Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 | /* * linux/arch/mips/philips/nino/time.c * * Copyright (C) 1999 Harald Koerfgen * Copyright (C) 2000 Pavel Machek (pavel@suse.cz) * Copyright (C) 2001 Steven J. Hill (sjhill@realitydiluted.com) * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. * * Time handling functinos for Philips Nino. */ #include <linux/errno.h> #include <linux/init.h> #include <linux/sched.h> #include <linux/kernel.h> #include <linux/param.h> #include <linux/string.h> #include <linux/mm.h> #include <linux/interrupt.h> #include <linux/timex.h> #include <linux/delay.h> #include <asm/tx3912.h> extern volatile unsigned long wall_jiffies; extern rwlock_t xtime_lock; static struct timeval xbase; #define USECS_PER_JIFFY (1000000/HZ) /* * Poll the Interrupt Status Registers */ #undef POLL_STATUS static unsigned long do_gettimeoffset(void) { /* * This is a kludge */ return 0; } static void inline readRTC(unsigned long *high, unsigned long *low) { /* read twice, and keep reading till we find two * the same pairs. This is needed in case the RTC * was updating its registers and we read a old * High but a new Low. */ do { *high = RTChigh & RTC_HIGHMASK; *low = RTClow; } while (*high != (RTChigh & RTC_HIGHMASK) || RTClow!=*low); } /* * This version of gettimeofday has near millisecond resolution. */ void do_gettimeofday(struct timeval *tv) { unsigned long flags; unsigned long high, low; read_lock_irqsave(&xtime_lock, flags); // 40 bit RTC, driven by 32khz source: // +-----------+-----------------------------------------+ // | HHHH.HHHH | LLLL.LLLL.LLLL.LLLL.LMMM.MMMM.MMMM.MMMM | // +-----------+-----------------------------------------+ readRTC(&high,&low); tv->tv_sec = (high << 17) | (low >> 15); tv->tv_usec = (low % 32768) * 1953 / 64; tv->tv_sec += xbase.tv_sec; tv->tv_usec += xbase.tv_usec; tv->tv_usec += do_gettimeoffset(); /* * xtime is atomically updated in timer_bh. lost_ticks is * nonzero if the timer bottom half hasnt executed yet. */ if (jiffies - wall_jiffies) tv->tv_usec += USECS_PER_JIFFY; read_unlock_irqrestore(&xtime_lock, flags); if (tv->tv_usec >= 1000000) { tv->tv_usec -= 1000000; tv->tv_sec++; } } void do_settimeofday(struct timeval *tv) { write_lock_irq(&xtime_lock); /* This is revolting. We need to set the xtime.tv_usec * correctly. However, the value in this location is * is value at the last tick. * Discover what correction gettimeofday * would have done, and then undo it! */ tv->tv_usec -= do_gettimeoffset(); if (tv->tv_usec < 0) { tv->tv_usec += 1000000; tv->tv_sec--; } /* reset RTC to 0 (real time is xbase + RTC) */ xbase = *tv; RTCtimerControl |= TIM_RTCCLEAR; RTCtimerControl &= ~TIM_RTCCLEAR; RTCalarmHigh = RTCalarmLow = ~0UL; xtime = *tv; time_state = TIME_BAD; time_maxerror = MAXPHASE; time_esterror = MAXPHASE; write_unlock_irq(&xtime_lock); } static int set_rtc_mmss(unsigned long nowtime) { int retval = 0; return retval; } /* last time the cmos clock got updated */ static long last_rtc_update = 0; /* * timer_interrupt() needs to keep up the real-time clock, * as well as call the "do_timer()" routine every clocktick */ int do_write = 1; static void timer_interrupt(int irq, void *dev_id, struct pt_regs *regs) { #ifdef POLL_STATUS static unsigned long old_IntStatus1 = 0; static unsigned long old_IntStatus3 = 0; static unsigned long old_IntStatus4 = 0; static unsigned long old_IntStatus5 = 0; static int counter = 0; int i; new_spircv = SPIData & 0xff; if ((old_spircv != new_spircv) && (new_spircv != 0xff)) { printk( "SPIData changed: %x\n", new_spircv ); } old_spircv = new_spircv; if (do_write) SPIData = 0; #endif if (!user_mode(regs)) { if (prof_buffer && current->pid) { extern int _stext; unsigned long pc = regs->cp0_epc; pc -= (unsigned long) &_stext; pc >>= prof_shift; /* * Dont ignore out-of-bounds pc values silently, * put them into the last histogram slot, so if * present, they will show up as a sharp peak. */ if (pc > prof_len - 1) pc = prof_len - 1; atomic_inc((atomic_t *) & prof_buffer[pc]); } } /* * aaaand... action! */ do_timer(regs); /* * If we have an externally syncronized Linux clock, then update * CMOS clock accordingly every ~11 minutes. Set_rtc_mmss() has to be * called as close as possible to 500 ms before the new second starts. */ if (time_state != TIME_BAD && xtime.tv_sec > last_rtc_update + 660 && xtime.tv_usec > 500000 - (tick >> 1) && xtime.tv_usec < 500000 + (tick >> 1)) { if (set_rtc_mmss(xtime.tv_sec) == 0) last_rtc_update = xtime.tv_sec; else last_rtc_update = xtime.tv_sec - 600; /* do it again in 60 s */ } } static struct irqaction irq0 = {timer_interrupt, SA_INTERRUPT, 0, "timer", NULL, NULL}; void (*board_time_init) (struct irqaction * irq); int __init time_init(void) { struct timeval starttime; starttime.tv_sec = mktime(2000, 1, 1, 0, 0, 0); starttime.tv_usec = 0; do_settimeofday(&starttime); board_time_init(&irq0); return 0; } |