Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 | /* Copyright(c) 2000, Compaq Computer Corporation * Fibre Channel Host Bus Adapter * 64-bit, 66MHz PCI * Originally developed and tested on: * (front): [chip] Tachyon TS HPFC-5166A/1.2 L2C1090 ... * SP# P225CXCBFIEL6T, Rev XC * SP# 161290-001, Rev XD * (back): Board No. 010008-001 A/W Rev X5, FAB REV X5 * * This program is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License as published by the * Free Software Foundation; either version 2, or (at your option) any * later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * Written by Don Zimmerman */ // These functions control the NVRAM I2C hardware on // non-intelligent Fibre Host Adapters. // The primary purpose is to read the HBA's NVRAM to get adapter's // manufactured WWN to copy into Tachyon chip registers // Orignal source author unknown #include <linux/types.h> enum boolean { FALSE, TRUE } ; #ifndef UCHAR typedef __u8 UCHAR; #endif #ifndef BOOLEAN typedef __u8 BOOLEAN; #endif #ifndef USHORT typedef __u16 USHORT; #endif #ifndef ULONG typedef __u32 ULONG; #endif #include <linux/string.h> #include <linux/pci.h> #include <linux/delay.h> #include <linux/sched.h> #include <asm/io.h> // struct pt_regs for IRQ handler & Port I/O #include "cpqfcTSchip.h" static void tl_i2c_tx_byte( void* GPIOout, UCHAR data ); /*static BOOLEAN tl_write_i2c_page_portion( void* GPIOin, void* GPIOout, USHORT startOffset, // e.g. 0x2f for WWN start USHORT count, UCHAR *buf ); */ // // Tachlite GPIO2, GPIO3 (I2C) DEFINES // The NVRAM chip NM24C03 defines SCL (serial clock) and SDA (serial data) // GPIO2 drives SDA, and GPIO3 drives SCL // // Since Tachlite inverts the state of the GPIO 0-3 outputs, SET writes 0 // and clear writes 1. The input lines (read in TL status) is NOT inverted // This really helps confuse the code and debugging. #define SET_DATA_HI 0x0 #define SET_DATA_LO 0x8 #define SET_CLOCK_HI 0x0 #define SET_CLOCK_LO 0x4 #define SENSE_DATA_HI 0x8 #define SENSE_DATA_LO 0x0 #define SENSE_CLOCK_HI 0x4 #define SENSE_CLOCK_LO 0x0 #define SLAVE_READ_ADDRESS 0xA1 #define SLAVE_WRITE_ADDRESS 0xA0 static void i2c_delay(ULONG mstime); static void tl_i2c_clock_pulse( UCHAR , void* GPIOout); static UCHAR tl_read_i2c_data( void* ); //----------------------------------------------------------------------------- // // Name: I2C_RX_ACK // // This routine receives an acknowledge over the I2C bus. // //----------------------------------------------------------------------------- static unsigned short tl_i2c_rx_ack( void* GPIOin, void* GPIOout ) { unsigned long value; // do clock pulse, let data line float high tl_i2c_clock_pulse( SET_DATA_HI, GPIOout ); // slave must drive data low for acknowledge value = tl_read_i2c_data( GPIOin); if (value & SENSE_DATA_HI ) return( FALSE ); return( TRUE ); } //----------------------------------------------------------------------------- // // Name: READ_I2C_REG // // This routine reads the I2C control register using the global // IO address stored in gpioreg. // //----------------------------------------------------------------------------- static UCHAR tl_read_i2c_data( void* gpioreg ) { return( (UCHAR)(readl( gpioreg ) & 0x08L) ); // GPIO3 } //----------------------------------------------------------------------------- // // Name: WRITE_I2C_REG // // This routine writes the I2C control register using the global // IO address stored in gpioreg. // In Tachlite, we don't want to modify other bits in TL Control reg. // //----------------------------------------------------------------------------- static void tl_write_i2c_reg( void* gpioregOUT, UCHAR value ) { ULONG temp; // First read the register and clear out the old bits temp = readl( gpioregOUT ) & 0xfffffff3L; // Now or in the new data and send it back out writel( temp | value, gpioregOUT); } //----------------------------------------------------------------------------- // // Name: I2C_TX_START // // This routine transmits a start condition over the I2C bus. // 1. Set SCL (clock, GPIO2) HIGH, set SDA (data, GPIO3) HIGH, // wait 5us to stabilize. // 2. With SCL still HIGH, drive SDA low. The low transition marks // the start condition to NM24Cxx (the chip) // NOTE! In TL control reg., output 1 means chip sees LOW // //----------------------------------------------------------------------------- static unsigned short tl_i2c_tx_start( void* GPIOin, void* GPIOout ) { unsigned short i; ULONG value; if ( !(tl_read_i2c_data(GPIOin) & SENSE_DATA_HI)) { // start with clock high, let data float high tl_write_i2c_reg( GPIOout, SET_DATA_HI | SET_CLOCK_HI ); // keep sending clock pulses if slave is driving data line for (i = 0; i < 10; i++) { tl_i2c_clock_pulse( SET_DATA_HI, GPIOout ); if ( tl_read_i2c_data(GPIOin) & SENSE_DATA_HI ) break; } // if he's still driving data low after 10 clocks, abort value = tl_read_i2c_data( GPIOin ); // read status if (!(value & 0x08) ) return( FALSE ); } // To START, bring data low while clock high tl_write_i2c_reg( GPIOout, SET_CLOCK_HI | SET_DATA_LO ); i2c_delay(0); return( TRUE ); // TX start successful } //----------------------------------------------------------------------------- // // Name: I2C_TX_STOP // // This routine transmits a stop condition over the I2C bus. // //----------------------------------------------------------------------------- static unsigned short tl_i2c_tx_stop( void* GPIOin, void* GPIOout ) { int i; for (i = 0; i < 10; i++) { // Send clock pulse, drive data line low tl_i2c_clock_pulse( SET_DATA_LO, GPIOout ); // To STOP, bring data high while clock high tl_write_i2c_reg( GPIOout, SET_DATA_HI | SET_CLOCK_HI ); // Give the data line time to float high i2c_delay(0); // If slave is driving data line low, there's a problem; retry if ( tl_read_i2c_data(GPIOin) & SENSE_DATA_HI ) return( TRUE ); // TX STOP successful! } return( FALSE ); // error } //----------------------------------------------------------------------------- // // Name: I2C_TX_uchar // // This routine transmits a byte across the I2C bus. // //----------------------------------------------------------------------------- static void tl_i2c_tx_byte( void* GPIOout, UCHAR data ) { UCHAR bit; for (bit = 0x80; bit; bit >>= 1) { if( data & bit ) tl_i2c_clock_pulse( (UCHAR)SET_DATA_HI, GPIOout); else tl_i2c_clock_pulse( (UCHAR)SET_DATA_LO, GPIOout); } } //----------------------------------------------------------------------------- // // Name: I2C_RX_uchar // // This routine receives a byte across the I2C bus. // //----------------------------------------------------------------------------- static UCHAR tl_i2c_rx_byte( void* GPIOin, void* GPIOout ) { UCHAR bit; UCHAR data = 0; for (bit = 0x80; bit; bit >>= 1) { // do clock pulse, let data line float high tl_i2c_clock_pulse( SET_DATA_HI, GPIOout ); // read data line if ( tl_read_i2c_data( GPIOin) & 0x08 ) data |= bit; } return (data); } //***************************************************************************** //***************************************************************************** // Function: read_i2c_nvram // Arguments: UCHAR count number of bytes to read // UCHAR *buf area to store the bytes read // Returns: 0 - failed // 1 - success //***************************************************************************** //***************************************************************************** unsigned long cpqfcTS_ReadNVRAM( void* GPIOin, void* GPIOout , USHORT count, UCHAR *buf ) { unsigned short i; if( !( tl_i2c_tx_start(GPIOin, GPIOout) )) return FALSE; // Select the NVRAM for "dummy" write, to set the address tl_i2c_tx_byte( GPIOout , SLAVE_WRITE_ADDRESS ); if ( !tl_i2c_rx_ack(GPIOin, GPIOout ) ) return( FALSE ); // Now send the address where we want to start reading tl_i2c_tx_byte( GPIOout , 0 ); if ( !tl_i2c_rx_ack(GPIOin, GPIOout ) ) return( FALSE ); // Send a repeated start condition and select the // slave for reading now. if( tl_i2c_tx_start(GPIOin, GPIOout) ) tl_i2c_tx_byte( GPIOout, SLAVE_READ_ADDRESS ); if ( !tl_i2c_rx_ack(GPIOin, GPIOout) ) return( FALSE ); // this loop will now read out the data and store it // in the buffer pointed to by buf for ( i=0; i<count; i++) { *buf++ = tl_i2c_rx_byte(GPIOin, GPIOout); // Send ACK by holding data line low for 1 clock if ( i < (count-1) ) tl_i2c_clock_pulse( 0x08, GPIOout ); else { // Don't send ack for final byte tl_i2c_clock_pulse( SET_DATA_HI, GPIOout ); } } tl_i2c_tx_stop(GPIOin, GPIOout); return( TRUE ); } //**************************************************************** // // // // routines to set and clear the data and clock bits // // // //**************************************************************** static void tl_set_clock(void* gpioreg) { ULONG ret_val; ret_val = readl( gpioreg ); ret_val &= 0xffffffFBL; // clear GPIO2 (SCL) writel( ret_val, gpioreg); } static void tl_clr_clock(void* gpioreg) { ULONG ret_val; ret_val = readl( gpioreg ); ret_val |= SET_CLOCK_LO; writel( ret_val, gpioreg); } //***************************************************************** // // // This routine will advance the clock by one period // // //***************************************************************** static void tl_i2c_clock_pulse( UCHAR value, void* GPIOout ) { ULONG ret_val; // clear the clock bit tl_clr_clock( GPIOout ); i2c_delay(0); // read the port to preserve non-I2C bits ret_val = readl( GPIOout ); // clear the data & clock bits ret_val &= 0xFFFFFFf3; // write the value passed in... // data can only change while clock is LOW! ret_val |= value; // the data ret_val |= SET_CLOCK_LO; // the clock writel( ret_val, GPIOout ); i2c_delay(0); //set clock bit tl_set_clock( GPIOout); } //***************************************************************** // // // This routine returns the 64-bit WWN // // //***************************************************************** int cpqfcTS_GetNVRAM_data( UCHAR *wwnbuf, UCHAR *buf ) { ULONG len; ULONG sub_len; ULONG ptr_inc; ULONG i; ULONG j; UCHAR *data_ptr; UCHAR z; UCHAR name; UCHAR sub_name; UCHAR done; int iReturn=0; // def. 0 offset is failure to find WWN field data_ptr = (UCHAR *)buf; done = FALSE; i = 0; while ( (i < 128) && (!done) ) { z = data_ptr[i];\ if ( !(z & 0x80) ) { len = 1 + (z & 0x07); name = (z & 0x78) >> 3; if (name == 0x0F) done = TRUE; } else { name = z & 0x7F; len = 3 + data_ptr[i+1] + (data_ptr[i+2] << 8); switch (name) { case 0x0D: // j = i + 3; // if ( data_ptr[j] == 0x3b ) { len = 6; break; } while ( j<(i+len) ) { sub_name = (data_ptr[j] & 0x3f); sub_len = data_ptr[j+1] + (data_ptr[j+2] << 8); ptr_inc = sub_len + 3; switch (sub_name) { case 0x3C: memcpy( wwnbuf, &data_ptr[j+3], 8); iReturn = j+3; break; default: break; } j += ptr_inc; } break; default: break; } } // i += len; } // end while return iReturn; } // define a short 5 micro sec delay, and longer (ms) delay static void i2c_delay(ULONG mstime) { ULONG i; // NOTE: we only expect to use these delays when reading // our adapter's NVRAM, which happens only during adapter reset. // Delay technique from "Linux Device Drivers", A. Rubini // (1st Ed.) pg 137. // printk(" delay %lx ", mstime); if( mstime ) // ms delay? { // delay technique for( i=0; i < mstime; i++) udelay(1000); // 1ms per loop } else // 5 micro sec delay udelay( 5 ); // micro secs // printk("done\n"); } |