Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 | /* * linux/arch/arm/mm/proc-xscale.S * * Author: Nicolas Pitre * Created: November 2000 * Copyright: (C) 2000, 2001 MontaVista Software Inc. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. * * MMU functions for the Intel XScale CPUs * * 2001 Aug 21: * some contributions by Brett Gaines <brett.w.gaines@intel.com> * Copyright 2001 by Intel Corp. * * 2001 Sep 08: * Completely revisited, many important fixes * Nicolas Pitre <nico@cam.org> */ #include <linux/linkage.h> #include <asm/assembler.h> #include <asm/constants.h> #include <asm/procinfo.h> #include <asm/hardware.h> #include <asm/proc/pgtable.h> /* * This is the maximum size of an area which will be flushed. If the area * is larger than this, then we flush the whole cache */ #define MAX_AREA_SIZE 32768 /* * the cache line size of the I and D cache */ #define CACHELINESIZE 32 /* * the size of the data cache */ #define CACHESIZE 32768 /* * and the page size */ #define PAGESIZE 4096 /* * Virtual address used to allocate the cache when flushed * * This must be an address range which is _never_ used. It should * apparently have a mapping in the corresponding page table for * compatibility with future CPUs that _could_ require it. For instance we * don't care. * * This must be aligned on a 2*CACHESIZE boundary. The code selects one of * the 2 areas in alternance each time the clean_d_cache macro is used. * Without this the XScale core exhibits cache eviction problems and no one * knows why. * * Reminder: the vector table is located at 0xffff0000-0xffff0fff. */ #define CLEAN_ADDR 0xfffe0000 /* * This macro is used to wait for a CP15 write and is needed * when we have to ensure that the last operation to the co-pro * was completed before continuing with operation. */ .macro cpwait, rd mrc p15, 0, \rd, c2, c0, 0 @ arbitrary read of cp15 mov \rd, \rd @ wait for completion sub pc, pc, #4 @ flush instruction pipeline .endm .macro cpwait_ret, lr, rd mrc p15, 0, \rd, c2, c0, 0 @ arbitrary read of cp15 sub pc, \lr, \rd, LSR #32 @ wait for completion and @ flush instruction pipeline .endm /* * This macro cleans the entire dcache using line allocate. * The main loop has been unrolled to reduce loop overhead. * rd and rs are two scratch registers. */ .macro clean_d_cache, rd, rs ldr \rs, =clean_addr ldr \rd, [\rs] eor \rd, \rd, #CACHESIZE str \rd, [\rs] add \rs, \rd, #CACHESIZE 1: mcr p15, 0, \rd, c7, c2, 5 @ allocate D cache line add \rd, \rd, #CACHELINESIZE mcr p15, 0, \rd, c7, c2, 5 @ allocate D cache line add \rd, \rd, #CACHELINESIZE mcr p15, 0, \rd, c7, c2, 5 @ allocate D cache line add \rd, \rd, #CACHELINESIZE mcr p15, 0, \rd, c7, c2, 5 @ allocate D cache line add \rd, \rd, #CACHELINESIZE teq \rd, \rs bne 1b .endm .data clean_addr: .word CLEAN_ADDR .text /* * cpu_xscale_check_bugs() */ ENTRY(cpu_xscale_check_bugs) mrs ip, cpsr bic ip, ip, #PSR_F_BIT msr cpsr, ip mov pc, lr /* * cpu_xscale_proc_init() * * Nothing too exciting at the moment */ ENTRY(cpu_xscale_proc_init) mov pc, lr /* * cpu_xscale_proc_fin() */ ENTRY(cpu_xscale_proc_fin) str lr, [sp, #-4]! mov r0, #PSR_F_BIT|PSR_I_BIT|SVC_MODE msr cpsr_c, r0 mrc p15, 0, r0, c1, c0, 0 @ ctrl register bic r0, r0, #0x1800 @ ...IZ........... bic r0, r0, #0x0006 @ .............CA. mcr p15, 0, r0, c1, c0, 0 @ disable caches bl cpu_xscale_cache_clean_invalidate_all @ clean caches ldr pc, [sp], #4 /* * cpu_xscale_reset(loc) * * Perform a soft reset of the system. Put the CPU into the * same state as it would be if it had been reset, and branch * to what would be the reset vector. * * loc: location to jump to for soft reset */ .align 5 ENTRY(cpu_xscale_reset) mov r1, #PSR_F_BIT|PSR_I_BIT|SVC_MODE msr cpsr_c, r1 @ reset CPSR mrc p15, 0, r1, c1, c0, 0 @ ctrl register bic r1, r1, #0x0086 @ ........B....CA. bic r1, r1, #0x3900 @ ..VIZ..S........ mcr p15, 0, r1, c1, c0, 0 @ ctrl register mcr p15, 0, ip, c7, c7, 0 @ invalidate I,D caches & BTB bic r1, r1, #0x0001 @ ...............M mcr p15, 0, r1, c1, c0, 0 @ ctrl register @ CAUTION: MMU turned off from this point. We count on the pipeline @ already containing those two last instructions to survive. mcr p15, 0, ip, c8, c7, 0 @ invalidate I & D TLBs mov pc, r0 /* * cpu_xscale_do_idle(type) * * Cause the processor to idle * * type: * 0 = slow idle * 1 = fast idle * 2 = switch to slow processor clock * 3 = switch to fast processor clock * * For now we do nothing but go to idle mode for every case * * XScale supports clock switching, but using idle mode support * allows external hardware to react to system state changes. */ .align 5 ENTRY(cpu_xscale_do_idle) mov r0, #1 mcr p14, 0, r0, c7, c0, 0 @ Go to IDLE mov pc, lr /* ================================= CACHE ================================ */ /* * cpu_xscale_cache_clean_invalidate_all (void) * * clean and invalidate all cache lines * * Note: * 1. We should preserve r0 at all times. * 2. Even if this function implies cache "invalidation" by its name, * we don't need to actually use explicit invalidation operations * since the goal is to discard all valid references from the cache * and the cleaning of it already has that effect. * 3. Because of 2 above and the fact that kernel space memory is always * coherent across task switches there is no need to worry about * inconsistencies due to interrupts, ence no irq disabling. */ .align 5 ENTRY(cpu_xscale_cache_clean_invalidate_all) mov r2, #1 cpu_xscale_cache_clean_invalidate_all_r2: clean_d_cache r0, r1 teq r2, #0 mcrne p15, 0, ip, c7, c5, 0 @ Invalidate I cache & BTB mcr p15, 0, ip, c7, c10, 4 @ Drain Write (& Fill) Buffer mov pc, lr /* * cpu_xscale_cache_clean_invalidate_range(start, end, flags) * * clean and invalidate all cache lines associated with this area of memory * * start: Area start address * end: Area end address * flags: nonzero for I cache as well */ .align 5 ENTRY(cpu_xscale_cache_clean_invalidate_range) bic r0, r0, #CACHELINESIZE - 1 @ round down to cache line sub r3, r1, r0 cmp r3, #MAX_AREA_SIZE bhi cpu_xscale_cache_clean_invalidate_all_r2 1: mcr p15, 0, r0, c7, c10, 1 @ Clean D cache line mcr p15, 0, r0, c7, c6, 1 @ Invalidate D cache line add r0, r0, #CACHELINESIZE cmp r0, r1 blo 1b teq r2, #0 mcr p15, 0, ip, c7, c10, 4 @ Drain Write (& Fill) Buffer moveq pc, lr sub r0, r0, r3 1: mcr p15, 0, r0, c7, c5, 1 @ Invalidate I cache line add r0, r0, #CACHELINESIZE cmp r0, r1 blo 1b mcr p15, 0, ip, c7, c5, 6 @ Invalidate BTB mov pc, lr /* * cpu_xscale_flush_ram_page(page) * * clean all cache lines associated with this memory page * * page: page to clean */ .align 5 ENTRY(cpu_xscale_flush_ram_page) mov r1, #PAGESIZE 1: mcr p15, 0, r0, c7, c10, 1 @ Clean D cache line add r0, r0, #CACHELINESIZE mcr p15, 0, r0, c7, c10, 1 @ Clean D cache line add r0, r0, #CACHELINESIZE subs r1, r1, #2 * CACHELINESIZE bne 1b mcr p15, 0, ip, c7, c10, 4 @ Drain Write (& Fill) Buffer mov pc, lr /* ================================ D-CACHE =============================== */ /* * cpu_xscale_dcache_invalidate_range(start, end) * * throw away all D-cached data in specified region without an obligation * to write them back. Note however that on XScale we must clean all * entries also due to hardware errata (80200 A0 & A1 only). * * start: virtual start address * end: virtual end address */ .align 5 ENTRY(cpu_xscale_dcache_invalidate_range) mrc p15, 0, r2, c0, c0, 0 @ Read part no. eor r2, r2, #0x69000000 eor r2, r2, #0x00052000 @ 80200 XX part no. bics r2, r2, #0x1 @ Clear LSB in revision field moveq r2, #0 beq cpu_xscale_cache_clean_invalidate_range @ An 80200 A0 or A1 tst r0, #CACHELINESIZE - 1 mcrne p15, 0, r0, c7, c10, 1 @ Clean D cache line tst r1, #CACHELINESIZE - 1 mcrne p15, 0, r1, c7, c10, 1 @ Clean D cache line bic r0, r0, #CACHELINESIZE - 1 @ round down to cache line 1: mcr p15, 0, r0, c7, c6, 1 @ Invalidate D cache line add r0, r0, #CACHELINESIZE cmp r0, r1 blo 1b mov pc, lr /* * cpu_xscale_dcache_clean_range(start, end) * * For the specified virtual address range, ensure that all caches contain * clean data, such that peripheral accesses to the physical RAM fetch * correct data. * * start: virtual start address * end: virtual end address */ .align 5 ENTRY(cpu_xscale_dcache_clean_range) bic r0, r0, #CACHELINESIZE - 1 sub r2, r1, r0 cmp r2, #MAX_AREA_SIZE movhi r2, #0 bhi cpu_xscale_cache_clean_invalidate_all_r2 1: mcr p15, 0, r0, c7, c10, 1 @ Clean D cache line add r0, r0, #CACHELINESIZE mcr p15, 0, r0, c7, c10, 1 @ Clean D cache line add r0, r0, #CACHELINESIZE cmp r0, r1 blo 1b mcr p15, 0, ip, c7, c10, 4 @ Drain Write (& Fill) Buffer mov pc, lr /* * cpu_xscale_clean_dcache_page(page) * * Cleans a single page of dcache so that if we have any future aliased * mappings, they will be consistent at the time that they are created. * * Note: * 1. we don't need to flush the write buffer in this case. [really? -Nico] * 2. we don't invalidate the entries since when we write the page * out to disk, the entries may get reloaded into the cache. */ .align 5 ENTRY(cpu_xscale_dcache_clean_page) mov r1, #PAGESIZE 1: mcr p15, 0, r0, c7, c10, 1 @ Clean D cache line add r0, r0, #CACHELINESIZE mcr p15, 0, r0, c7, c10, 1 @ Clean D cache line add r0, r0, #CACHELINESIZE mcr p15, 0, r0, c7, c10, 1 @ Clean D cache line add r0, r0, #CACHELINESIZE mcr p15, 0, r0, c7, c10, 1 @ Clean D cache line add r0, r0, #CACHELINESIZE subs r1, r1, #4 * CACHELINESIZE bne 1b mcr p15, 0, ip, c7, c10, 4 @ Drain Write (& Fill) Buffer mov pc, lr /* * cpu_xscale_dcache_clean_entry(addr) * * Clean the specified entry of any caches such that the MMU * translation fetches will obtain correct data. * * addr: cache-unaligned virtual address */ .align 5 ENTRY(cpu_xscale_dcache_clean_entry) mcr p15, 0, r0, c7, c10, 1 @ Clean D cache line mcr p15, 0, ip, c7, c10, 4 @ Drain Write (& Fill) Buffer mov pc, lr /* ================================ I-CACHE =============================== */ /* * cpu_xscale_icache_invalidate_range(start, end) * * invalidate a range of virtual addresses from the Icache * * start: virtual start address * end: virtual end address * * Note: This is vaguely defined as supposed to bring the dcache and the * icache in sync by the way this function is used. */ .align 5 ENTRY(cpu_xscale_icache_invalidate_range) bic r0, r0, #CACHELINESIZE - 1 1: mcr p15, 0, r0, c7, c10, 1 @ Clean D cache line mcr p15, 0, r0, c7, c5, 1 @ Invalidate I cache line add r0, r0, #CACHELINESIZE cmp r0, r1 blo 1b mcr p15, 0, ip, c7, c5, 6 @ Invalidate BTB mcr p15, 0, ip, c7, c10, 4 @ Drain Write (& Fill) Buffer mov pc, lr /* * cpu_xscale_icache_invalidate_page(page) * * invalidate all Icache lines associated with this area of memory * * page: page to invalidate */ .align 5 ENTRY(cpu_xscale_icache_invalidate_page) mov r1, #PAGESIZE 1: mcr p15, 0, r0, c7, c5, 1 @ Invalidate I cache line add r0, r0, #CACHELINESIZE mcr p15, 0, r0, c7, c5, 1 @ Invalidate I cache line add r0, r0, #CACHELINESIZE mcr p15, 0, r0, c7, c5, 1 @ Invalidate I cache line add r0, r0, #CACHELINESIZE mcr p15, 0, r0, c7, c5, 1 @ Invalidate I cache line add r0, r0, #CACHELINESIZE subs r1, r1, #4 * CACHELINESIZE bne 1b mcr p15, 0, r0, c7, c5, 6 @ Invalidate BTB mov pc, lr /* ================================ CACHE LOCKING============================ * * The XScale MicroArchitecture implements support for locking entries into * the data and instruction cache. The following functions implement the core * low level instructions needed to accomplish the locking. The developer's * manual states that the code that performs the locking must be in non-cached * memory. To accomplish this, the code in xscale-cache-lock.c copies the * following functions from the cache into a non-cached memory region that * is allocated through consistent_alloc(). * */ .align 5 /* * xscale_icache_lock * * r0: starting address to lock * r1: end address to lock */ ENTRY(xscale_icache_lock) iLockLoop: bic r0, r0, #CACHELINESIZE - 1 mcr p15, 0, r0, c9, c1, 0 @ lock into cache cmp r0, r1 @ are we done? add r0, r0, #CACHELINESIZE @ advance to next cache line bls iLockLoop mov pc, lr /* * xscale_icache_unlock */ ENTRY(xscale_icache_unlock) mcr p15, 0, r0, c9, c1, 1 @ Unlock icache mov pc, lr /* * xscale_dcache_lock * * r0: starting address to lock * r1: end address to lock */ ENTRY(xscale_dcache_lock) mcr p15, 0, ip, c7, c10, 4 @ Drain Write (& Fill) Buffer mov r2, #1 mcr p15, 0, r2, c9, c2, 0 @ Put dcache in lock mode cpwait ip @ Wait for completion mrs r2, cpsr orr r3, r2, #PSR_F_BIT | PSR_I_BIT dLockLoop: msr cpsr_c, r3 mcr p15, 0, r0, c7, c10, 1 @ Write back line if it is dirty mcr p15, 0, r0, c7, c6, 1 @ Flush/invalidate line msr cpsr_c, r2 ldr ip, [r0], #CACHELINESIZE @ Preload 32 bytes into cache from @ location [r0]. Post-increment @ r3 to next cache line cmp r0, r1 @ Are we done? bls dLockLoop mcr p15, 0, ip, c7, c10, 4 @ Drain Write (& Fill) Buffer mov r2, #0 mcr p15, 0, r2, c9, c2, 0 @ Get out of lock mode cpwait_ret lr, ip /* * xscale_dcache_unlock */ ENTRY(xscale_dcache_unlock) mcr p15, 0, ip, c7, c10, 4 @ Drain Write (& Fill) Buffer mcr p15, 0, ip, c9, c2, 1 @ Unlock cache mov pc, lr /* * Needed to determine the length of the code that needs to be copied. */ .align 5 ENTRY(xscale_cache_dummy) mov pc, lr /* ================================ TLB LOCKING============================== * * The XScale MicroArchitecture implements support for locking entries into * the Instruction and Data TLBs. The following functions provide the * low level support for supporting these under Linux. xscale-lock.c * implements some higher level management code. Most of the following * is taken straight out of the Developer's Manual. */ /* * Lock I-TLB entry * * r0: Virtual address to translate and lock */ .align 5 ENTRY(xscale_itlb_lock) mrs r2, cpsr orr r3, r2, #PSR_F_BIT | PSR_I_BIT msr cpsr_c, r3 @ Disable interrupts mcr p15, 0, r0, c8, c5, 1 @ Invalidate I-TLB entry mcr p15, 0, r0, c10, c4, 0 @ Translate and lock msr cpsr_c, r2 @ Restore interrupts cpwait_ret lr, ip /* * Lock D-TLB entry * * r0: Virtual address to translate and lock */ .align 5 ENTRY(xscale_dtlb_lock) mrs r2, cpsr orr r3, r2, #PSR_F_BIT | PSR_I_BIT msr cpsr_c, r3 @ Disable interrupts mcr p15, 0, r0, c8, c6, 1 @ Invalidate D-TLB entry mcr p15, 0, r0, c10, c8, 0 @ Translate and lock msr cpsr_c, r2 @ Restore interrupts cpwait_ret lr, ip /* * Unlock all I-TLB entries */ .align 5 ENTRY(xscale_itlb_unlock) mcr p15, 0, ip, c10, c4, 1 @ Unlock I-TLB mcr p15, 0, ip, c8, c5, 0 @ Invalidate I-TLB cpwait_ret lr, ip /* * Unlock all D-TLB entries */ ENTRY(xscale_dtlb_unlock) mcr p15, 0, ip, c10, c8, 1 @ Unlock D-TBL mcr p15, 0, ip, c8, c6, 0 @ Invalidate D-TLB cpwait_ret lr, ip /* =============================== PageTable ============================== */ #define PMD_CACHE_WRITE_ALLOCATE 0 #define PTE_CACHE_WRITE_ALLOCATE 0 /* * cpu_xscale_set_pgd(pgd) * * Set the translation base pointer to be as described by pgd. * * pgd: new page tables */ .align 5 ENTRY(cpu_xscale_set_pgd) clean_d_cache r1, r2 mcr p15, 0, ip, c7, c5, 0 @ Invalidate I cache & BTB mcr p15, 0, ip, c7, c10, 4 @ Drain Write (& Fill) Buffer mcr p15, 0, r0, c2, c0, 0 @ load page table pointer mcr p15, 0, ip, c8, c7, 0 @ invalidate I & D TLBs cpwait_ret lr, ip /* * cpu_xscale_set_pmd(pmdp, pmd) * * Set a level 1 translation table entry, and clean it out of * any caches such that the MMUs can load it correctly. * * pmdp: pointer to PMD entry * pmd: PMD value to store */ .align 5 ENTRY(cpu_xscale_set_pmd) #if PMD_CACHE_WRITE_ALLOCATE and r2, r1, #PMD_TYPE_MASK|PMD_SECT_CACHEABLE|PMD_SECT_BUFFERABLE cmp r2, #PMD_TYPE_SECT|PMD_SECT_CACHEABLE|PMD_SECT_BUFFERABLE orreq r1, r1, #PMD_SECT_TEX(1) #endif str r1, [r0] mov ip, #0 mcr p15, 0, r0, c7, c10, 1 @ Clean D cache line mcr p15, 0, ip, c7, c10, 4 @ Drain Write (& Fill) Buffer mov pc, lr /* * cpu_xscale_set_pte(ptep, pte) * * Set a PTE and flush it out * * Errata 40: must set memory to write-through for user read-only pages. */ .align 5 ENTRY(cpu_xscale_set_pte) str r1, [r0], #-2048 @ linux version bic r2, r1, #0xff0 orr r2, r2, #PTE_TYPE_EXT @ extended page eor r3, r1, #L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_WRITE | L_PTE_DIRTY tst r3, #L_PTE_USER | L_PTE_EXEC @ User or Exec? orrne r2, r2, #PTE_EXT_AP_URO_SRW @ yes -> user r/o, system r/w tst r3, #L_PTE_WRITE | L_PTE_DIRTY @ Write and Dirty? orreq r2, r2, #PTE_EXT_AP_UNO_SRW @ yes -> user n/a, system r/w @ combined with user -> user r/w @ @ Handle the X bit. We want to set this bit for the minicache @ (U = E = B = W = 0, C = 1) or when write allocate is enabled, @ and we have a writeable, cacheable region. If we ignore the @ U and E bits, we can allow user space to use the minicache as @ well. @ @ X = (C & ~W & ~B) | (C & W & B & write_allocate) @ eor ip, r1, #L_PTE_CACHEABLE tst ip, #L_PTE_CACHEABLE | L_PTE_WRITE | L_PTE_BUFFERABLE #if PTE_CACHE_WRITE_ALLOCATE eorne ip, r1, #L_PTE_CACHEABLE | L_PTE_WRITE | L_PTE_BUFFERABLE tstne ip, #L_PTE_CACHEABLE | L_PTE_WRITE | L_PTE_BUFFERABLE #endif orreq r2, r2, #PTE_EXT_TEX(1) @ @ Erratum 40: The B bit must be cleared for a user read-only @ cacheable page. @ @ B = B & ~((U|E) & C & ~W) @ and ip, r1, #L_PTE_USER | L_PTE_EXEC | L_PTE_WRITE | L_PTE_CACHEABLE teq ip, #L_PTE_USER | L_PTE_CACHEABLE teqne ip, #L_PTE_EXEC | L_PTE_CACHEABLE teqne ip, #L_PTE_USER | L_PTE_EXEC | L_PTE_CACHEABLE biceq r2, r2, #PTE_BUFFERABLE tst r3, #L_PTE_PRESENT | L_PTE_YOUNG @ Present and Young? movne r2, #0 @ no -> fault str r2, [r0] @ hardware version mov ip, #0 mcr p15, 0, r0, c7, c10, 1 @ Clean D cache line mcr p15, 0, ip, c7, c10, 4 @ Drain Write (& Fill) Buffer mov pc, lr .ltorg cpu_manu_name: .asciz "Intel" cpu_80200_name: .asciz "XScale-80200" cpu_pxa250_name: .asciz "XScale-PXA250" .align .section ".text.init", #alloc, #execinstr __xscale_setup: mov r0, #PSR_F_BIT|PSR_I_BIT|SVC_MODE msr cpsr_c, r0 mcr p15, 0, ip, c7, c7, 0 @ invalidate I, D caches & BTB mcr p15, 0, ip, c7, c10, 4 @ Drain Write (& Fill) Buffer mcr p15, 0, ip, c8, c7, 0 @ invalidate I, D TLBs mcr p15, 0, r4, c2, c0, 0 @ load page table pointer mov r0, #0x1f @ Domains 0, 1 = client mcr p15, 0, r0, c3, c0, 0 @ load domain access register mov r0, #1 @ Allow access to CP0 and CP13 orr r0, r0, #1 << 13 @ Its undefined whether this mcr p15, 0, r0, c15, c1, 0 @ affects USR or SVC modes mrc p15, 0, r0, c1, c0, 0 @ get control register bic r0, r0, #0x0200 @ .... ..R. .... .... bic r0, r0, #0x0082 @ .... .... B... ..A. orr r0, r0, #0x0005 @ .... .... .... .C.M orr r0, r0, #0x3900 @ ..VI Z..S .... .... mov pc, lr .text /* * Purpose : Function pointers used to access above functions - all calls * come through these */ .type xscale_processor_functions, #object ENTRY(xscale_processor_functions) .word xscale_abort .word cpu_xscale_check_bugs .word cpu_xscale_proc_init .word cpu_xscale_proc_fin .word cpu_xscale_reset .word cpu_xscale_do_idle /* cache */ .word cpu_xscale_cache_clean_invalidate_all .word cpu_xscale_cache_clean_invalidate_range .word cpu_xscale_flush_ram_page /* dcache */ .word cpu_xscale_dcache_invalidate_range .word cpu_xscale_dcache_clean_range .word cpu_xscale_dcache_clean_page .word cpu_xscale_dcache_clean_entry /* icache */ .word cpu_xscale_icache_invalidate_range .word cpu_xscale_icache_invalidate_page /* pgtable */ .word cpu_xscale_set_pgd .word cpu_xscale_set_pmd .word cpu_xscale_set_pte .size xscale_processor_functions, . - xscale_processor_functions .type cpu_80200_info, #object cpu_80200_info: .long cpu_manu_name .long cpu_80200_name .size cpu_80200_info, . - cpu_80200_info .type cpu_pxa250_info, #object cpu_pxa250_info: .long cpu_manu_name .long cpu_pxa250_name .size cpu_pxa250_info, . - cpu_pxa250_info .type cpu_arch_name, #object cpu_arch_name: .asciz "armv5te" .size cpu_arch_name, . - cpu_arch_name .type cpu_elf_name, #object cpu_elf_name: .asciz "v5" .size cpu_elf_name, . - cpu_elf_name .align .section ".proc.info", #alloc, #execinstr .type __80200_proc_info,#object __80200_proc_info: .long 0x69052000 .long 0xfffffff0 .long 0x00000c0e b __xscale_setup .long cpu_arch_name .long cpu_elf_name .long HWCAP_SWP|HWCAP_HALF|HWCAP_THUMB|HWCAP_FAST_MULT|HWCAP_EDSP .long cpu_80200_info .long xscale_processor_functions .long v4wbi_tlb_fns .long xscale_mc_user_fns .size __80200_proc_info, . - __80200_proc_info .type __pxa250_proc_info,#object __pxa250_proc_info: .long 0x69052100 .long 0xfffff7f0 .long 0x00000c0e b __xscale_setup .long cpu_arch_name .long cpu_elf_name .long HWCAP_SWP|HWCAP_HALF|HWCAP_THUMB|HWCAP_FAST_MULT|HWCAP_EDSP .long cpu_pxa250_info .long xscale_processor_functions .long v4wbi_tlb_fns .long xscale_mc_user_fns .size __pxa250_proc_info, . - __pxa250_proc_info |