Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 | /* * arch/ppc/kernel/todc_time.c * * Time of Day Clock support for the M48T35, M48T37, M48T59, and MC146818 * Real Time Clocks/Timekeepers. * * Author: Mark A. Greer * mgreer@mvista.com * * Copyright 2001 MontaVista Software Inc. * * This program is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License as published by the * Free Software Foundation; either version 2 of the License, or (at your * option) any later version. */ #include <linux/errno.h> #include <linux/init.h> #include <linux/kernel.h> #include <linux/time.h> #include <linux/timex.h> #include <asm/machdep.h> #include <asm/io.h> #include <asm/time.h> #include <asm/todc.h> /* * Depending on the hardware on your board and your board design, the * RTC/NVRAM may be accessed either directly (like normal memory) or via * address/data registers. If your board uses the direct method, set * 'nvram_data' to the base address of your nvram and leave 'nvram_as0' and * 'nvram_as1' NULL. If your board uses address/data regs to access nvram, * set 'nvram_as0' to the address of the lower byte, set 'nvram_as1' to the * address of the upper byte (leave NULL if using mv146818), and set * 'nvram_data' to the address of the 8-bit data register. * * You also need to set 'ppc_md.nvram_read_val' and 'ppc_md.nvram_write_val' to * the proper routines. There are standard ones defined further down in * this file that you can use. * * There is a built in assumption that the RTC and NVRAM are accessed by the * same mechanism (i.e., ppc_md.nvram_read_val, etc works for both). * * Note: Even though the documentation for the various RTC chips say that it * take up to a second before it starts updating once the 'R' bit is * cleared, they always seem to update even though we bang on it many * times a second. This is true, except for the Dallas Semi 1746/1747 * (possibly others). Those chips seem to have a real problem whenever * we set the 'R' bit before reading them, they basically stop counting. * --MAG */ /* * 'todc_info' should be initialized in your *_setup.c file to * point to a fully initialized 'todc_info_t' structure. * This structure holds all the register offsets for your particular * TODC/RTC chip. * TODC_ALLOC()/TODC_INIT() will allocate and initialize this table for you. */ #ifdef RTC_FREQ_SELECT #undef RTC_FREQ_SELECT #define RTC_FREQ_SELECT control_b /* Register A */ #endif #ifdef RTC_CONTROL #undef RTC_CONTROL #define RTC_CONTROL control_a /* Register B */ #endif #ifdef RTC_INTR_FLAGS #undef RTC_INTR_FLAGS #define RTC_INTR_FLAGS watchdog /* Register C */ #endif #ifdef RTC_VALID #undef RTC_VALID #define RTC_VALID interrupts /* Register D */ #endif /* Access routines when RTC accessed directly (like normal memory) */ u_char todc_direct_read_val(int addr) { return readb(todc_info->nvram_data + addr); } void todc_direct_write_val(int addr, unsigned char val) { writeb(val, todc_info->nvram_data + addr); return; } /* Access routines for accessing m48txx type chips via addr/data regs */ u_char todc_m48txx_read_val(int addr) { outb(addr, todc_info->nvram_as0); outb(addr>>todc_info->as0_bits, todc_info->nvram_as1); return inb(todc_info->nvram_data); } void todc_m48txx_write_val(int addr, unsigned char val) { outb(addr, todc_info->nvram_as0); outb(addr>>todc_info->as0_bits, todc_info->nvram_as1); outb(val, todc_info->nvram_data); return; } /* Access routines for accessing mc146818 type chips via addr/data regs */ u_char todc_mc146818_read_val(int addr) { outb(addr, todc_info->nvram_as0); return inb(todc_info->nvram_data); } void todc_mc146818_write_val(int addr, unsigned char val) { outb(addr, todc_info->nvram_as0); outb(val, todc_info->nvram_data); return; } /* * TODC routines * * There is some ugly stuff in that there are assumptions for the mc146818. * * Assumptions: * - todc_info->control_a has the offset as mc146818 Register B reg * - todc_info->control_b has the offset as mc146818 Register A reg * - m48txx control reg's write enable or 'W' bit is same as * mc146818 Register B 'SET' bit (i.e., 0x80) * * These assumptions were made to make the code simpler. */ long __init todc_time_init(void) { static u_char not_initialized = 1; /* Make sure clocks are running */ if (not_initialized) { u_char cntl_b; cntl_b = ppc_md.nvram_read_val(todc_info->control_b); if (todc_info->rtc_type == TODC_TYPE_MC146818) { if ((cntl_b & 0x70) != 0x20) { printk(KERN_INFO "TODC %s %s\n", "real-time-clock was stopped.", "Now starting..."); cntl_b &= ~0x70; cntl_b |= 0x20; } ppc_md.nvram_write_val(todc_info->control_b, cntl_b); } else if (todc_info->rtc_type == TODC_TYPE_DS1501) { u_char month; todc_info->enable_read = TODC_DS1501_CNTL_B_TE; todc_info->enable_write = TODC_DS1501_CNTL_B_TE; month = ppc_md.nvram_read_val(todc_info->month); if ((month & 0x80) == 0x80) { printk(KERN_INFO "TODC %s %s\n", "real-time-clock was stopped.", "Now starting..."); month &= ~0x80; ppc_md.nvram_write_val(todc_info->month, month); } cntl_b &= ~TODC_DS1501_CNTL_B_TE; ppc_md.nvram_write_val(todc_info->control_b, cntl_b); } else { /* must be a m48txx type */ u_char cntl_a; todc_info->enable_read = TODC_MK48TXX_CNTL_A_R; todc_info->enable_write = TODC_MK48TXX_CNTL_A_W; cntl_a = ppc_md.nvram_read_val(todc_info->control_a); /* Check & clear STOP bit in control B register */ if (cntl_b & TODC_MK48TXX_DAY_CB) { printk(KERN_INFO "TODC %s %s\n", "real-time-clock was stopped.", "Now starting..."); cntl_a |= todc_info->enable_write; cntl_b &= ~TODC_MK48TXX_DAY_CB;/* Start Oscil */ ppc_md.nvram_write_val(todc_info->control_a, cntl_a); ppc_md.nvram_write_val(todc_info->control_b, cntl_b); } /* Make sure READ & WRITE bits are cleared. */ cntl_a &= ~(todc_info->enable_write | todc_info->enable_read); ppc_md.nvram_write_val(todc_info->control_a, cntl_a); } not_initialized = 0; } return 0; } /* * There is some ugly stuff in that there are assumptions that for a mc146818, * the todc_info->control_a has the offset of the mc146818 Register B reg and * that the register'ss 'SET' bit is the same as the m48txx's write enable * bit in the control register of the m48txx (i.e., 0x80). * * It was done to make the code look simpler. */ ulong todc_get_rtc_time(void) { uint year, mon, day, hour, min, sec; uint limit, i; u_char save_control, uip; save_control = ppc_md.nvram_read_val(todc_info->control_a); if (todc_info->rtc_type != TODC_TYPE_MC146818) { limit = 1; switch (todc_info->rtc_type) { case TODC_TYPE_DS1557: case TODC_TYPE_DS1746: /* XXXX BAD HACK -> FIX */ case TODC_TYPE_DS1747: break; default: ppc_md.nvram_write_val(todc_info->control_a, (save_control | todc_info->enable_read)); } } else { limit = 100000000; } for (i=0; i<limit; i++) { if (todc_info->rtc_type == TODC_TYPE_MC146818) { uip = ppc_md.nvram_read_val(todc_info->RTC_FREQ_SELECT); } sec = ppc_md.nvram_read_val(todc_info->seconds) & 0x7f; min = ppc_md.nvram_read_val(todc_info->minutes) & 0x7f; hour = ppc_md.nvram_read_val(todc_info->hours) & 0x3f; day = ppc_md.nvram_read_val(todc_info->day_of_month) & 0x3f; mon = ppc_md.nvram_read_val(todc_info->month) & 0x1f; year = ppc_md.nvram_read_val(todc_info->year) & 0xff; if (todc_info->rtc_type == TODC_TYPE_MC146818) { uip |= ppc_md.nvram_read_val( todc_info->RTC_FREQ_SELECT); if ((uip & RTC_UIP) == 0) break; } } if (todc_info->rtc_type != TODC_TYPE_MC146818) { switch (todc_info->rtc_type) { case TODC_TYPE_DS1557: case TODC_TYPE_DS1746: /* XXXX BAD HACK -> FIX */ case TODC_TYPE_DS1747: break; default: save_control &= ~(todc_info->enable_read); ppc_md.nvram_write_val(todc_info->control_a, save_control); } } if ((todc_info->rtc_type != TODC_TYPE_MC146818) || ((save_control & RTC_DM_BINARY) == 0) || RTC_ALWAYS_BCD) { BCD_TO_BIN(sec); BCD_TO_BIN(min); BCD_TO_BIN(hour); BCD_TO_BIN(day); BCD_TO_BIN(mon); BCD_TO_BIN(year); } year = year + 1900; if (year < 1970) { year += 100; } return mktime(year, mon, day, hour, min, sec); } int todc_set_rtc_time(unsigned long nowtime) { struct rtc_time tm; u_char save_control, save_freq_select; to_tm(nowtime, &tm); save_control = ppc_md.nvram_read_val(todc_info->control_a); /* Assuming MK48T59_RTC_CA_WRITE & RTC_SET are equal */ ppc_md.nvram_write_val(todc_info->control_a, (save_control | todc_info->enable_write)); save_control &= ~(todc_info->enable_write); /* in case it was set */ if (todc_info->rtc_type == TODC_TYPE_MC146818) { save_freq_select = ppc_md.nvram_read_val(todc_info->RTC_FREQ_SELECT); ppc_md.nvram_write_val(todc_info->RTC_FREQ_SELECT, save_freq_select | RTC_DIV_RESET2); } tm.tm_year = (tm.tm_year - 1900) % 100; if ((todc_info->rtc_type != TODC_TYPE_MC146818) || ((save_control & RTC_DM_BINARY) == 0) || RTC_ALWAYS_BCD) { BIN_TO_BCD(tm.tm_sec); BIN_TO_BCD(tm.tm_min); BIN_TO_BCD(tm.tm_hour); BIN_TO_BCD(tm.tm_mon); BIN_TO_BCD(tm.tm_mday); BIN_TO_BCD(tm.tm_year); } ppc_md.nvram_write_val(todc_info->seconds, tm.tm_sec); ppc_md.nvram_write_val(todc_info->minutes, tm.tm_min); ppc_md.nvram_write_val(todc_info->hours, tm.tm_hour); ppc_md.nvram_write_val(todc_info->month, tm.tm_mon); ppc_md.nvram_write_val(todc_info->day_of_month, tm.tm_mday); ppc_md.nvram_write_val(todc_info->year, tm.tm_year); ppc_md.nvram_write_val(todc_info->control_a, save_control); if (todc_info->rtc_type == TODC_TYPE_MC146818) { ppc_md.nvram_write_val(todc_info->RTC_FREQ_SELECT, save_freq_select); } return 0; } /* * Manipulates read bit to reliably read seconds at a high rate. */ static unsigned char __init todc_read_timereg(int addr) { unsigned char save_control, val; switch (todc_info->rtc_type) { case TODC_TYPE_DS1557: case TODC_TYPE_DS1746: /* XXXX BAD HACK -> FIX */ case TODC_TYPE_DS1747: case TODC_TYPE_MC146818: break; default: save_control = ppc_md.nvram_read_val(todc_info->control_a); ppc_md.nvram_write_val(todc_info->control_a, (save_control | todc_info->enable_read)); } val = ppc_md.nvram_read_val(addr); switch (todc_info->rtc_type) { case TODC_TYPE_DS1557: case TODC_TYPE_DS1746: /* XXXX BAD HACK -> FIX */ case TODC_TYPE_DS1747: case TODC_TYPE_MC146818: break; default: save_control &= ~(todc_info->enable_read); ppc_md.nvram_write_val(todc_info->control_a, save_control); } return val; } /* * This was taken from prep_setup.c * Use the NVRAM RTC to time a second to calibrate the decrementer. */ void __init todc_calibrate_decr(void) { ulong freq; ulong tbl, tbu; long i, loop_count; u_char sec; todc_time_init(); /* * Actually this is bad for precision, we should have a loop in * which we only read the seconds counter. nvram_read_val writes * the address bytes on every call and this takes a lot of time. * Perhaps an nvram_wait_change method returning a time * stamp with a loop count as parameter would be the solution. */ /* * Need to make sure the tbl doesn't roll over so if tbu increments * during this test, we need to do it again. */ loop_count = 0; sec = todc_read_timereg(todc_info->seconds) & 0x7f; do { tbu = get_tbu(); for (i = 0 ; i < 10000000 ; i++) {/* may take up to 1 second */ tbl = get_tbl(); if ((todc_read_timereg(todc_info->seconds) & 0x7f) != sec) { break; } } sec = todc_read_timereg(todc_info->seconds) & 0x7f; for (i = 0 ; i < 10000000 ; i++) { /* Should take 1 second */ freq = get_tbl(); if ((todc_read_timereg(todc_info->seconds) & 0x7f) != sec) { break; } } freq -= tbl; } while ((get_tbu() != tbu) && (++loop_count < 2)); printk("time_init: decrementer frequency = %lu.%.6lu MHz\n", freq/1000000, freq%1000000); tb_ticks_per_jiffy = freq / HZ; tb_to_us = mulhwu_scale_factor(freq, 1000000); return; } |