Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 | /* $Id: amd7930.c,v 1.5.6.4 2001/09/23 22:24:46 kai Exp $ * * HiSax ISDN driver - chip specific routines for AMD 7930 * * Author Brent Baccala * Copyright by Brent Baccala <baccala@FreeSoft.org> * * This software may be used and distributed according to the terms * of the GNU General Public License, incorporated herein by reference. * * - Existing ISDN HiSax driver provides all the smarts * - it compiles, runs, talks to an isolated phone switch, connects * to a Cisco, pings go through * - AMD 7930 support only (no DBRI yet) * - no US NI-1 support (may not work on US phone system - untested) * - periodic packet loss, apparently due to lost interrupts * - ISDN sometimes freezes, requiring reboot before it will work again * * The code is unreliable enough to be consider alpha * * This file is (c) under GNU General Public License * * Advanced Micro Devices' Am79C30A is an ISDN/audio chip used in the * SparcStation 1+. The chip provides microphone and speaker interfaces * which provide mono-channel audio at 8K samples per second via either * 8-bit A-law or 8-bit mu-law encoding. Also, the chip features an * ISDN BRI Line Interface Unit (LIU), I.430 S/T physical interface, * which performs basic D channel LAPD processing and provides raw * B channel data. The digital audio channel, the two ISDN B channels, * and two 64 Kbps channels to the microprocessor are all interconnected * via a multiplexer. * * This driver interfaces to the Linux HiSax ISDN driver, which performs * all high-level Q.921 and Q.931 ISDN functions. The file is not * itself a hardware driver; rather it uses functions exported by * the AMD7930 driver in the sparcaudio subsystem (drivers/sbus/audio), * allowing the chip to be simultaneously used for both audio and ISDN data. * The hardware driver does _no_ buffering, but provides several callbacks * which are called during interrupt service and should therefore run quickly. * * D channel transmission is performed by passing the hardware driver the * address and size of an skb's data area, then waiting for a callback * to signal successful transmission of the packet. A task is then * queued to notify the HiSax driver that another packet may be transmitted. * * D channel reception is quite simple, mainly because of: * 1) the slow speed of the D channel - 16 kbps, and * 2) the presence of an 8- or 32-byte (depending on chip version) FIFO * to buffer the D channel data on the chip * Worst case scenario of back-to-back packets with the 8 byte buffer * at 16 kbps yields an service time of 4 ms - long enough to preclude * the need for fancy buffering. We queue a background task that copies * data out of the receive buffer into an skb, and the hardware driver * simply does nothing until we're done with the receive buffer and * reset it for a new packet. * * B channel processing is more complex, because of: * 1) the faster speed - 64 kbps, * 2) the lack of any on-chip buffering (it interrupts for every byte), and * 3) the lack of any chip support for HDLC encapsulation * * The HiSax driver can put each B channel into one of three modes - * L1_MODE_NULL (channel disabled), L1_MODE_TRANS (transparent data relay), * and L1_MODE_HDLC (HDLC encapsulation by low-level driver). * L1_MODE_HDLC is the most common, used for almost all "pure" digital * data sessions. L1_MODE_TRANS is used for ISDN audio. * * HDLC B channel transmission is performed via a large buffer into * which the skb is copied while performing HDLC bit-stuffing. A CRC * is computed and attached to the end of the buffer, which is then * passed to the low-level routines for raw transmission. Once * transmission is complete, the hardware driver is set to enter HDLC * idle by successive transmission of mark (all 1) bytes, waiting for * the ISDN driver to prepare another packet for transmission and * deliver it. * * HDLC B channel reception is performed via an X-byte ring buffer * divided into N sections of X/N bytes each. Defaults: X=256 bytes, N=4. * As the hardware driver notifies us that each section is full, we * hand it the next section and schedule a background task to peruse * the received section, bit-by-bit, with an HDLC decoder. As * packets are detected, they are copied into a large buffer while * decoding HDLC bit-stuffing. The ending CRC is verified, and if * it is correct, we alloc a new skb of the correct length (which we * now know), copy the packet into it, and hand it to the upper layers. * Optimization: for large packets, we hand the buffer (which also * happens to be an skb) directly to the upper layer after an skb_trim, * and alloc a new large buffer for future packets, thus avoiding a copy. * Then we return to HDLC processing; state is saved between calls. * */ #define __NO_VERSION__ #include "hisax.h" #include "../../sbus/audio/amd7930.h" #include "isac.h" #include "isdnl1.h" #include "rawhdlc.h" #include <linux/interrupt.h> static const char *amd7930_revision = "$Revision: 1.5.6.4 $"; #define RCV_BUFSIZE 1024 /* Size of raw receive buffer in bytes */ #define RCV_BUFBLKS 4 /* Number of blocks to divide buffer into * (must divide RCV_BUFSIZE) */ static void Bchan_fill_fifo(struct BCState *, struct sk_buff *); static void Bchan_xmt_bh(struct BCState *bcs) { struct sk_buff *skb; if (bcs->hw.amd7930.tx_skb != NULL) { dev_kfree_skb(bcs->hw.amd7930.tx_skb); bcs->hw.amd7930.tx_skb = NULL; } if ((skb = skb_dequeue(&bcs->squeue))) { Bchan_fill_fifo(bcs, skb); } else { clear_bit(BC_FLG_BUSY, &bcs->Flag); bcs->event |= 1 << B_XMTBUFREADY; queue_task(&bcs->tqueue, &tq_immediate); mark_bh(IMMEDIATE_BH); } } static void Bchan_xmit_callback(struct BCState *bcs) { queue_task(&bcs->hw.amd7930.tq_xmt, &tq_immediate); mark_bh(IMMEDIATE_BH); } /* B channel transmission: two modes (three, if you count L1_MODE_NULL) * * L1_MODE_HDLC - We need to do HDLC encapsulation before transmiting * the packet (i.e. make_raw_hdlc_data). Since this can be a * time-consuming operation, our completion callback just schedules * a bottom half to do encapsulation for the next packet. In between, * the link will just idle * * L1_MODE_TRANS - Data goes through, well, transparent. No HDLC encap, * and we can't just let the link idle, so the "bottom half" actually * gets called during the top half (it's our callback routine in this case), * but it's a lot faster now since we don't call make_raw_hdlc_data */ static void Bchan_fill_fifo(struct BCState *bcs, struct sk_buff *skb) { struct IsdnCardState *cs = bcs->cs; int len; if ((cs->debug & L1_DEB_HSCX) || (cs->debug & L1_DEB_HSCX_FIFO)) { char tmp[1024]; char *t = tmp; t += sprintf(t, "amd7930_fill_fifo %c cnt %d", bcs->channel ? 'B' : 'A', skb->len); if (cs->debug & L1_DEB_HSCX_FIFO) QuickHex(t, skb->data, skb->len); debugl1(cs, tmp); } if (bcs->mode == L1_MODE_HDLC) { len = make_raw_hdlc_data(skb->data, skb->len, bcs->hw.amd7930.tx_buff, RAW_BUFMAX); if (len > 0) amd7930_bxmit(0, bcs->channel, bcs->hw.amd7930.tx_buff, len, (void *) &Bchan_xmit_callback, (void *) bcs); dev_kfree_skb(skb); } else if (bcs->mode == L1_MODE_TRANS) { amd7930_bxmit(0, bcs->channel, bcs->hw.amd7930.tx_buff, skb->len, (void *) &Bchan_xmt_bh, (void *) bcs); bcs->hw.amd7930.tx_skb = skb; } else { dev_kfree_skb(skb); } } static void Bchan_mode(struct BCState *bcs, int mode, int bc) { struct IsdnCardState *cs = bcs->cs; if (cs->debug & L1_DEB_HSCX) { char tmp[40]; sprintf(tmp, "AMD 7930 mode %d bchan %d/%d", mode, bc, bcs->channel); debugl1(cs, tmp); } bcs->mode = mode; } /* Bchan_l2l1 is the entry point for upper layer routines that want to * transmit on the B channel. PH_DATA_REQ is a normal packet that * we either start transmitting (if idle) or queue (if busy). * PH_PULL_REQ can be called to request a callback message (PH_PULL_CNF) * once the link is idle. After a "pull" callback, the upper layer * routines can use PH_PULL_IND to send data. */ static void Bchan_l2l1(struct PStack *st, int pr, void *arg) { struct sk_buff *skb = arg; switch (pr) { case (PH_DATA_REQ): if (test_bit(BC_FLG_BUSY, &st->l1.bcs->Flag)) { skb_queue_tail(&st->l1.bcs->squeue, skb); } else { test_and_set_bit(BC_FLG_BUSY, &st->l1.bcs->Flag); Bchan_fill_fifo(st->l1.bcs, skb); } break; case (PH_PULL_IND): if (test_bit(BC_FLG_BUSY, &st->l1.bcs->Flag)) { printk(KERN_WARNING "amd7930: this shouldn't happen\n"); break; } test_and_set_bit(BC_FLG_BUSY, &st->l1.bcs->Flag); Bchan_fill_fifo(st->l1.bcs, skb); break; case (PH_PULL_REQ): if (!test_bit(BC_FLG_BUSY, &st->l1.bcs->Flag)) { clear_bit(FLG_L1_PULL_REQ, &st->l1.Flags); st->l1.l1l2(st, PH_PULL_CNF, NULL); } else set_bit(FLG_L1_PULL_REQ, &st->l1.Flags); break; } } /* Receiver callback and bottom half - decodes HDLC at leisure (if * L1_MODE_HDLC) and passes newly received skb on via bcs->rqueue. If * a large packet is received, stick rv_skb (the buffer that the * packet has been decoded into) on the receive queue and alloc a new * (large) skb to act as buffer for future receives. If a small * packet is received, leave rv_skb alone, alloc a new skb of the * correct size, and copy the packet into it */ static void Bchan_recv_callback(struct BCState *bcs) { struct amd7930_hw *hw = &bcs->hw.amd7930; hw->rv_buff_in += RCV_BUFSIZE/RCV_BUFBLKS; hw->rv_buff_in %= RCV_BUFSIZE; if (hw->rv_buff_in != hw->rv_buff_out) { amd7930_brecv(0, bcs->channel, hw->rv_buff + hw->rv_buff_in, RCV_BUFSIZE/RCV_BUFBLKS, (void *) &Bchan_recv_callback, (void *) bcs); } queue_task(&hw->tq_rcv, &tq_immediate); mark_bh(IMMEDIATE_BH); } static void Bchan_rcv_bh(struct BCState *bcs) { struct IsdnCardState *cs = bcs->cs; struct amd7930_hw *hw = &bcs->hw.amd7930; struct sk_buff *skb; int len; if (cs->debug & L1_DEB_HSCX) { char tmp[1024]; sprintf(tmp, "amd7930_Bchan_rcv (%d/%d)", hw->rv_buff_in, hw->rv_buff_out); debugl1(cs, tmp); QuickHex(tmp, hw->rv_buff + hw->rv_buff_out, RCV_BUFSIZE/RCV_BUFBLKS); debugl1(cs, tmp); } do { if (bcs->mode == L1_MODE_HDLC) { while ((len = read_raw_hdlc_data(hw->hdlc_state, hw->rv_buff + hw->rv_buff_out, RCV_BUFSIZE/RCV_BUFBLKS, hw->rv_skb->tail, HSCX_BUFMAX))) { if (len > 0 && (cs->debug & L1_DEB_HSCX_FIFO)) { char tmp[1024]; char *t = tmp; t += sprintf(t, "amd7930_Bchan_rcv %c cnt %d", bcs->channel ? 'B' : 'A', len); QuickHex(t, hw->rv_skb->tail, len); debugl1(cs, tmp); } if (len > HSCX_BUFMAX/2) { /* Large packet received */ if (!(skb = dev_alloc_skb(HSCX_BUFMAX))) { printk(KERN_WARNING "amd7930: receive out of memory"); } else { skb_put(hw->rv_skb, len); skb_queue_tail(&bcs->rqueue, hw->rv_skb); hw->rv_skb = skb; bcs->event |= 1 << B_RCVBUFREADY; queue_task(&bcs->tqueue, &tq_immediate); } } else if (len > 0) { /* Small packet received */ if (!(skb = dev_alloc_skb(len))) { printk(KERN_WARNING "amd7930: receive out of memory\n"); } else { memcpy(skb_put(skb, len), hw->rv_skb->tail, len); skb_queue_tail(&bcs->rqueue, skb); bcs->event |= 1 << B_RCVBUFREADY; queue_task(&bcs->tqueue, &tq_immediate); mark_bh(IMMEDIATE_BH); } } else { /* Reception Error */ /* printk("amd7930: B channel receive error\n"); */ } } } else if (bcs->mode == L1_MODE_TRANS) { if (!(skb = dev_alloc_skb(RCV_BUFSIZE/RCV_BUFBLKS))) { printk(KERN_WARNING "amd7930: receive out of memory\n"); } else { memcpy(skb_put(skb, RCV_BUFSIZE/RCV_BUFBLKS), hw->rv_buff + hw->rv_buff_out, RCV_BUFSIZE/RCV_BUFBLKS); skb_queue_tail(&bcs->rqueue, skb); bcs->event |= 1 << B_RCVBUFREADY; queue_task(&bcs->tqueue, &tq_immediate); mark_bh(IMMEDIATE_BH); } } if (hw->rv_buff_in == hw->rv_buff_out) { /* Buffer was filled up - need to restart receiver */ amd7930_brecv(0, bcs->channel, hw->rv_buff + hw->rv_buff_in, RCV_BUFSIZE/RCV_BUFBLKS, (void *) &Bchan_recv_callback, (void *) bcs); } hw->rv_buff_out += RCV_BUFSIZE/RCV_BUFBLKS; hw->rv_buff_out %= RCV_BUFSIZE; } while (hw->rv_buff_in != hw->rv_buff_out); } static void Bchan_close(struct BCState *bcs) { struct sk_buff *skb; Bchan_mode(bcs, 0, 0); amd7930_bclose(0, bcs->channel); if (test_bit(BC_FLG_INIT, &bcs->Flag)) { skb_queue_purge(&bcs->rqueue); skb_queue_purge(&bcs->squeue); } test_and_clear_bit(BC_FLG_INIT, &bcs->Flag); } static int Bchan_open(struct BCState *bcs) { struct amd7930_hw *hw = &bcs->hw.amd7930; if (!test_and_set_bit(BC_FLG_INIT, &bcs->Flag)) { skb_queue_head_init(&bcs->rqueue); skb_queue_head_init(&bcs->squeue); } test_and_clear_bit(BC_FLG_BUSY, &bcs->Flag); amd7930_bopen(0, bcs->channel, 0xff); hw->rv_buff_in = 0; hw->rv_buff_out = 0; hw->tx_skb = NULL; init_hdlc_state(hw->hdlc_state, 0); amd7930_brecv(0, bcs->channel, hw->rv_buff + hw->rv_buff_in, RCV_BUFSIZE/RCV_BUFBLKS, (void *) &Bchan_recv_callback, (void *) bcs); bcs->event = 0; bcs->tx_cnt = 0; return (0); } static void Bchan_init(struct BCState *bcs) { if (!(bcs->hw.amd7930.tx_buff = kmalloc(RAW_BUFMAX, GFP_ATOMIC))) { printk(KERN_WARNING "HiSax: No memory for amd7930.tx_buff\n"); return; } if (!(bcs->hw.amd7930.rv_buff = kmalloc(RCV_BUFSIZE, GFP_ATOMIC))) { printk(KERN_WARNING "HiSax: No memory for amd7930.rv_buff\n"); return; } if (!(bcs->hw.amd7930.rv_skb = dev_alloc_skb(HSCX_BUFMAX))) { printk(KERN_WARNING "HiSax: No memory for amd7930.rv_skb\n"); return; } if (!(bcs->hw.amd7930.hdlc_state = kmalloc(sizeof(struct hdlc_state), GFP_ATOMIC))) { printk(KERN_WARNING "HiSax: No memory for amd7930.hdlc_state\n"); return; } bcs->hw.amd7930.tq_rcv.sync = 0; bcs->hw.amd7930.tq_rcv.routine = (void (*)(void *)) &Bchan_rcv_bh; bcs->hw.amd7930.tq_rcv.data = (void *) bcs; bcs->hw.amd7930.tq_xmt.sync = 0; bcs->hw.amd7930.tq_xmt.routine = (void (*)(void *)) &Bchan_xmt_bh; bcs->hw.amd7930.tq_xmt.data = (void *) bcs; } static void Bchan_manl1(struct PStack *st, int pr, void *arg) { switch (pr) { case (PH_ACTIVATE_REQ): test_and_set_bit(BC_FLG_ACTIV, &st->l1.bcs->Flag); Bchan_mode(st->l1.bcs, st->l1.mode, st->l1.bc); st->l1.l1man(st, PH_ACTIVATE_CNF, NULL); break; case (PH_DEACTIVATE_REQ): if (!test_bit(BC_FLG_BUSY, &st->l1.bcs->Flag)) Bchan_mode(st->l1.bcs, 0, 0); test_and_clear_bit(BC_FLG_ACTIV, &st->l1.bcs->Flag); break; } } int setstack_amd7930(struct PStack *st, struct BCState *bcs) { if (Bchan_open(bcs)) return (-1); st->l1.bcs = bcs; st->l2.l2l1 = Bchan_l2l1; st->ma.manl1 = Bchan_manl1; setstack_manager(st); bcs->st = st; return (0); } static void amd7930_drecv_callback(void *arg, int error, unsigned int count) { struct IsdnCardState *cs = (struct IsdnCardState *) arg; static struct tq_struct task; struct sk_buff *skb; /* NOTE: This function is called directly from an interrupt handler */ if (1) { if (!(skb = alloc_skb(count, GFP_ATOMIC))) printk(KERN_WARNING "HiSax: D receive out of memory\n"); else { memcpy(skb_put(skb, count), cs->rcvbuf, count); skb_queue_tail(&cs->rq, skb); } task.routine = (void *) DChannel_proc_rcv; task.data = (void *) cs; queue_task(&task, &tq_immediate); mark_bh(IMMEDIATE_BH); } if (cs->debug & L1_DEB_ISAC_FIFO) { char tmp[128]; char *t = tmp; t += sprintf(t, "amd7930 Drecv cnt %d", count); if (error) t += sprintf(t, " ERR %x", error); QuickHex(t, cs->rcvbuf, count); debugl1(cs, tmp); } amd7930_drecv(0, cs->rcvbuf, MAX_DFRAME_LEN, &amd7930_drecv_callback, cs); } static void amd7930_dxmit_callback(void *arg, int error) { struct IsdnCardState *cs = (struct IsdnCardState *) arg; static struct tq_struct task; /* NOTE: This function is called directly from an interrupt handler */ /* may wish to do retransmission here, if error indicates collision */ if (cs->debug & L1_DEB_ISAC_FIFO) { char tmp[128]; char *t = tmp; t += sprintf(t, "amd7930 Dxmit cnt %d", cs->tx_skb->len); if (error) t += sprintf(t, " ERR %x", error); QuickHex(t, cs->tx_skb->data, cs->tx_skb->len); debugl1(cs, tmp); } cs->tx_skb = NULL; task.routine = (void *) DChannel_proc_xmt; task.data = (void *) cs; queue_task(&task, &tq_immediate); mark_bh(IMMEDIATE_BH); } static void amd7930_Dchan_l2l1(struct PStack *st, int pr, void *arg) { struct IsdnCardState *cs = (struct IsdnCardState *) st->l1.hardware; struct sk_buff *skb = arg; char str[64]; switch (pr) { case (PH_DATA_REQ): if (cs->tx_skb) { skb_queue_tail(&cs->sq, skb); #ifdef L2FRAME_DEBUG /* psa */ if (cs->debug & L1_DEB_LAPD) Logl2Frame(cs, skb, "PH_DATA Queued", 0); #endif } else { if ((cs->dlogflag) && (!(skb->data[2] & 1))) { /* I-FRAME */ LogFrame(cs, skb->data, skb->len); sprintf(str, "Q.931 frame user->network tei %d", st->l2.tei); dlogframe(cs, skb->data+4, skb->len-4, str); } cs->tx_skb = skb; cs->tx_cnt = 0; #ifdef L2FRAME_DEBUG /* psa */ if (cs->debug & L1_DEB_LAPD) Logl2Frame(cs, skb, "PH_DATA", 0); #endif amd7930_dxmit(0, skb->data, skb->len, &amd7930_dxmit_callback, cs); } break; case (PH_PULL_IND): if (cs->tx_skb) { if (cs->debug & L1_DEB_WARN) debugl1(cs, " l2l1 tx_skb exist this shouldn't happen"); skb_queue_tail(&cs->sq, skb); break; } if ((cs->dlogflag) && (!(skb->data[2] & 1))) { /* I-FRAME */ LogFrame(cs, skb->data, skb->len); sprintf(str, "Q.931 frame user->network tei %d", st->l2.tei); dlogframe(cs, skb->data + 4, skb->len - 4, str); } cs->tx_skb = skb; cs->tx_cnt = 0; #ifdef L2FRAME_DEBUG /* psa */ if (cs->debug & L1_DEB_LAPD) Logl2Frame(cs, skb, "PH_DATA_PULLED", 0); #endif amd7930_dxmit(0, cs->tx_skb->data, cs->tx_skb->len, &amd7930_dxmit_callback, cs); break; case (PH_PULL_REQ): #ifdef L2FRAME_DEBUG /* psa */ if (cs->debug & L1_DEB_LAPD) debugl1(cs, "-> PH_REQUEST_PULL"); #endif if (!cs->tx_skb) { test_and_clear_bit(FLG_L1_PULL_REQ, &st->l1.Flags); st->l1.l1l2(st, PH_PULL_CNF, NULL); } else test_and_set_bit(FLG_L1_PULL_REQ, &st->l1.Flags); break; } } int setDstack_amd7930(struct PStack *st, struct IsdnCardState *cs) { st->l2.l2l1 = amd7930_Dchan_l2l1; if (! cs->rcvbuf) { printk("setDstack_amd7930: No cs->rcvbuf!\n"); } else { amd7930_drecv(0, cs->rcvbuf, MAX_DFRAME_LEN, &amd7930_drecv_callback, cs); } return (0); } static void manl1_msg(struct IsdnCardState *cs, int msg, void *arg) { struct PStack *st; st = cs->stlist; while (st) { st->ma.manl1(st, msg, arg); st = st->next; } } static void amd7930_new_ph(struct IsdnCardState *cs) { switch (amd7930_get_liu_state(0)) { case 3: manl1_msg(cs, PH_POWERUP_CNF, NULL); break; case 7: manl1_msg(cs, PH_I4_P8_IND, NULL); break; case 8: manl1_msg(cs, PH_RSYNC_IND, NULL); break; } } /* amd7930 LIU state change callback */ static void amd7930_liu_callback(struct IsdnCardState *cs) { static struct tq_struct task; if (!cs) return; if (cs->debug & L1_DEB_ISAC) { char tmp[32]; sprintf(tmp, "amd7930_liu state %d", amd7930_get_liu_state(0)); debugl1(cs, tmp); } task.sync = 0; task.routine = (void *) &amd7930_new_ph; task.data = (void *) cs; queue_task(&task, &tq_immediate); mark_bh(IMMEDIATE_BH); } void amd7930_l1cmd(struct IsdnCardState *cs, int msg, void *arg) { u_char val; char tmp[32]; if (cs->debug & L1_DEB_ISAC) { char tmp[32]; sprintf(tmp, "amd7930_l1cmd msg %x", msg); debugl1(cs, tmp); } switch(msg) { case PH_RESET_REQ: if (amd7930_get_liu_state(0) <= 3) amd7930_liu_activate(0,0); else amd7930_liu_deactivate(0); break; case PH_ENABLE_REQ: break; case PH_INFO3_REQ: amd7930_liu_activate(0,0); break; case PH_TESTLOOP_REQ: break; default: if (cs->debug & L1_DEB_WARN) { sprintf(tmp, "amd7930_l1cmd unknown %4x", msg); debugl1(cs, tmp); } break; } } static void init_amd7930(struct IsdnCardState *cs) { Bchan_init(&cs->bcs[0]); Bchan_init(&cs->bcs[1]); cs->bcs[0].BC_SetStack = setstack_amd7930; cs->bcs[1].BC_SetStack = setstack_amd7930; cs->bcs[0].BC_Close = Bchan_close; cs->bcs[1].BC_Close = Bchan_close; Bchan_mode(cs->bcs, 0, 0); Bchan_mode(cs->bcs + 1, 0, 0); } void release_amd7930(struct IsdnCardState *cs) { } static int amd7930_card_msg(struct IsdnCardState *cs, int mt, void *arg) { switch (mt) { case CARD_RESET: return(0); case CARD_RELEASE: release_amd7930(cs); return(0); case CARD_INIT: cs->l1cmd = amd7930_l1cmd; amd7930_liu_init(0, &amd7930_liu_callback, (void *)cs); init_amd7930(cs); return(0); case CARD_TEST: return(0); } return(0); } int __init setup_amd7930(struct IsdnCard *card) { struct IsdnCardState *cs = card->cs; char tmp[64]; strcpy(tmp, amd7930_revision); printk(KERN_INFO "HiSax: AMD7930 driver Rev. %s\n", HiSax_getrev(tmp)); if (cs->typ != ISDN_CTYPE_AMD7930) return (0); cs->irq = amd7930_get_irqnum(0); if (cs->irq == 0) return (0); cs->cardmsg = &amd7930_card_msg; return (1); } |