level instructions needed to accomplish the locking.  The developer's
 * manual states that the code that performs the locking must be in non-cached
 * memory.  To accomplish this, the code in xscale-cache-lock.c copies the
 * following functions from the cache into a non-cached memory region that
 * is allocated through consistent_alloc().
 *
 */
	.align	5
/*
 * xscale_icache_lock
 *
 * r0: starting address to lock
 * r1: end address to lock
 */
ENTRY(xscale_icache_lock)

iLockLoop:
	bic	r0, r0, #CACHELINESIZE - 1
	mcr	p15, 0, r0, c9, c1, 0	@ lock into cache
	cmp	r0, r1			@ are we done?
	add	r0, r0, #CACHELINESIZE	@ advance to next cache line
	bls	iLockLoop
	mov	pc, lr

/*
 * xscale_icache_unlock
 */
ENTRY(xscale_icache_unlock)
	mcr	p15, 0, r0, c9, c1, 1	@ Unlock icache
	mov	pc, lr

/*
 * xscale_dcache_lock
 *
 * r0: starting address to lock
 * r1: end address to lock
 */
ENTRY(xscale_dcache_lock)
	mcr	p15, 0, ip, c7, c10, 4		@ Drain Write (& Fill) Buffer
	mov	r2, #1
	mcr	p15, 0, r2, c9, c2, 0	@ Put dcache in lock mode
	cpwait	ip			@ Wait for completion

	mrs	r2, cpsr
	orr	r3, r2, #PSR_F_BIT | PSR_I_BIT
dLockLoop:
	msr	cpsr_c, r3
	mcr	p15, 0, r0, c7, c10, 1	@ Write back line if it is dirty
	mcr	p15, 0, r0, c7, c6, 1	@ Flush/invalidate line
	msr	cpsr_c, r2
	ldr	ip, [r0], #CACHELINESIZE @ Preload 32 bytes into cache from
					@ location [r0]. Post-increment
					@ r3 to next cache line
	cmp	r0, r1			@ Are we done?
	bls	dLockLoop

	mcr	p15, 0, ip, c7, c10, 4		@ Drain Write (& Fill) Buffer
	mov	r2, #0
	mcr	p15, 0, r2, c9, c2, 0	@ Get out of lock mode
	cpwait_ret lr, ip

/*
 * xscale_dcache_unlock
 */
ENTRY(xscale_dcache_unlock)
	mcr	p15, 0, ip, c7, c10, 4		@ Drain Write (& Fill) Buffer
	mcr	p15, 0, ip, c9, c2, 1	@ Unlock cache
	mov	pc, lr

/*
 * Needed to determine the length of the code that needs to be copied.
 */
	.align	5
ENTRY(xscale_cache_dummy)
	mov	pc, lr

/* ================================ TLB LOCKING==============================
 *
 * The XScale MicroArchitecture implements support for locking entries into
 * the Instruction and Data TLBs.  The following functions provide the
 * low level support for supporting these under Linux.  xscale-lock.c
 * implements some higher level management code.  Most of the following
 * is taken straight out of the Developer's Manual.
 */

/*
 * Lock I-TLB entry
 *
 * r0: Virtual address to translate and lock
 */
	.align	5
ENTRY(xscale_itlb_lock)
	mrs	r2, cpsr
	orr	r3, r2, #PSR_F_BIT | PSR_I_BIT
	msr	cpsr_c, r3			@ Disable interrupts
	mcr	p15, 0, r0, c8, c5, 1		@ Invalidate I-TLB entry
	mcr	p15, 0, r0, c10, c4, 0		@ Translate and lock
	msr	cpsr_c, r2			@ Restore interrupts
	cpwait_ret lr, ip

/*
 * Lock D-TLB entry
 *
 * r0: Virtual address to translate and lock
 */
	.align	5
ENTRY(xscale_dtlb_lock)
	mrs	r2, cpsr
	orr	r3, r2, #PSR_F_BIT | PSR_I_BIT
	msr	cpsr_c, r3			@ Disable interrupts
	mcr	p15, 0, r0, c8, c6, 1		@ Invalidate D-TLB entry
	mcr	p15, 0, r0, c10, c8, 0		@ Translate and lock
	msr	cpsr_c, r2			@ Restore interrupts
	cpwait_ret lr, ip

/*
 * Unlock all I-TLB entries
 */
	.align	5
ENTRY(xscale_itlb_unlock)
	mcr	p15, 0, ip, c10, c4, 1		@ Unlock I-TLB
	mcr	p15, 0, ip, c8, c5, 0		@ Invalidate I-TLB
	cpwait_ret lr, ip

/*
 * Unlock all D-TLB entries
 */
ENTRY(xscale_dtlb_unlock)
	mcr	p15, 0, ip, c10, c8, 1		@ Unlock D-TBL
	mcr	p15, 0, ip, c8, c6, 0		@ Invalidate D-TLB
	cpwait_ret lr, ip

/* =============================== PageTable ============================== */

#define PMD_CACHE_WRITE_ALLOCATE 0
#define PTE_CACHE_WRITE_ALLOCATE 0

/*
 * cpu_xscale_set_pgd(pgd)
 *
 * Set the translation base pointer to be as described by pgd.
 *
 * pgd: new page tables
 */
	.align	5
ENTRY(cpu_xscale_set_pgd)
	clean_d_cache r1, r2
	mcr	p15, 0, ip, c7, c5, 0		@ Invalidate I cache & BTB
	mcr	p15, 0, ip, c7, c10, 4		@ Drain Write (& Fill) Buffer
	mcr	p15, 0, r0, c2, c0, 0		@ load page table pointer
	mcr	p15, 0, ip, c8, c7, 0		@ invalidate I & D TLBs
	cpwait_ret lr, ip

/*
 * cpu_xscale_set_pmd(pmdp, pmd)
 *
 * Set a level 1 translation table entry, and clean it out of
 * any caches such that the MMUs can load it correctly.
 *
 * pmdp: pointer to PMD entry
 * pmd:  PMD value to store
 */
	.align	5
ENTRY(cpu_xscale_set_pmd)
#if PMD_CACHE_WRITE_ALLOCATE
	and	r2, r1, #PMD_TYPE_MASK|PMD_SECT_CACHEABLE|PMD_SECT_BUFFERABLE
	cmp	r2, #PMD_TYPE_SECT|PMD_SECT_CACHEABLE|PMD_SECT_BUFFERABLE
	orreq	r1, r1, #PMD_SECT_TEX(1)
#endif
	str	r1, [r0]
	mov	ip, #0
	mcr	p15, 0, r0, c7, c10, 1		@ Clean D cache line
	mcr	p15, 0, ip, c7, c10, 4		@ Drain Write (& Fill) Buffer
	mov	pc, lr

/*
 * cpu_xscale_set_pte(ptep, pte)
 *
 * Set a PTE and flush it out
 *
 * Errata 40: must set memory to write-through for user read-only pages.
 */
	.align	5
ENTRY(cpu_xscale_set_pte)
	str	r1, [r0], #-2048		@ linux version

	bic	r2, r1, #0xff0
	orr	r2, r2, #PTE_TYPE_EXT		@ extended page

	eor	r3, r1, #L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_WRITE | L_PTE_DIRTY

	tst	r3, #L_PTE_USER | L_PTE_EXEC	@ User or Exec?
	orrne	r2, r2, #PTE_EXT_AP_URO_SRW	@ yes -> user r/o, system r/w

	tst	r3, #L_PTE_WRITE | L_PTE_DIRTY	@ Write and Dirty?
	orreq	r2, r2, #PTE_EXT_AP_UNO_SRW	@ yes -> user n/a, system r/w
						@ combined with user -> user r/w

	@
	@ Handle the X bit.  We want to set this bit for the minicache
	@ (U = E = B = W = 0, C = 1) or when write allocate is enabled,
	@ and we have a writeable, cacheable region.  If we ignore the
	@ U and E bits, we can allow user space to use the minicache as
	@ well.
	@
	@  X = (C & ~W & ~B) | (C & W & B & write_allocate)
	@
	eor	ip, r1, #L_PTE_CACHEABLE
	tst	ip, #L_PTE_CACHEABLE | L_PTE_WRITE | L_PTE_BUFFERABLE
#if PTE_CACHE_WRITE_ALLOCATE
	eorne	ip, r1, #L_PTE_CACHEABLE | L_PTE_WRITE | L_PTE_BUFFERABLE
	tstne	ip, #L_PTE_CACHEABLE | L_PTE_WRITE | L_PTE_BUFFERABLE
#endif
	orreq	r2, r2, #PTE_EXT_TEX(1)

	@
	@ Erratum 40: The B bit must be cleared for a user read-only
	@ cacheable page.
	@
	@  B = B & ~((U|E) & C & ~W)
	@
	and	ip, r1, #L_PTE_USER | L_PTE_EXEC | L_PTE_WRITE | L_PTE_CACHEABLE
	teq	ip, #L_PTE_USER | L_PTE_CACHEABLE
	teqne	ip, #L_PTE_EXEC | L_PTE_CACHEABLE
	teqne	ip, #L_PTE_USER | L_PTE_EXEC | L_PTE_CACHEABLE
	biceq	r2, r2, #PTE_BUFFERABLE

	tst	r3, #L_PTE_PRESENT | L_PTE_YOUNG	@ Present and Young?
	movne	r2, #0				@ no -> fault

	str	r2, [r0]			@ hardware version
	mov	ip, #0
	mcr	p15, 0, r0, c7, c10, 1		@ Clean D cache line
	mcr	p15, 0, ip, c7, c10, 4		@ Drain Write (& Fill) Buffer
	mov	pc, lr


	.ltorg

cpu_manu_name:
	.asciz	"Intel"

cpu_80200_name:
	.asciz	"XScale-80200"

cpu_pxa250_name:
	.asciz	"XScale-PXA250"

	.align

	.section ".text.init", #alloc, #execinstr

__xscale_setup:
	mov	r0, #PSR_F_BIT|PSR_I_BIT|SVC_MODE
	msr	cpsr_c, r0
	mcr	p15, 0, ip, c7, c7, 0		@ invalidate I, D caches & BTB
	mcr	p15, 0, ip, c7, c10, 4		@ Drain Write (& Fill) Buffer
	mcr	p15, 0, ip, c8, c7, 0		@ invalidate I, D TLBs
	mcr	p15, 0, r4, c2, c0, 0		@ load page table pointer
	mov	r0, #0x1f			@ Domains 0, 1 = client
	mcr	p15, 0, r0, c3, c0, 0		@ load domain access register
	mov	r0, #1				@ Allow access to CP0 and CP13
	orr	r0, r0, #1 << 13		@ Its undefined whether this
	mcr	p15, 0, r0, c15, c1, 0		@ affects USR or SVC modes
	mrc	p15, 0, r0, c1, c0, 0		@ get control register
	bic	r0, r0, #0x0200			@ .... ..R. .... ....
	bic	r0, r0, #0x0082			@ .... .... B... ..A.
	orr	r0, r0, #0x0005			@ .... .... .... .C.M
	orr	r0, r0, #0x3900			@ ..VI Z..S .... ....
	mov	pc, lr

	.text

/*
 * Purpose : Function pointers used to access above functions - all calls
 *	     come through these
 */

	.type	xscale_processor_functions, #object
ENTRY(xscale_processor_functions)
	.word	xscale_abort
	.word	cpu_xscale_check_bugs
	.word	cpu_xscale_proc_init
	.word	cpu_xscale_proc_fin
	.word	cpu_xscale_reset
	.word	cpu_xscale_do_idle

	/* cache */
	.word	cpu_xscale_cache_clean_invalidate_all
	.word	cpu_xscale_cache_clean_invalidate_range
	.word	cpu_xscale_flush_ram_page

	/* dcache */
	.word	cpu_xscale_dcache_invalidate_range
	.word	cpu_xscale_dcache_clean_range
	.word	cpu_xscale_dcache_clean_page
	.word	cpu_xscale_dcache_clean_entry

	/* icache */
	.word	cpu_xscale_icache_invalidate_range
	.word	cpu_xscale_icache_invalidate_page

	/* pgtable */
	.word	cpu_xscale_set_pgd
	.word	cpu_xscale_set_pmd
	.word	cpu_xscale_set_pte
	.size	xscale_processor_functions, . - xscale_processor_functions

	.type	cpu_80200_info, #object
cpu_80200_info:
	.long	cpu_manu_name
	.long	cpu_80200_name
	.size	cpu_80200_info, . - cpu_80200_info

	.type	cpu_pxa250_info, #object
cpu_pxa250_info:
	.long	cpu_manu_name
	.long	cpu_pxa250_name
	.size	cpu_pxa250_info, . - cpu_pxa250_info

	.type	cpu_arch_name, #object
cpu_arch_name:
	.asciz	"armv5te"
	.size	cpu_arch_name, . - cpu_arch_name

	.type	cpu_elf_name, #object
cpu_elf_name:
	.asciz	"v5"
	.size	cpu_elf_name, . - cpu_elf_name
	.align

	.section ".proc.info", #alloc, #execinstr

	.type	__80200_proc_info,#object
__80200_proc_info:
	.long	0x69052000
	.long	0xfffffff0
	.long	0x00000c0e
	b	__xscale_setup
	.long	cpu_arch_name
	.long	cpu_elf_name
	.long	HWCAP_SWP|HWCAP_HALF|HWCAP_THUMB|HWCAP_FAST_MULT|HWCAP_EDSP
	.long	cpu_80200_info
	.long	xscale_processor_functions
	.long	v4wbi_tlb_fns
	.long	xscale_mc_user_fns
	.size	__80200_proc_info, . - __80200_proc_info

	.type	__pxa250_proc_info,#object
__pxa250_proc_info:
	.long	0x69052100
	.long	0xfffff7f0
	.long	0x00000c0e
	b	__xscale_setup
	.long	cpu_arch_name
	.long	cpu_elf_name
	.long	HWCAP_SWP|HWCAP_HALF|HWCAP_THUMB|HWCAP_FAST_MULT|HWCAP_EDSP
	.long	cpu_pxa250_info
	.long	xscale_processor_functions
	.long	v4wbi_tlb_fns
	.long	xscale_mc_user_fns
	.size	__pxa250_proc_info, . - __pxa250_proc_info